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A 1-dimensional convolutional neural network (1D CNN) model is developed to process deep learning of raw impedance signals
for smart aggregate (SA)-based concrete stress monitoring. First, the framework of the SA-based stress monitoring using deep
learning of raw impedance signals is described. An impedance measurement model is designed for a SA-embedded concrete body
under compression. A 1D CNN model is developed for deep learning of raw impedance signals corresponding to various stress
levels. Tree approaches for concrete stress monitoring are designed to deal with data availability, signal noises, and untrained
stress levels. Second, a few SA-embedded concrete cylinders are experimented to measure impedance signals under various stress
levels. Finally, the performance of the proposed method is extensively evaluated by investigating the feasibility of the K-fold cross-
validation to deal with the data availability and the efects of signal noises and untrained data on the accuracy of stress estimation
in the SA-embedded concrete cylinders.

1. Introduction

Concrete structures play an irreplaceable role in construc-
tion due to their fexibility and cost-efectiveness. During the
long service life, damage or degradation can be occurred in
critical members under continuous compression. To prevent
the local damage-induced catastrophic failure of the con-
crete structure, a continuous stress-monitoring task should
be applied as a prerequisite procedure [1–3].

Various nondestructive testing methods are available for
structural health monitoring (SHM) of concrete structures.
Tey include X-ray scan [4, 5], fber-optic sensor [6], pie-
zoelectric sensor [7], and cement-based sensor [8]. Among
those, strain-based methods are commonly used to monitor
concrete stress. External strain sensors (e.g., electrical strain
gauges and vibrating wires) can be attached to concrete
surfaces to accurately measure axial strains [9, 10]. Te
sensitivity of the external strain sensor is insufcient for
detecting the occurrence of concrete cracks. A few

researchers have attempted to monitor the concrete stress
using embedded strain gauges [11] and fber Bragg grating
(FBG) sensors [12].

In demand for real-time SHM, the electromechanical
impedance (EMI) technique has gained attention due to its
advantages in sensing and driving functionalities, fast re-
sponse speed, stable performance, and low cost [13]. Tis
technique utilizes the coupling interaction between a PZT
(lead zirconated titanate) transducer and the monitored
structure to provide information about the local structural
characteristics of the examined region [14]. Previous studies
used PZT sensors placed on the surface of concrete struc-
tures to detect changes in EMI signals induced by local
damage near the concrete surface [15].

Te surface-mounted PZTsensor is less sensitive to inner
concrete damage positioned away from the surface [7]. As an
emerging alternative for concrete damage monitoring, Song
et al. [16] proposed a smart aggregate (SA) technique. Te
SA-based damage monitoring has shown promising
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capabilities in detecting early signs of concrete damage [17].
Te change of concrete stress and the occurrence of damage
can directly afect the variation of the EMI signal acquired
from the SA sensor. In addition, the efects of noisy ambient
conditions and temperature variations on the EMI signals
could be reduced by adopting the SA sensor as compared to
that of the surface-bonded PZT sensor.

As compared to the FBG sensing technique, the EMI
technique is more cost-efective, with noninstructive in-
stallation and a larger area coverage [18].Te EMI technique
utilizes cheap PZT sensors and low-cost measurement de-
vices [19, 20], while FGB sensors and associated measure-
ment devices used in the FBG sensing technique are more
expensive [12, 21]. For SHM of concrete structures, the SA
serves a dual role as an aggregate and sensor, facilitating
convenient installation, while the physical installation of
FBG sensors can be more challenging and may disturb the
concrete during placement. Moreover, the PZT sensor used
in the EMI technique can cover relatively larger sensing
areas [22], while the FBG sensor only records the point’s
response, thus requiring more sensors for comprehensive
monitoring of large structures [23]. Nevertheless, the EMI
technique has some drawbacks [18], including the suscep-
tibility of the PZTsensors to environmental conditions such
as temperature and humidity, along with the need for
specialized knowledge in data interpretation andmeaningful
feature extraction [24, 25].

An important issue of the SA-based monitoring is to deal
with multisteps of data gathering, information processing,
and decision making. Traditional multisteps could have the
difculty in quantitative stress evaluation and result in false
damage alarms due to the biased selection of EMI features,
the lack of expertized analysis, and the human-interfered
wrong decision. Te EMI features such as root-mean-square
deviation (RMSD) and cross-correlation deviation (CCD)
are commonly used to quantify the changes in EMI signals
for stress estimation and damage detection [7, 17, 26, 27].
However, the selection of suitable frequency bands and
meaningful EMI features turns out a challenge that costs the
accuracy of evaluation results [28, 29]. In addition, the hand-
crafted feature extraction may limit the existing technique
from a real-time operation. Terefore, there is a need to
develop an alternative method for stress monitoring with
automated EMI feature extraction.

In recent years, convolutional neural network (CNN)-
based deep learning algorithms have been efectively
adopted to estimate the structural conditions of civil in-
frastructures [30–37]. Traditional damage detection
methods often consist of two steps which are “feature ex-
traction” and “damage identifcation” [30]; meanwhile,
CNN-based methods execute these steps in a unifed pro-
cedure [31]. Te CNN can directly process raw signals and
autonomously learn optimal features for damage identif-
cation, considerably reducing the initial processing work-
load [31]. A few researchers have examined the combination
of the CNN algorithms with the EMI-based technique for
damage assessment. Na et al. [32] proposed an artifcial
neural network model which learns EMI signals to detect
bolt loosening in a steel-bolted joint. Te proposed method

achieved high accuracy even with a small number of training
EMI data. De Oliveira et al. [33] used PZT sensors and
a CNN-based deep learning algorithm to accurately detect
damage in an aluminum plate. Nguyen et al. [34] presented
a 1D CNN model to autonomously process the raw EMI
response for transducer failure detection. Recently, Nguyen
et al. [37] have developed a 1D CNN model for EMI-based
bolt-looseningmonitoring and assessment in steel structures
without any data preprocessing.

