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Data-driven methods have now been widely used in structural health monitoring of civil infrastructures thanks to the rapid
development of sensor technologies with massive structural and operational condition data. One main issue of data-driven
methods is that the computational time increases with the number of monitoring data used, which limits their applications for
online structural condition assessment. Focusing on bridge structural health monitoring, this paper proposes a representative data
selection strategy for online performance assessment based on Gaussian process models. Te proposed method can efectively
reduce the required monitoring data size for training, allowing the bridge performance assessment to be conducted in a real-time
manner. Te method is developed in a probabilistic manner, allowing associated uncertainty of bridge monitoring data to be
rigorously considered. A probabilistic warning index is proposed for bridge condition assessment and anomaly detection. Te
proposed method is validated using synthetic data and applied to structural condition assessment of two full-scale bridges,
illustrating the feasibility for real implementations.

1. Introduction

Structural health monitoring (SHM) systems have been
widely deployed on civil infrastructures over the past de-
cades thanks to the rapid development of sensor technology
[1]. Based on the monitored structural responses and en-
vironmental conditions including vibration, stress, tem-
perature, and wind speed, various methods have been
developed for condition monitoring and performance as-
sessment [2–5]. Compared to the advancements in feld
measurements, developing rigorous and reliable SHM
methods is still a challenging problem. One main reason is
that the structural responses are not only sensitive to
structural changes but also to environmental and opera-
tional variations (EOVs). Tis is especially the case for long-
span bridges since they are more fexible and prone to vi-
bration under dynamic loading such as wind and trafc with

the increase of main span [6, 7]. Correlations between EOVs
and structural properties have been modelled using diferent
methods for performance assessment of bridges based on
SHM data. Cross et al. [8, 9] proposed a novel approach,
namely, cointegration to remove the environmental trends in
SHM data. Linear regression models such as linear adaptive
flter [10] and Auto Regressivee eXogenous (ARX) models
[11] are commonly used to flter out the environmental efect
from the long-term structural response data due to the
simplicity and efciency. To better account for the nonlinear
behaviour of EOVs, polynomial regression models [12–14]
and wavelet-based approaches [15, 16] have also been used for
condition monitoring and damage detection of bridges.

Data-driven methods including machine learning, ar-
tifcial intelligence, and statistical methods have now been
gradually accepted as a powerful tool to fnd out the potential
relationship between EOVs and structural responses from
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long-term bridge monitoring data. Relationship between
bridge modal properties and temperature has been modelled
using support vector machine [17] and neural network
[18, 19]. Principal component analysis (PCA) has also been
used to model the efect of varying load on the natural fre-
quencies of a bridge [20, 21]. A comprehensive review on data
mining methods for SHM can be found in [22]. Among
others, the Gaussian process (GP) [23] provides promising
nonlinear regression tools for modelling the efect of EOVs in
SHM which are fexible and fully probabilistic. Applications
include modelling dynamic properties of Tamar bridge under
diferent wind speed [24]; detecting sensor fault, structural
damage, and EOVs [25]; and modelling both observed and
latent EOVs for bridge performance assessment [26].

One main limitation of data-driven methods is that the
computational complexity increases signifcantly with the
increase of data, which makes the methods infeasible for
online utilization. Tis is also the case for GP. Training the
GP model involves repeated inverse calculation of the co-
variance matrix, whose computational complexity increases
cubically with the number of training data. Approximation
methods have been developed to overcome the computa-
tional limits. Te approximation of the inverse calculation of
the covariance matrix [27, 28] and the log marginal likeli-
hood [29] is a common approach. On the other hand,
various methods have been developed to approximate the
GP model by utilising a smaller training set, which is mainly
divided into three categories. Te frst approach conducts
diferent selection andmanagement criteria to select a subset
or active set from the full dataset [30, 31].Te second kind of
method involves the use of pseudoinputs as substitutes for
the original training data [32, 33]. Te third type of method
bases on the concept of variational inference and introduces
inducing variables [34, 35].

Te forgoing methods are generally applicable for GP
regression models when the whole training dataset is
known. However, in the context of online structure as-
sessment, monitoring data is subjected to stream input
into the GP model. Diferent from the preceding methods,
this work focuses on the online GP strategy for bridge
structural condition assessment. Several specialised issues
should be considered in this context. First, the “whole”
training data (if any) are unavailable since the SHM data
are collected in a streamed manner. Second, although
long-term SHM data can be massive, the redundancy is
also signifcant. In real implementation, most of the SHM
data are collected under normal working and environ-
mental conditions without structural anomaly. Tis pro-
vides the opportunity to conduct sparse approximation
which uses a subset of data to approximate the full re-
gression model. Tird, it will be benefcial to use raw SHM
data for training since the one type of SHM data will be
used for several diferent analysis scenarios. Furthermore,
structural monitoring data are commonly measured under
operation condition where structural responses and EOVs
cannot be directly controlled. Te resulting uncertainties
in the SHM data can be signifcant and should be well
considered when developing structural condition assess-
ment methods.