To date, a few research eforts have been made to in-
tegrate the CNN algorithms with the EMI technique for
health monitoring of concrete structures [38–43]. Te
performance of the 1D CNN algorithm for autonomous
damage-sensitive feature learning of EMI responses was
evaluated for damage monitoring of a prestressed reinforced
concrete girder [35]. To overcome the shortcomings of the
EMI-based stress and damage quantifcation, Ai et al. [38]
proposed a simple 2D CNN to identify compressive stress
and load-induced cracking damages in a concrete cubic
structure. In a later study, Ai and Cheng [39] split the EMI
signatures into subrange responses and processed them by
a statistical approach to construct the 2D input for training
and testing the deep learning model. Teir experimental
results showed that the proposed 2D CNN model was of
high accuracy even to minor damages. Recently, Ai et al. [40]
proposed a 1D CNN approach for exploiting the raw ad-
mittance response to automatically detect small-size dam-
ages in concrete structures. Te comparison with
a traditional back propagation neural network showed
signifcant superiority of the proposed 1D CNN model in
terms of prediction accuracy. Also, Li et al. [44] integrated
the EMI technique with a CNN-based regression model for
quantitatively predicting and monitoring the real-time
concrete strength development. Yan et al. [42] developed
an EMI-integrated 1D CNN feature extraction network for
monitoring early-age hydration of cement mortar. Te
proposed approach could quantitatively evaluate dynamic
penetration impedance with high accuracy, outperforming
traditional machine learning methods. Zhang et al. [43]
applied 2D CNN for assessing concrete-rock interface
deboning via PZT-based ultrasonic measurement. Te
proposed model could predict delamination damage in
concrete-rock interface with high accuracy, even with dif-
ferent concrete interfacial roughness. Tese studies have
demonstrated the applicability of CNN models as an ef-
fective means for stress monitoring and damage identif-
cation in concrete infrastructures.

Despite those research eforts, there are at least three
remaining issues. (1) Te previous studies have mostly fo-
cused on developing the CNN models for processing the
EMI data obtained from the surface-mounted PZT sensor
[38–41], which is less sensitive to inner structural changes
[7]. (2) Te previous PZT-embedded SA techniques mostly
rely on manually extracting EMI features from specifc
frequency bands that could limit the efectiveness of these
techniques regarding the accuracy and computational cost.
(3) Te generalization capability of the CNN approach to
deal with data availability, signal noises, and untrained stress
levels for concrete stress estimation still lacks of
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investigation. To address these issues, this paper proposes
a combined scheme of the 1D CNN deep regression learning
model and the SA-based EMI measurement technique for
concrete stress monitoring as an attempt to realize an au-
tonomous SHM in concrete structures.

Te major contributions of this work lie in the following:
(1) the proposed method develops an efcient 1D CNN
approach for smart aggregate (SA)-based concrete stress
monitoring to autonomously process deep regression
learning of raw EMI signals. (2)Temethod can signifcantly
reduce the signal processing costs related to manual data
transformation and damage-sensitive feature extraction for
the SA-based EMI technique. (3) A few approaches for
concrete stress monitoring, including deep learning of
K-fold cross-validation and deep learning of noise-
contaminated databank and partially-untrained databank,
are designed and sufciently validated in experiments to
demonstrate the robustness and the generalization of the
proposed 1D CNN model.

Te remaining parts of the paper are organized as fol-
lows. Te research framework, the SA-based EMI mea-
surement technique, the architecture of the proposed 1D
CNN regression model, and three concrete stress moni-
toring approaches are explained in the second section. Te
next one presents experiments on SA-embedded concrete
specimens and statistical quantifcation of EMI features. In
the fourth section, the validation of the proposed method is
presented via predicting the compressive concrete stress in
the tested concrete specimens. In the last section, concluding
remarks are drawn.

2. Methodology

2.1. Research Framework. Te conventional approach for
stress monitoring using a PZT-embedded SA technique
relies on manually extracting EMI features from specifc
frequency bands. Tis process is time consuming and re-
quires trial and error in selecting the frequency bands for
reliable results [29]. Furthermore, a hand-crafted EMI
feature extraction hinders the real-time operation of existing
techniques [45]. Hence, an alternative approach for auto-
mated raw EMI feature extraction using deep learning needs
to be sought.

Figure 1 illustrates a research framework for SA-based
concrete stress monitoring via a 1D CNN deep learning of
raw EMI signals. Te proposed framework consists of the
following three main phases: (1) EMI data acquisition via the
SA technique, (2) development of 1D CNN deep learning
model, and (3) approaches for concrete stress monitoring. In
phase 1, a series of raw EMI signals and their corresponding
structural properties (such as stress levels or damage se-
verities) are acquired to build datasets for stress monitoring
in SA-embedded concrete cylinders. In phase 2, the 1D CNN
deep learning model is developed for autonomous pro-
cessing and feature extraction of raw EMI signals. Te
proposed model can be trained on a massive amount of EMI
signals and their corresponding stress levels to return the
output for evaluating and predicting concrete stress.

In phase 3, three stress monitoring approaches are
implemented for the SA-embedded concrete cylinders, from
which EMI signals are measured for a series of compressive
loadings. Te frst approach is to estimate the stress mag-
nitudes from deep learning of an available databank via
K-fold cross-validation. Te second approach is to predict
the stress magnitudes from deep learning of a noise-
contaminated databank. Te third approach is to predict
the stress magnitudes from deep learning of a partially-
untrained databank. Tese three approaches are utilized to
evaluate the performance of the developed model (i.e., 1D
CNN deep learning model) on the limited databank built
from the measured EMI datasets.

2.2. SA-Based EMI Technique. A model of SA-based EMI
monitoring for concrete structures is illustrated in Figure 2.
A protected PZT sensor is embedded into a small concrete
block to fabricate the SA. During concrete casting, the SA is
placed within an inspected structure to acquire raw EMI
signatures via the interaction between the PZT-embedded
SA and the monitored structure (see Figure 2(a)). Note that
the structural characteristics of the protected glue layer (e.g.,
epoxy), the small concrete sample, and the target structure
would be changed corresponding to the variation of the
applied force N.

A 3 degrees of freedom (3-DOF) EMI model [7, 46] is
used to demonstrate the coupling motions of the coated
layer, the concrete block, and the monitored structure (see
Figure 2(b)). Te coupled structural-mechanical impedance
Zc of the host structure, concrete SA member, and the
protective glue layer can be presented as follows [7, 46]:

Zc �
1
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where the dynamic stifness parts, Tab (a, b� 1− 3), depend
on the structural features of the protective glue layer,
concrete SAmember, and investigated host structure [7, 46].

Te EMI Z(ω) is a function of the structural-mechanical
impedance of the PZT sensor and that of the SA-host
structure [14]:
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where the parameters wpzt, tpzt, and lpzt represent the width,
thickness, and length of the piezoelectric patch, respectively;
􏽢εT
33 denotes the complex dielectric constant at zero stress;

Zpzt(ω) � 􏽢Y
E

11wpzttpzt/jωlpzt is the structural-mechanical
impedance of the PZT patch; d31 denotes the constant of
the PZT sensor in one direction at zero stress; and 􏽢Y

E

11
signifes the intricate Young’s modulus of the PZT plate
under the zero electric feld condition.

As shown in equation (2), the real part of impedance
Z(ω) contains the SM impedance of the PZTpatch (Zpzt(ω))
and of the SA-host structure (Zc(ω)). Since PZTpatch keeps
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constant in mechanical and electrical characteristics, any
structural changes (e.g., stress variation or structural dam-
age) can be directly refected to changes in the measured
EMI signatures. Te unique advantage of the SA-based EMI
technique is that the SA can give a fxed resonant EMI band
regardless of the host structure, thereby enhancing its
adaptability to monitor other stress types such as tension
and shear and other concrete types andmixture proportions.

2.3. 1D CNN Model. To enable autonomous damage feature
learning and concrete stress prediction, a 1D CNN-based re-
gression model is developed for stress monitoring in SA-
embedded concrete structures. Te architecture of the pro-
posed 1D CNN was developed based on the previous well-
established model [47], and the hyperparameters were tuned
using the practical guidance in [48]. To select an appropriate
architecture for the 1D CNN model, a preliminary study has
been conducted, as presented in Appendix A. Four 1D CNN
architectures (M1–M4) with diferent depths are designed, and
their performances are compared. According to the compar-
ison results, the best architecture (M2) is selected for concrete
stress monitoring and depicted in Figure 3.

Te selected 1D CNN architecture consists of the fol-
lowing three main parts: input, hidden layers, and output.
Te 1D CNN deep learning model receives N× 501 input

data, whereN represents the number of raw EMI signals, and
each signal has 501 measurement points within its frequency
bands. More information about the raw EMI signals can be
found in Section 3.3.Temodel then generates an output for
evaluating and predicting concrete stress. Te hidden layers
include four convolutional (Conv) layers, four rectifed
linear unit (ReLU) layers, four max pooling (Maxpool)
layers, three fully-connected (Fc) layers, and a regression
output (Regression) layer.

Te specifcations of the 1D CNN layers are outlined in
Table 1.Te Conv layer consists of trainable flters or kernels.
Each flter generates a frame of the feature map in the
subsequent subsampling layer. Te depth of the convolution
layer is equal to the number of frames. Te ReLU layer
converts negative values from the output of the preceding
layer to zero while keeping all positive values. Te Maxpool
layer slides flters over the output of the preceding layer and
extracts the element with the highest value. Te function of
the Maxpool layer is to reduce the computational cost by
reducing the size of the featuremap.Te Fc layers connect all
possible connections layer to layer, meaning every input
from the preceding layer infuences every element of the
output layer. Te Fc layers combine and transform learned
features into lower-dimensional representations suitable for
the regression layer. Te regression layer is responsible for
regressing the stress value. It computes the loss value via
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a mean absolute error (MAE) metric. A root mean square
error (RMSE) metric is also calculated to provide further
information about the model’s accuracy.