To address the abovementioned concerns, this work
proposes a bridge structural performance assessment
method based on GP through a representative monitoring
data selection strategy. Te proposed method can efectively
reduce the size of training data used for GPmodels, allowing
the bridge performance assessment to be conducted in
a real-time manner. Compared to other sparse GP methods
where induced training data are used, the proposed method
keeps the raw SHM data for training. Te method is de-
veloped in a probabilistic manner, allowing associated un-
certainty to be rigorously considered. A probabilistic
warning index is proposed for bridge condition assessment
and anomaly detection.Te proposed method is validated by
synthetic data. It also applied the SHM data of two full-scale
bridges. Practical issues in real implementations are
discussed.

Te remaining paper is organised as follows. Section 2
discusses the background of the problem investigated in this
work. Te framework of proposed representative data se-
lection strategy and online performance warning strategy are
introduced in Sections 3 and 4, respectively. Te main
procedure of the proposed method is then summarised in
Section 5. Synthetic data and two full-scale bridge examples
are presented in Section 6 to validate the proposed method.
Te work is concluded in Section 7.

2. Background and Problem Context

Te proposed online bridge structural performance as-
sessment method is developed based on GP regression. Its
main theory for SHM and computational complexity are
frst reviewed [23, 36]. To reduce the complexity, the rep-
resentative data selection strategy is proposed, which will be
introduced in the next section.

Assume that the monitored structural response data y
can be represented as

y � f(x) + ε, (1)

where x is the environmental and operational variations;
f(x) is the structural responses induced by the EOVs with
the output denoted as f ; and ε is the modelling error.
Consider a kernel-based GP model for describing the
functional behaviour between the EOVs and their induced
structural response, i.e.,

f(x) ∼ GP(m(x,ψ), k(x,ψ)), (2)

where ψ is the associated hyperparameters of the GP model,
and m(.) and k(., .) are the mean and covariance functions
(also known as a kernel function) with respect to x and
hyperparameters ψ. Te outputs of these two functions are
denoted as m and K, respectively.

Te probability density function (PDF) of f given the
hyperparameters ψ can be expressed as

p(f |ψ) � N(m,K). (3)

Te structure is assumed to be healthy without structural
changes at the training stage of the SHM method. In this
context, the modelling error is mainly due to sensor noise
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and it is sufcient to assume ε as i.i.d. (independent and
identically distributed) Gaussian white noise, whose prob-
ability density function can be given by

p ε|σ2􏼐 􏼑 � N 0, σ2I􏼐 􏼑, (4)

where σ2 is the corresponding variance.
Te hyperparameters of the GP model can be inferred by

maximising the marginal likelihood function given by

p(y | x) � N m(x),K(x, x) + σ2I􏼐 􏼑

� (2π)
− N/2 K(x, x) + σ2I

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1/2

exp −
1
2
[y − m(x)]

T K(x, x) + σ2I􏽨 􏽩
− 1

[y − m(x)]􏼚 􏼛.

(5)

For prediction, the posterior distribution of test outputs
f∗ at test inputs x∗ can be given by

p f∗|y, x, x∗( 􏼁 � N μf∗,Cf∗􏼐 􏼑, (6)

with

μf∗ � K x∗, x( 􏼁 K(x, x) + σ2I􏽨 􏽩
− 1
y,

Cf∗ � K x∗, x∗( 􏼁 − K x∗, x( 􏼁 K(x, x) + σ2I􏽨 􏽩
− 1
K x, x∗( 􏼁.

(7)

Structural condition assessment can be conducted by
investigating the diference between the measured structural
responses data and the model predictions. As mentioned
before, the modelling error is to be modelled as i.i.d.
Gaussian white noise when there is no structural change.
When structural changes such as damage and performance
degradation occur, additional characteristics will occur in
the modelling error, showing diferent statistical properties.
Structural performance warning can then be conducted
based on this with the proper threshold set.

As shown in equation (5), inferring the GP model in-
volves inverse calculation of the covariance matrix
K(x, x) + σ2I. Te computational complexity is of O(N3),
which grows cubically with the number of training data N.
Tis makes the GP model intractable for online SHM when
the dataset is large (which is commonly the case for long-
term monitoring data).