Loss and RMSE values are quantifed by equations (3)
and (4). Te symbol n denotes the number of signals. yi and
􏽢yi (unit in MPa) represent the predicted stress and the actual
stress, respectively, for the ith signal. Loss value is measured
as the average value of absolute diferences between pre-
dicted and actual stress. RMSE is calculated as the average of
the squared diference between predictions and actual stress.
Loss and RMSE values indicate the stress prediction error in
terms of stress monitoring with a unit in MPa.

Loss �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
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􏽶
􏽴
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2.4. Stress Monitoring Approaches

2.4.1. Deep Learning via K-Fold Cross-Validation. Te
performance of a deep learning model depends on the data
availability, and most deep learning models lack accuracy
when they are trained using unbalanced datasets [49]. To
address this issue, this study adopted a specifc K-fold cross-
validation technique called stratifed shufe split [50]. Te
schematic of K-fold cross-validation is illustrated in Fig-
ure 4. Total 10 folds were created from the datasets of the
measured raw EMI signals. In each fold, the raw EMI signals
were randomly divided into a training fold (75% of the data)
and an evaluation fold (25% of the data).Te performance of
each fold in the K-fold cross-validation process was eval-
uated, and the averaged performance (E) was used to rep-
resent the overall performance of the K-folds.

Figure 5 illustrates the schematic of a 1D CNN deep
learning approach using K-fold cross-validation. It consists
of the following two parts: “data acquisition and prepara-
tion” and “1D CNN training and evaluation”. In the frst
part, a set of raw EMI signals and their corresponding
structural properties (e.g., stress levels or damage severities)
are acquired to form datasets for deep learning. Ten, the
K-fold cross-validation is employed to classify the collected
datasets into training and evaluation fold datasets. In the
second part, a series of deep learning stages are performed to

identify the 1D CNN deep learning model (so-called 1D
regression model). Te training fold datasets (i.e., EMI
datasets and their corresponding stress levels) are utilized for
deep learning of the 1D CNN model. Te evaluation fold
datasets are employed to assess the performance of the
trained model on unseen data. In brief, the performance of
the 10-fold cross-validation technique on the model’s
generalization capability is investigated for the available raw
EMI datasets (as presented in Section 4.1).

2.4.2. Deep Learning of Noise-Contaminated Databank.
EMI signals can be afected by various factors, such as sensor
geometry and temperature [48, 51]. Conducting experiments
that consider all of these factors can be challenging and
costly. Terefore, data argumentation is a feasible alternative
to considering the realistic measurement conditions of the
investigated structure. One common way of data argu-
mentation is the addition of Gaussian noise [52] to the
measured EMI signals. Te Gaussian noise has two pa-
rameters, mean zero and standard deviation. By adjusting
the standard deviation value, the measured signal will be
injected at diferent noise levels. Te formula for noise in-
jection can be expressed as follows:

x[n] � s[n] + w[n] × s[n], (5)

where x[n] is the noise-contaminated EMI signal, s[n] is the
measured EMI signal, w[n] is the Gaussian noise, and n is
the number of investigated measurement points. Te efect
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Figure 3: Architecture of the 1D CNN deep learning model using SA’s raw EMI signals.

Table 1: Specifcations of 1D CNN layers.

Nos. Type Depth Filter Stride
1 Conv 4 1× 6 1
2 ReLU — — —
3 Maxpool — 1× 2 2
4 Conv 4 1× 4 1
5 ReLU — — —
6 Maxpool — 1× 2 2
7 Conv 8 1× 5 1
8 ReLU — — —
9 Maxpool — 1× 2 2
10 Conv 8 1× 5 1
11 ReLU — — —
12 Maxpool — 1× 2 2
13 Fc1 48 — —
14 Fc2 32 — —
15 Fc3 1 — —
16 Regression — — —

Structural Control and Health Monitoring 5



of noise-contaminated databank on the robustness of the 1D
CNN deep learning model is investigated for a variety of
noise levels (as presented in Section 4.2).

2.4.3. Deep Learning of Partially-Untrained Databank.
Deep learning techniques often lack robustness and general-
izability when trained with limited data [53]. A high-
performing deep learning model is one that can learn from
a smaller amount of data. In this study, we reduce the number
of training data in the databank to evaluate the performance of
the 1D CNN deep learning model for predicting untrained
stress levels with nonlinearities characteristics of raw EMI
responses [28]. In brief, the efect of a partially-untrained
databank on the robustness and generalization of the 1D
CNN deep learning model is investigated for untrained con-
crete stress levels (as presented in Section 4.3).

3. Experimental Test

3.1. SA Fabrication. Te SA was fabricated as shown in
Figure 6. Te PZT 5A patch (10×10×1mm) was joined with
electric wires to form a PZT sensor for EMI measuring. Te
sensor was protected by an epoxy layer of around 0.5mm
thickness (see Figure 6(a)). A PVC mold (height 26mm and
inner diameter of 26mm) was used for concrete casting (see
Figure 6(b)). Te coated PZT sensor was embedded in the
center of the mold to form a SA sensor (see Figure 6(c)). As the
light-weight concrete, the mixture of SA consists of cement,
sand, and water (see Table 2). After 48hours of casting, the SA
was removed from the mold and moisture cured for 28days.
Te SA samples are shown in Figure 6(d). Te material
properties of the components for the SA are listed in Table 3.

3.2. SA-Embedded Concrete Cylinder. Figure 7 presents
a fabrication procedure of SA-embedded concrete cylinder.
Te SA sensor was positioned centrally within the cylindrical
mold sized 100× 200mm. As shown in Figure 7(a), we
utilized aluminum plates, plastic wires, and a thin steel bar to
position the SA sensor at the center of the cylinder. As
a positioning interface, the aluminum plate with a center
hole (ϕ 1mm) was connected to a thin plastic wire (ϕ
0.5mm) hanging about 100mm. Te electric wires were
connected to the SA sensor via the side surface of the mold
(drilled with a small hole around ϕ 3mm). A super glue
(Loctite 401) was used to mount the aluminum plate onto
the SA’s surface and to place the aluminum plate at the
bottom surface of the cylindrical mold.

Figure 7(b) shows the casting process of the SA-
embedded concrete cylinder. Te concrete mixture was
selected as listed in Table 2. Concrete cylinders were cured
using wet blankets for 28 days.Tree SA-embedded concrete
cylinders were fabricated for EMI monitoring. Te SA 1–3
sensors were installed in the concrete cylinders 1–3, re-
spectively. Tese sensors were fabricated by using the same
concrete mixture as listed in Table 2 and constructed at the
same time.

3.3. Experimental Setup. Figure 8 shows the test setup of the
concrete cylinders (i.e., cylinders 1–3 embedded with SAs
1–3) under compression forces. As shown in the fgure, the
concrete samples were placed inside a load frame of a ser-
vohydraulic materials test system (MTS system). Te real
compression force was monitored by a load cell with a ca-
pacity of 500 kN. Te measurement of EMI signals from the
SA sensors was conducted via an impedance analyzer,
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HIOKI 3532. Te room temperature was also monitored via
Kyowa EDX-100A during the experiment.

Figure 9 shows twelve (12) loading scenarios on the
cylinders, S1 � 0MPa–S12 � 22.32MPa, with an interval of
2.03MPa. Te applied stress was gradually increased with
a constant loading interval, which was controlled by MTS
multipurpose test software. Time intervals were set as
3minutes for stress increase and 4.5 minutes for EMI
measurement. For each loading case, the loading rate was
controlled at a constant speed of 0.0113MPa·s−1. Te total
time for a complete loading history on a concrete cylinder
was 97minutes, including 10minutes for unloading at the
end. Note that no surface crack was observed for the
applied stress during the compression tests for cylinders
1–3.

Te harmonic excitations were set at the amplitude of
1V to measure EMI signals from the SAs 1–3. Te EMI
signals were swept in the frequency range from 100 kHz to
600 kHz with 500 intervals (i.e., to measure at 501 points in

the frequency band). Four ensembles of the measurement
were recorded for each loading case. Te monitored tem-
perature varied from 22°C to 23°C (around a variation of
1°C). Tus, the efect of the temperature alteration on the
EMI signatures could be ignored.

3.4. EMI Signatures. Figure 10 shows the raw EMI signals of
the SAs 1–3 recorded for the 12 loading cases (S1–S12). Te
signals were measured in the frequency band of
100–600 kHz. Te EMI signals exhibit three prominent
resonant peaks (peaks 1–3) for each SA sensor. As shown in
Figure 10(a), SA 1 had 231 kHz (Peak 1), 285 kHz (Peak 2),
and 502 kHz (Peak 3). In the fgure, the EMI responses were
insignifcantly changed from S1 (0MPa) to S7 (12.18MPa
around 0.48σc). Te EMI responses were suddenly varied at
S8 (14.21MPa around 0.56σc), thus indicating a trans-
formation of the concrete domain (e.g., inner concrete
damage [7, 17, 54]) surrounding SA 1 in the concrete cyl-
inder 1. Te EMI responses were continuously altered under
applied stresses S9–S12.

As shown in Figure 10(b), SA 2 had 216 kHz (Peak 1),
273 kHz (Peak 2), and 498 kHz (Peak 3). In the fgure, the
EMI responses showed minimal variation between S1
(0MPa) and S7 (12.18MPa). However, there was an abrupt
alteration in EMI frequency at S8 (14.21MPa around 0.56σc),
which could be induced by inner damage in the concrete
cylinder 2 [7, 17, 54]. Te EMI responses were continuously
changed under applied stresses S9–S12.

As shown in Figure 10(c), SA 3 had 212 kHz (Peak 1),
269 kHz (Peak 2), and 480 kHz (Peak 3). According to the
fgure, there were insignifcant variations in the EMI re-
sponses between S1 and S7. However, at S8, a sudden al-
teration in EMI responses occurred, which could be caused
by internal damage in the concrete cylinder 3 [7, 17, 54]. Te
EMI responses of SA 3 continuously varied under S8, and it
underwent other abrupt variations under stress S12 (trans-
formation from inner damage to surface crack).

In the case of concrete structures under compressive
forces, internal damage to the concrete, often manifesting as
inner cracks, may occur prior to the appearance of surface
cracks, as indicated by previous studies [7, 17, 54–57]. Via
the observations in Figure 10, it can be concluded that the
sudden changes in impedance responses of the SAs 1–3
could be induced by the inner damage in the concrete
specimens.

PZT 5A
(10×10×1.0 mm) PVC mold (26×26)

Coated PZT

Epoxy layer
(~ 0.5 mm)

Electrical wires

Smart aggregate
samples

Concrete

Plastic cover

(a) (b) (c) (d)

Figure 6: Fabrication of SAs. (a) Coated PZT. (b) PVC mold. (c) Concrete casting. (d) SAs.