3. Representative Data Selection Strategy

In order to conduct SHM based on GP in an online manner,
methods should be developed to reduce the computational
complexity. As mentioned in the introduction section, SHM
data are commonly collected in a streamed manner. When
the SHM data are used to train the GP model, the “whole”
training data (if any) are unavailable. Approaches based on
approximation of the full covariance matrix are not suitable
in this case. Considering the redundancy of SHM data, the
proposed method in this work is developed based on the
sparse framework. Te main idea is to select a subset of size
m from the whole training dataset of size n(m< n) to ap-
proximate the whole GP model. Te general framework is
given in Algorithm 1.

Te algorithm involves two main steps when a new
data point comes. First, consider whether the new data
point should be added to the current subset. Second, if the
new data point is added to the subset, which data point
should be removed to keep the size of the subset. Te focus
here is to design the criteria of these two steps to suit the
structural performance assessment based on bridge
SHM data.

4. Online Performance Assessment Method

In this section, a bridge structural performance assessment
for online implementation is proposed based on the rep-
resentative data selection framework discussed in the last
section. It should be noted that the representative data se-
lection framework only focuses on training. Anomaly de-
tection criteria should also be considered for a performance
assessment method. Before considering the training criteria
when a new SHM data point comes, the new data point
should be frst evaluated whether it is collected without
structural anomalies. It should be also noted that for some
structural anomalies such as degradation or fatigue, such
changes are accumulative without mutations. To detect such
structural anomalies, another subset of training data is in-
troduced as the reference dataset for performance assess-
ment. Te proposed performance assessment strategy
should be conducted not only based on the new data point
but also the diference between the GP model based on the
current data subset and the GPmodel based on the reference
dataset (reference model). Details of the proposed method
are given in the following.

First, consider the novelty and anomaly evaluation of
a new data point xnew, ynew􏼈 􏼉.Te new data are considered to
have enough novelty if the diference between itself and the
prediction of the current GP model is signifcant. However,
if such diference is excessive, potential structural anomalies
should be considered. Te current GP model could provide
a probabilistic prediction at xnew, i.e., p(fnew | xnew,Dm,ψ).
In order to fully account for the uncertainty in the measured
SHM data, the Mahalanobis distance is adopted for the
novelty and anomaly evaluation in this work. It is a measure
of the distance between a point and a probability distri-
bution, which is well suited in this case. Te Mahalanobis
distance between xnew, ynew􏼈 􏼉 and p(y|xnew,Dm,ψ) can be
given as
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ynew − μfnew
􏼐 􏼑

⊤
C−1

fnew
ynew − μfnew

􏼐 􏼑

􏽱

, (8)

where μfnew
and Cfnew

are the mean and covariance of
p(fnew | xnew,Dm,ψ). For a normal distribution, the value of
the Mahalanobis distance is directly related to the confdence
interval, which can be used as guidance when setting the
threshold for novelty and anomaly evaluation. For example,
a Mahalanobis distance of 2 (covering the confdence interval
of 95%) can be used as the warning threshold I for performance
(denoted as cw) while a Mahalanobis distance of 1 can be used
as a threshold for subset selection update (denoted as ctol).

Next, consider the score for impact of removal. In this
case, the comparison is between two GP models, which are
two probability distributions. Various forms of measures
have been developed to quantify the diference between two
probability distributions. Among others, Kullback–Leibler

divergence is one of the most commonly used measures. As
a no upper-bound f-divergence method, KL divergence has
advantage in comparing, which introduce as redundancy
criteria in this work. Te KL divergence of the probability
distribution P from Q is defned to be the integral.

DKL(P‖Q) � 􏽚
+∞

−∞
p(x)log

p(x)

q(x)
􏼠 􏼡dx. (9)

In real world, the acquisition data are discrete.Terefore,
the GP model is approximated by a k dimensional multi-
variate normal distribution. For two k dimensional multi-
variate normal distributions P and Q, with means μ and m
and with covariance matrices Σ and C, the KL divergence
between distributions is as follows:

DKL(P‖Q) �
1
2

log
|C|

|Σ|
+ Tr C− 1Σ􏼐 􏼑 +(μ − m)C− 1

(μ − m)
⊤

− k􏼨 􏼩. (10)

In the scenario of accumulative damages, the diference
between the reference model (denote as GPref ) and the
current model can be used as the warning threshold II.
However, the characteristics of asymmetric and unbounded
make KL divergence not suitable to measure such distance.
In this work, the Hellinger distance is adopted to quantify
the discrepancies between two GPs given by