Table 2: Concrete mixture for SA sensor∗.

Material for 1m3 Mass (kg)
Sand 710
Coarse aggregate (Dmax 25)∗∗ 948
Cement 425
Water (liter) 170
∗Concrete mixture was used for concrete cylinder specimens in next
section; ∗∗SA sensor was constructed without coarse aggregate.

Table 3: Material properties of components for SA sensor.

Properties PZT 5A Epoxy
layer Concrete

Mass density, ρ (kg/m3) 7750 1090 2400
Young’s modulus, E (GPa) 62.1 0.75 25.43
Poisson’s ratio, v 0.35 0.3 0.2
Compressive strength, σc

(MPa) 32.3 25.3∗

Damping loss factor, η 0.0125
Dielectric constant,
εT
33 (F/m) 1.53×10−8

Coupling constant,
d31 (m/V) −1.71× 10−10

Dielectric loss factor, δ 0.015
∗Compressive strength was determined by a uniaxial compressive test on
three standard concrete cylinders (100× 200mm).

Structural Control and Health Monitoring 7



Plastic wire

Concrete cylinder 
ϕ 100 × 200

Hole, ϕ 3

z

x

SA
26 × 26

Aluminum (AL) plate
with hole

15 × 15 × 1, ϕ 1

Cylinder mold
ϕ 100, h = 200

Electric wires 10
0

10
0

AL plate
5 × 5 × 1, ϕ 1

Steel bar
ϕ 2, l = 150 

Steel bar

SAElectric 
wires

(a)
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(b)

Figure 7: Fabrication of SA-embedded concrete cylinder. (a) Localization of SA in cylinder specimen (dimension in mm). (b) Concrete
casting.

Personal computer

Impedance analyzer - 
HIOKI 3532

Temp. measuring system
via Kyowa EDX-100A

Load frame

Servohydraulic testing system
(MTS system)

Load cell 
(Capacity: 500 kN)

SA-embedded 
concrete cylinder

Disp. of frame Force No. of cycle

Multi-pump controlMTP program

Figure 8: Testing setup for EMI measuring from SA-embedded concrete cylinder under the compression test.

8 Structural Control and Health Monitoring



Tere were diferences in the raw EMI signals of SAs 1–3.
Tese diferences could be induced by the sensor fabrication
process (e.g., epoxy layer thickness or concrete distribution
around the PZT sensor [56, 58]), the SA-embedded cylinder
fabrication (dissimilar distribution of concrete mixture sur-
rounding the SA sensors in the three-cylinder samples), and the
conditions during the compression test (contact surface between
the tested cylinder and upper and bottom plates of MTS ma-
chine). As observed in the fgure, the rawEMI signals of SAs 1–3
were insignifcantly changed under increasing applied stresses,

except for the sudden alteration in SA 3’s signals under the
applied stress case S12. Te sudden variation in SA 3’s raw EMI
signatures under the last loading case (S12) could be attributed to
the transformation of the concrete medium around SA 3 [7].

3.5. Statistical EMI Quantifcation. Figures 11 and 12 show
the computed statistical features, RMSD and CCD indices
[38, 59], to quantify the variations in raw EMI signals under
various applied stresses (S1–S12). Te whole measured range

Stress (MPa)

Time for stress 
increasing 3.0 min

Time (min)
0 S1

S2

S3

S4

Unloading time 
10 min

S5

S6

-4.06
-6.09
-8.12

-2.03

-10.15
-12.18
-14.21
-16.24

S7

S8

S9-18.27
-20.30
-22.32

S10

S11

S12

Total time 97 min

Time for impedance 
measuring 4.5 min

Figure 9: Applied loading history on the cylinder.
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Figure 10: Raw EMI signals of SAs 1–3 under various applied stresses. (a) SA 1. (b) SA 2. (c) SA 3.
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of 100–600 kHz was employed for these computations. Te
upper control limit, UCL [59], was also calculated to aid in
decision-making. It is computed by three standard de-
viations of the mean (99% confdence level). Any quantifed
index surpassing the UCL value indicates the presence of
changes in the applied stress level. It can be seen that both
RMSD (see Figure 11) and CCD (see Figure 12) indices were
below the UCL line under the intact case (S1 � 0MPa). Tese
indices increased and surpassed the UCL line under the
following cases (S2–S12).

Figure 11 shows the RMSD indices of SAs 1–3 corre-
sponding to all stress levels applied to three cylinders (cylinders
1–3). Tere were diferences in the RMSD values of these SA
sensors (SAs 1–3) (see Figure 11). It could be induced by the
uncertainties during the sensor fabrication, the SA-embedded
cylinder construction, and the compression test setup. Te
RMSD indices did not consistently increase with some in-
creasing applied stress levels. For example, for SA 1, the RMSD
index under S4 � 6.09MPa (2.9%) was smaller than that under
S3 � 4.06MPa (3.1%); for SA 2, the RMSD indices under stress
cases S5 � 8.12MPa, S7 � 12.18MPa, and S8 � 14.21MPa were
the same at 4%; and for SA 3, the RMSD reduced from 4.3%
(under S6) to 4.2% (under S7).

Furthermore, it can be noted that the RMSD indices of
SAs 1–3 had a change in the pattern. Tey were abruptly
changed under S8 and then increased from S8 to S12. Tese
variations could be caused by the inner damage surrounding
the SA sensors (SAs 1–3) in the concrete specimens (the
cylinders 1–3) [7, 17, 54]. Te RMSD index of SA 3 also
underwent a sudden increase when the applied stress
transitioned from S11 to S12, thus revealing a transformation
from inner damage to the surface crack of cylinder 3.

Figure 12 shows the CCD indices of SAs 1–3. Te
magnitudes of CCD were insignifcantly increased under
increasing applied stress levels (S2–S12). Tese indices were
nearly unchanged under stresses S1–S7 for three SAs 1–3 (see
Figure 12). Moreover, for SAs 1–3, the CCD indices were
altered under S8 and then increased from S8 to S12. Tese
alterations could be induced by the internal damage sur-
rounding the SAs 1–3 in the cylinders 1–3 [7, 17, 54]. Te
CCD index of SA 3 also abruptly altered under stress level
S12, thus suggesting a transformation from internal damage
to a surface crack of cylinder 3.

Based on the analysis of the statistical metrics, it is
evident that the RMSD indices exhibited higher sensitivity to
the change in stress levels compared to the CCD indices (see
Figures 11 and 12). However, the RMSD values were not
consistently increased in a gradual manner for certain ap-
plied stress levels. It is noticed that more reliable techniques
should be implemented to accurately analyze EMI features of
the SAs 1–3 corresponding to the applied loading levels.

4. Performance Evaluation

4.1. Stress Evaluation Using K-Fold Cross-Validation

4.1.1. Databank Confguration. Figure 13 shows the raw
EMI signals recorded for the 12 stress levels (i.e., S1–S12) of
SAs 1–3. Corresponding to each stress level, the raw EMI

signals of each SA sensor were recorded by four ensembles. It
means 12 signals were obtained for three SAs per stress level.
A total of 144 raw EMI signals were acquired after
experiments.

Figure 14 visualizes the measured EMI datasets in twelve
stress levels. As presented in Section 3.3, each raw EMI signal
(i.e., one ensemble) was recorded with 501 data points. Cor-
responding to 12 EMI signals, there were 6012 data points
recorded per stress level and were presented in a specifc color.
As a result, 72144 data points were obtained corresponding to
12 stress levels used for the 1D CNN model.

Te stratifed shufe-split technique was utilized to gen-
erate data for fold datasets, as mentioned in Section 2.4. Of the
12 raw EMI signals obtained from SAs 1–3 at each stress level, 9
signals were assigned randomly to the training fold dataset, and
3 remaining signals were assigned to the evaluation fold dataset.
Via the stratifed shufe-split technique, the same ratio could be
set tomaintain consistency in a single layer step (stress step) for
both the 1D CNN training and evaluation fold datasets. In
addition, we ensured that all split datasets generated through
the shufe-split technique were diferent from each other. In
summary, there were 144 signals in the EMI dataset, of which
108 and 36 signals were used for 1D CNN training and
evaluation, respectively.

4.1.2. Training and Testing Results. Tis section shows
training procedures and evaluation results of the 1D CNN
deep learning model (as described in Table 1) via the 10-fold
cross-validation. Te model was trained on the training fold
datasets, and then it was tested on corresponding evaluation
fold datasets. Te fnal performance of the proposed model
was confrmed via averaging the results from 10-folds.
Besides, performance comparison of diferent 1D CNN
architectures was also investigated in Appendix A.

(1) Training Procedures. A desktop computer (GPU—GeForce
GT 2080 Ti of 11GB, CPU—Intel Core i9-9000KF of
3.6GHz, RAM—64GB) performed all computations. Te 1D
CNN deep learning model was built using Python language
[60], and it was trained by using the Adam optimizer algo-
rithm [61] with a mini-batch size of 1 and a learning rate
of 0.001.

Figures 15 and 16 depict the training process of the 1D
CNN deep learning model using the training fold datasets.
Among 10 folds mentioned in Section 2.4, folds 1 and 4 were
selected to plot because these folds provided an efcient
learning performance for the 1D CNN model. Figure 15
shows a gradual drop in both training loss and validation
loss within the frst 25 epochs, followed by a steady con-
vergence after 100 epochs. Figure 16 shows a sharp decrease
in training RMSE and validation RMSE within the initial 15
epochs and then continuing to converge until the end of the
learning process. Te observed loss and RMSE values in-
dicated that the proposed 1D CNN model performs well.

(2) Testing Result. Figure 17 shows the stress evaluation
results of the 1D CNN deep learning model on evaluation
fold datasets for 10 folds. In Figure 17(a), fold 1 had
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Figure 11: RMSD indices of SAs 1–3 under various applied stresses. (a) SA 1. (b) SA 2. (c) SA 3.
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RMSE� 0.85, which meant the stress could be predicted on
its evaluation fold dataset by the error of 0.85MPa. In
Figure 17(d), fold 4 had RMSE� 0.94, whichmeant the stress

could be predicted on its evaluation fold dataset by the error
of 0.94MPa. Figure 17(k) presents the RMSE values of 10
evaluation fold dataset and their average. Te RMSE values

144 impedance signals
- 3 SA sensors
- 12 stress levels
- 4 ensembles per stress level
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Figure 13: Raw EMI signals of SAs 1–3 measured for 12 stress levels.
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Figure 12: CCD indices of SAs 1–3 under various applied stresses. (a) SA 1. (b) SA 2. (c) SA 3.
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Figure 14: Visualization of EMI datasets for 12 stress levels of SAs 1–3.
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ranged from 0.85 to 2.14 for the whole evaluation fold
dataset, in which the lowest and highest errors were shown at
fold 1 and fold 8, respectively. Te average RMSE was 1.38,
meaning the 1D CNN deep learning model could predict
stress by an average error of 1.38MPa.