H(P, Q) �

�����������������������

1
2

􏽚 􏼒

�����

p(P)

􏽱

−

�����

p(Q)

􏽱

􏼓
2
dx

􏽳

, (11)

where P, Q denote the probability distribution of these two
GP models, respectively. For two Gaussian distributions
P ∼ N(μ,Σ) and Q ∼ N(m,C), the squared Hellinger dis-
tance can be written as

H
2
(P, Q) � 1 −

|Σ|
1/4

|C|
1/4

|(Σ + C)/2|
1/2 exp −

1
8
(μ − m)

⊤ Σ + C
2

􏼒 􏼓
− 1

(μ − m)􏼠 􏼡. (12)

TeHellinger distance considers the complete form of the
probability density function and is bounded from 0 (i.e., two
distributions are identical) to 1 (i.e., two distributions have no
overlay), which is suitable for setting performance warning
thresholds. Te warning threshold II of the proposed method

can then be set based on the Hellinger distance for perfor-
mance assessment. In real implementation, it is advised to set
warning threshold II between 0.6 and 0.8 (e.g., the overlapped
area between two normal distributions with the same variance
is between 17.6% and 7.3% in this case), which is a tradeof
between modal sensitivity and false alarm rate.

(1) Input: new data point x, y􏼈 􏼉

(2) Persistent: current subset selection Dm � xi, yi􏼈 􏼉
m

i�1, hyperparameters of the GP model
(3) Compute the novelty c of data point x, y􏼈 􏼉

(4) If c< ctol, then
Keep the current subset and GP model

(5) Else
Adding x, y􏼈 􏼉 to Dm and update the GP model

(6) End if
(7) If data size exceeds m, then

Compute the score (i.e., redundancy, R) of each datapoint xi, yi􏼈 􏼉 based on its impact of removal
(8) Remove the data point with the lowest score (i.e., minimum impact of removal, argmax(R)) from the dataset and update the

GP model
(9) End if

ALGORITHM 1: General framework for representative data selection.
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5. Summary of the Procedure

Based on the foregoing discussion, it is feasible to use
SHM data for real-time condition assessment of struc-
tures. Tis section summarizes the main steps of the
proposed method, which involves two stages. Te frst
stage is the training stage, where the parameters of the
proposed model and representative dataset are iteration
to obtain from the monitoring data of structure under
normal conditions. Meanwhile, two thresholds are
computed using statistical methods. Te second stage is
the monitoring stage, where the structural performance
assessment is conducted using the proposed model and
test data. Warning index can be calculated from the
modelling error and model update will occur simulta-
neously. Te entire process of the proposed method is
summarized and illustrated in Figure 1.

5.1. Training Stage

(1) Initialise ψ, ctol, Dm􏼈 􏼉

(2) Input new monitoring data point x, y􏼈 􏼉,
(3) Calculate c of x, y􏼈 􏼉 using equation (8),

Case c< ctol: keep the current Dm and the GP model.
Case c≥ ctol: add new data point to Dm and update
the GP model.

(4) If the size of Dm changes, calculate R of each data
point of Dm using equation (10).

(5) Remove the data point with largest R and update Dm.
(6) Repeat steps (2)–(5) until iterate through the whole

dataset.

5.2. Monitoring Stage

(1) ψ, ctol, cw, Dm,GPref􏼈 􏼉 from the training stage.
(2) Input new monitoring data point x, y􏼈 􏼉,
(3) Calculate c of x, y􏼈 􏼉 using equation (8),

Case c< ctol: keep the current Dm and the GP model,
then go to step (2).
Case ctol ≤ c≤ cw: add new data point to Dm and
update the GP model.
Case c> cw: trigger warnings and go to step (2).

(4) Update Dm and the GP model based on steps (4)-(5)
in the training stage.

(5) Calculate H2(GPref ,GP) using equation (12)
(6) If H2 exceed the warming threshold II, trigger

warnings.
(7) Inspect the structure manually to confrm whether

a false positive has occurred.
(8) If it is a pseudowarning, update GPref .
(9) Repeat steps (2)–(8) until iterate through the whole

dataset.

6. Illustrative Examples

Tree examples are presented in this section to illustrate the
proposed method. Te proposed method is frst validated
using synthetic data. SHM data from two full-scale bridges
are then considered, illustrating the applicability of the
proposed method to real implementations.

In this work, we assume that themean function of the GP
model is zero as no prior mean function is provided and the
monitoring data will be normalized before analysis. Te
covariance K is assumed to be the squared exponential
function, which is commonly used. Te entry at position
(i, j) is given by

Ki,j � σ2f exp
xi − xj

�����

�����
2

2l
2

⎛⎜⎜⎝ ⎞⎟⎟⎠, (13)

where xi andxj are the i-th and j-th entry of the observa-
tions. σf and l are the hyperparameters of the selected co-
variance function (i.e., ψ � σf, l􏽮 􏽯).

To validate the applicability of the proposed method in
structure assessment, two categories of abnormal scenario
are introduced in this section. Abrupt changes in structure
response induced by structural cracking or functional failure
are frst to be simulated. Te anomaly simulation data are
derived from equation (14) as follows:

S′ �
1

1 − c
S, (14)

where c is the severity degree of structural, and S′ and S are
the simulate data and original data, respectively.

It should be mentioned that not all the diseases may cause
abrupt changes in structure response; diseases such as struc-
tural stifness degradation may result in accumulate damage to
structure. In the second scenario, the incremental response data
are simulated by enlarging the original data as follows:

S′ �
1

1 − c(x − A)/(B − A)
S, x ∈ [A, B], (15)

where [A, B] is the simulation data interval.

6.1. Synthetic Data Example. Te key idea of the proposed
method is to capture the functional relationship between
structural responses and EOVs and assess the state of the
structure based on the GP model with reduced training data
size. To validate the proposed method, a simulated SHM
system is frst considered where the functional behaviour
between the measured structural response y and the envi-
ronmental and operational variations x are given by

y � 5x sin(12x) + 7x3 − log(x + 1) + ε. (16)

Te measured structural responses data are contami-
nated with measurement noise, which is modelled to be i.i.d.
Gaussian distributed with zero mean and standard deviation
of 0.2. Figure 2 shows the simulated data and the true
function values.
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To determine the proper size of the representative
dataset, simulations are conducted by comparing the pre-
dictions of the trained models based on diferent sizes of
training data to the true function values. Figure 3 shows the
normalised mean squared error (NMSE) among 30 in-
dependent simulations for each training data size condition.
It can be seen that with the increase of the training data size,

the diference between model predictions and true func-
tional values decreases. When the training data size is larger
than 10, further increase of the training data size does not
have signifcant improvement in the model predictions. To
balance computational cost and efciency, the size of the
representative dataset is set to be 10 in this example. In real
implementation, the dataset size is primarily dictated by the

N

New data point {x, y} New data point {x, y}

Calculate γ of {x, y} Calculate γ of {x, y} 

Update Dm and GP model 

Update Dm and GP model 

Remove the element with
the largest R and update Dm

Remove the element with
the largest R and update Dm·

Compute H2 between
current model and GPref

Y

Training stage

Trigger warnings and 
assign manual inspection

Pseudo warning

Y

Initialise
{ψ, γtol, γw, Dm, GPref}

Diseases are detected

Maintenance and 
reinforcement

Y

N

Trigger 
warnings 

Y

N

N

Monitoring stage

Initialise {ψ, γtol, Dm}

γ ≥ γtol
γ ≥ γtol

γ > γw

Calculate R of every
element in Dm

Calculate R of every
element in Dm

H2 exceeds
threshold II ?

update GPref

Figure 1: Representative data selection and performance warning strategy process.
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exact storage requirements of bridge data, the time needed
for real-time assessment, and the accuracy of the model.
While increasing the dataset size can improve model pre-
diction performance, it will also increase the data storage size
and evaluation time.

After determining the size of the representative dataset,
the updating capability of the proposed method is then
investigated. Ten data points are frst generated with EOVs
within the range of [0, 0.4] to initialise the GP model. Five-
hundred data points are then generated within the range of
[0, 1] to simulate the streamed SHM data and the proposed
strategy is adopted. Tis simulates the condition where the
initial SHM data may not span the whole domain of interest.
With the increase of streamed data, more environmental and
operation conditions are encountered. Figure 4 shows the
model predictions of the initial model and the model with
the proposed strategy adopted. Diferent from the initial
training dataset, the updated representative dataset dis-
tributed more evenly in the range of interest (i.e., [0, 1]).
Although the model predictions based on the initial dataset
are more accurate within the range of [0, 0.4], its perfor-
mance is much worse compared to the model based on the
representative dataset in the whole range of interest. Figure 5
shows the comparison between the model based on the
whole data and the model based on the representative
dataset. Te closeness of the model predictions of the two
models validates the feasibility of the proposed strategy.

Next, investigate the performance warning capability of
the proposed method. Te monitoring data are separated
into three parts, i.e., the training set, the validation set, and
the test set. Figure 6 illustrates the analysis result of the frst
scenario. Te warning threshold I is set to be 1 in this case,
covering 68% of the probability under normal condition. In
the training stage (i.e., samples 1–200), all the data points are

assumed obtained from healthy structures. Tis means that
only the threshold for subset selection update needs to be
considered regardless of the judgement of threshold for
performance warning. In the monitoring stage (i.e., samples
201–500), the assessment of performance and model update
will occur simultaneously.

Compared with minor anomalies, this method is more
sensitive to medium and large data anomalies from this
fgure. In addition, it has a low false-positive rate for training
and validation data, which provides well-detecting anom-
alies capacity.

Figure 7 shows the analysis results of the second scenario
with warning threshold II set as 0.6. Te tendency of the
accumulated ofsets can be well captured by the proposed
method, which demonstrated its feasibility in this type of
anomaly detection. Besides, fuctuations can be found in
training and validation intervals. Tis is mainly because the
update of the GP model itself is in constant fux. As long as
the threshold is not exceeded, the structures are regarded as
healthy.

6.2. Tird Nanjing Yangtze River Bridge. Now, investigate
the applicability of the proposed method to SHM of full-
scale bridges.TeTird Nanjing Yangtze River Bridge is frst
considered. It is a cable-stayed bridge with fve spans (main
span of 648m) and an overall length of 1288m. It is
a highway bridge with three lanes in each direction over the
Yangtze River in Nanjing, China. Figure 8 shows the front
view of the bridge.

Te SHM system of these bridges measures more than
ten diferent types of structural responses and environ-
mental and operational conditions (including stress, accel-
eration, temperature, humidity, and wind speed,) with over
two-hundred sensors deployed over the bridge. Tis ex-
ample focuses on the stress behaviour of the main girder at
the midspan of the bridge under diferent temperature
conditions. Figure 9 shows the sensor locations through the
main girder. Te SHM data measured in May 2018 are used
for analysis. Te original sampling rate of stress and tem-
perature is 100Hz and 1Hz, respectively, and the measured
data are averaged every 10minutes to suppress the live load
efect.

Figure 10 shows the time history of the stress and
temperature data. Te daily periodic behaviour of stress
and temperature indicates the correlativity between them.

2510 15 20 300 5

Training Data Size

10-2

10-1

100

101

N
M

SE

Figure 3: NMSE against the training data size, synthetic data
example.
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Figure 2: Simulated data with true function values, synthetic data example.
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Te plots of stress against temperature of diferent sensors
shown in Figure 11 illustrate such correlations. Structural
anomaly detection can be conducted if such correlativity can
be well described.

It should be noted that although the original data are
downsampled, the data amount is still massive (around
4000 data each sensor), which is incapable to conduct

online structural performance assessment. Similar to the
synthetic data example, investigation is conducted be-
tween the model prediction accuracy and training data
length. Figure 12 shows the NMSE of model predictions
against training data length. It can be seen that 30 data
points are sufcient for modelling the relationship be-
tween stress and temperature.
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Figure 5: Model predictions based on the whole data and the updated representative dataset, synthetic data example.
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Figure 6: Warning results based on the proposed method with diferent severity degrees, frst scenario, synthetic data example (samples
1–200: training dataset; samples 201–275: validation dataset; samples 276–350: test dataset with 5% severity degree; samples 351–425: test
dataset with 10% severity degree; samples 426–500: test dataset with 30% severity degree; red solid line: warning threshold I).
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Figure 13 shows the model prediction based on the
whole dataset and the representative dataset. Te NMSE of
the model predictions of these two are 0.9855 and 1.050,
respectively. Te NMSEs between these two datasets are quite
close while the computational cost of the proposed method is
much smaller, showing the feasibility of the proposed method
for real-time SHM in real implementations.

Figure 14 illustrates the results of warning index cal-
culation. In consideration of reducing misjudgement, the
warning threshold I is set to be 1.5, which is higher than the
synthetic data example. For the 40% severity group,
anomalous conditions can be well captured and alerted.

However, the sensitivity of anomaly detection at lower se-
verity degrees reduces compared to the synthetic data sce-
nario. One main reason is harsh data acquisition
environment on the site which makes noise involved in
monitoring data. Diferent from the i.i.d. Gaussian white
noise, measurement noise is chaotic, which increases the
difculty of detecting structural changes.

Te analysis results in the second scenario are shown in
Figure 15. Te warning threshold II of this scenario enlarges
to 0.8 for the same reason in the frst scenario. Te accuracy
of prediction is closely related to the diference between the
GP model and practical structure. When such diference is
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Figure 7: Warning results based on the proposed method with diferent severity degrees, second scenario, synthetic data example (samples
1–200: training dataset; samples 201–300: validation dataset; samples 301–500: test dataset with severity degree increments from 0 to 30%;
red solid line: warning threshold II).
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Figure 10: Time history of temperature and stress data of sensors 1–4 used for analysis, the Tird Nanjing Yangtze River Bridge.

Channel 1 Channel 2 Channel 3 Channel 4

35 5020
Temperature (°C)

35 5020
Temperature (°C)

35 5020
Temperature (°C)

35 5020
Temperature (°C)

0

5

10

15

St
re

ss
 (M

Pa
)

0

5

10

15

St
re

ss
 (M

Pa
)

0

2

4

6

8

10

St
re

ss
 (M

Pa
)

-14

-12

-10

-8

-6

-4

-2

St
re

ss
 (M

Pa
)

Figure 11: Stress against temperature, the Tird Nanjing Yangtze River Bridge (black line: model prediction based on GP).
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Figure 13: Model predictions based on diferent training datasets, the Tird Nanjing Yangtze River Bridge.
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Figure 14: Warning results based on the proposed method with diferent severity degrees, frst scenario, the Tird Nanjing Yangtze River
Bridge (samples 1–1920: training dataset; samples 1921–2400: validation dataset; samples 2401–2880: test dataset with 10% severity degree;
samples 2881–3360: test dataset with 20% severity degree; samples 3361–3840: test dataset with 40% severity degree; red solid line: warning
threshold I).
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Figure 15:Warning results based on the proposedmethod with diferent severity degrees, second scenario, theTird Nanjing Yangtze River
Bridge (sample 1–2400: training dataset; samples 2401–2880: validation dataset; samples 2881–3840: test dataset with severity degree
increments from 0 to 40%; red solid line: warning threshold II).
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excessive, the normal model update may be regarded as
deterioration in structure (e.g., the pseudowarning in channel
1). Terefore, the warning triggered by structure damage and
model update should be well distinguished in operation. Once
the pseudowarning occurred, the reference model needed to
update in order to reduce the false positive rate.

6.3.HongheBridge,HongwanWaterway Bridge. TeHonghe
Bridge is a dual six-lane bridge that spans the Hongwan and
Modaomen waterways in Zhuhai. It consists of two double-
tower and double-cable plane cable-stayed bridges. Te second
application is the main channel bridge over the Hongwan
waterway has a span arrangement of (73+162+500+162+73)
m=970m. Figure 16 shows the front view of the bridge.

A structural health-monitoring system is in operation to
monitor the structural health, including monitoring of
environmental loads, structural responses, and trafc. Ca-
bles being the crucial structural component of the cable-
stayed bridge, its health condition is an essential indicator of
that bridge. Diseases such as corrosion will cause a cross-
sectional area loss and a reduction of cable load capacity.
Terefore, long-term SHM is needed to ensure the cable
force within a reasonable range.Te vibration-basedmethod
is widely used in estimating the cable tension, as the dynamic
response can be easily obtained using accelerometers. Be-
sides, cable vibration characteristics are closely linked to
their abnormal states. In this example, more than 1200 hours
monitoring data from 3 acceleration sensors have been
investigated, the locations of which are marked in Figure 16.
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Figure 17: PSD diagram of the measured cable responses, the Honghe Bridge.

Structural Control and Health Monitoring 13



Mode 1

0.288

0.29

Fr
eq

ue
nc

y 
(H

z)
200 400 6000

Time (h)

Mode 2

0.615

0.62

Fr
eq

ue
nc

y 
(H

z)

200 400 6000
Time (h)

Mode 4

0.288

0.29

Fr
eq

ue
nc

y 
(H

z)

200 400 6000
Time (h)

Mode 3

200 400 6000
Time (h)

0.288

0.29

Fr
eq

ue
nc

y 
(H

z)

Figure 18: Time history of frequency data used for analysis, the Honghe Bridge.
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Figure 19: Identifed modal frequency against temperature, the Honghe Bridge (black line: model prediction based on GP).
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Te vibration responses of cables and temperature of the
main span are measured at a sampling rate of 50Hz and
1Hz, respectively.

Natural frequencies of the cables are identifed from
nonrepeated 10-minute vibration data while temperature
data are averaged over every 10minutes. Figure 17 shows the
power spectral density (PSD) of the investigated cables. Te
cable modes used for analysis are denoted in this fgure.
Figure 18 illustrates the time history of the identifed natural
frequency based on interested modes (mode 1–mode 4)
annotated in Figure 17. Similar to temperature variations,
changes in the natural frequency show a daily periotic trend.
Figure 19 demonstrates the functional relationship between

natural frequency and temperature, which shows a negative
correlation. However, frequency variations are not only
induced by temperature but are also afected by vehicle loads
and other ambient loads. It can be evidenced by the discrete
distribution of frequency data in Figure 19.

Considering the precision and efciency requirements, the
size of the representative dataset was defned as 70 in this
application. Model predictions based on the whole dataset and
representative data are illustrated in Figure 20. Compared to
the whole dataset, the predictions based on the representative
data show a smoother characteristics and similar precision in
whole domains. In this application, the data size was reduced
from 7048 to 70, which make computation time afordable.
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Figure 21: Warning results based on the proposed method with diferent severity degrees. First scenario, the Honghe Bridge (samples
1–3524: training dataset; samples 3525–4405: validation dataset; samples 4406–5286: test dataset with 2% severity degree; samples
5287–6167: test dataset with 5% severity degree; samples 6168–7048: test dataset with 10% severity degree; red solid line: warning
threshold I).

Structural Control and Health Monitoring 15



Figure 21 presents the analysis results for the frst sce-
nario with 1.5 of warning threshold I. It can be seen that the
warning threshold I is sensitive to both light and signifcant
changes in structure response. Diferent from the frst case,
the warning index in this case has better behaviour and
higher precision. Tis is mainly because the variations of the
frequency are less than stress, which make frequency more
sensitive to abnormal changes.

Figure 22 presents the analysis results using the proposed
method in the second scenario with 0.8 of warning threshold
II. Despite fuctuations within the training set, the behaviour
of the continuous ofset can be well captured. In this case, the
proposed method was applied in dynamic analysis in real
structure. Te nonlinear relationship between temperature

and natural frequency can be well described by the proposed
method. Compared to the conventional GP model, the
proposed method provides similar accuracy with less
computation complexity, showing its capability of real-time
structural monitoring. In addition, all the warning thresh-
olds mentioned before are not fxed, which are fexible to
meet the higher precision or lower false positive rate demand
in real implementation.

6.4. Computational Issue. Computational efciency is one of
the most important indicators to the feasibility of the
proposed method for real-time SHM and assessment,
which will be discussed in this section. All the analyses in
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Figure 22: Warning results based on the proposed method with diferent severity degrees, second scenario, the Honghe Bridge (samples
1–4405: training dataset; samples 4406–5286: validation dataset; samples 5287–7048: test dataset with severity degree increments from 0 to
5%; red solid line: warning threshold II).
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this work are based on the MATLAB 2023a with Intel Core
i5 CPU and 48 G RAM. For two full-scale bridges analysis
in this work, the computation time of training a GP model
based on the whole datasets are 88 s and 561 s, re-
spectively. On the other hand, training a GP model based
on the proposed method spends 0.08 s and 0.10 s, re-
spectively. It shows that the proposed method can sig-
nifcantly improve the computational efciency.Tanks to
the condensed size of the training dataset, the proposed
method also leads to a lower storage demand than con-
ventional methods.

7. Conclusions

An online structural condition assessment method based
on the Gaussian process is proposed in this work for
structural health-monitoring data. A representative data
selection strategy is proposed specifcally for streamed
bridge SHM data to reduce the computational time so that
the proposed method can be conducted in real-time
manner. A performance warning index is also proposed
for bridge condition assessment and anomaly detection.
Te proposed method is developed probabilistically,
allowing uncertainties in the monitoring data to be
considered.

Tree illustrative examples are presented in this paper.
Te proposed method is frst validated using synthetic data.
It is shown that the proposed method can signifcantly re-
duce the size of training data while preserving sufcient
model precision. Te structural damage can also be well
captured by the proposedmethod. SHMdatameasured from
two full-scale bridges under varying environmental and
operational conditions have also been investigated to il-
lustrate the feasibility of the proposed method in real
implementation. Compared to the conventional method
which uses the whole training dataset, the proposed method
provides similar model prediction accuracy with less com-
putational complexity, allowing the performance assessment
to be conducted in a real-time manner. Two diferent
structural anomaly scenarios have been considered in ex-
amples. It is shown that the proposed warning index can
detect the structural changes. Diferent thresholds can be set
balancing the sensitivity and accuracy of the performance
assessment. However, the infuence of EOVs is often
complex, whereas only one environmental impact (tem-
perature) is taken into account. Future research will focus on
estimating structural properties while considering multiple
environmental factors and employing more feasible selec-
tion criteria.
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