Figure 18 presents the average performance of the
trained 1D CNN deep learning model across 10 folds. As
shown in Figure 18(a), the average predicted stress results on
the evaluation datasets of 10 folds were plotted. It is observed
that the average predicted stress in each stress level was quite
consistent with the actual stress. In Figure 18(b), the mean of
predicted stress shown in Figure 17 was calculated to provide
a more stable and reliable estimate. Te mean of predicted
stress values exhibited a good agreement with the actual
stress levels, with the exception of stress level S1.Temean of
prediction stress values for S1 was remarkably close to those
for S2 (as shown in Figure 18(b)). Tis observation could
potentially be infuenced by the initial boundary condition
during the implementation of the compression tests on
concrete cylinders.

4.2. Stress Prediction on Noise-Contaminated Databank

4.2.1. Databank Confguration. Te EMI signatures obtained
from the PZTsensors in real applications are indeed altered by
external disturbances such as noise conditions [62–64]. To
evaluate the performance of the 1D CNN deep learning model
under diferent noise levels, a noise-contaminated databank
was created by injecting the Gaussian noise (described in
Section 2.4) into the raw EMI signals of SA 2. To construct the
training databank, the raw EMI signals underwent random
noise addition with standard deviations of 0%, 1%, 2%, 3%, 4%,
and 5% of the signal amplitude. For each of the 12 stress levels,
three raw signals (selected from four ensembles) were aug-
mentedwith randomnoise, resulting in a total of 216 signals for
training the 1D CNN model.

To generate the testing databank, the remaining raw
signal of each stress level was injected by various noise levels
ranging from 1% to 16%, with an interval of 1%.Tis process
aimed to assess the reliability and generalization of the 1D
CNN model on unseen test data. In each noise level, the 120
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Figure 15: Loss values of 1D CNN deep learning model after 100 epochs. (a) Fold 1. (b) Fold 4.
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Figure 16: RMSE values of 1D CNN deep learning model after 100 epochs. (a) Fold 1. (b) Fold 4.
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new signals were generated for twelve stress levels (i.e., 10
new signals for each stress level). It resulted in a total of 1,920
signals generated for the 16 noise levels. Consequently, the
testing databank comprised a total of 1,932 signals, which
included the original 12 measured raw EMI signals with 0%

noise. Figure 19 illustrates examples of raw EMI signals at
stress level S1 with added noise. Overall, the training
databank consisted of 216 signals, while the testing databank
included 1,932 signals, enabling evaluation of the 1D CNN
model’s performance under diferent noise levels.
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Figure 17: Stress evaluation results of 1D CNN deep learning model. (a) Fold 1. (b) Fold 2. (c) Fold 3. (d) Fold 4. (e) Fold 5. (f ) Fold 6.
(g) Fold 7. (h) Fold 8. (i) Fold 9. (j) Fold 10. (k) RMSE.

14 Structural Control and Health Monitoring



4.2.2. Training Process. Figure 20 shows the loss and RMSE
values of the 1D CNN deep learning model after 100 epochs.
Temodel was trained on the 216 signals (as described in the
previous section). Figure 20(a) presents the training and
validation loss values. Te training loss exhibited a sharp
decrease in the initial ten epochs and gradually converged
towards the end of the learning process (100th epoch). Te
validation loss signifcantly fuctuated with a downward
trend in the frst twenty epochs and continued to fuctuate
slightly until the end. It is noticed that the selected model
achieved a training loss of approximately 0.71 at the 74th

epoch, which corresponded to the lowest validation loss of
around 0.89.

Figure 20(b) displays the training and validation RMSE
values. Similar to the training loss, the training RMSE
showed a rapid decline in the frst ten epochs and reached
convergence by the 100th epoch. Like the validation loss, the
validation RMSE varied with a downward trend in the frst
twenty epochs, followed by slight fuctuations until the end.
Specifcally, the training RMSE value was around 0.88 at the
74th epoch, corresponding to the lowest validation RMSE of
about 1.14.

4.2.3. Stress Prediction Results. Figure 21 shows the efects of
noise on the accuracy of the 1D CNN deep learning model.
Te predicted stress values were compared with the actual
values for various noise levels. As depicted in this fgure, the
accuracy of stress prediction diminished as the noise level
increased.

Figure 22 shows linear relationships between the RMSE
index and noise levels. Figure 22(a) displays the trained noise
levels ranging from 0% to 5%, while Figure 22(b) represents
the untrained noise levels ranging from 6% to 16%. It is
evident that the RMSE values exhibited a linear increase
corresponding to higher percentages of noise. Te accuracy
of the 1D CNN model was afected by the noise level, and
this relationship could be adjusted using empirical func-
tions. In summary, both Figures 21 and 22 emphasize the

adverse infuence of noise on the accuracy of the 1D CNN
model, highlighting the need to consider and mitigate noise
efects in order to improve model performance.

4.3. Stress Prediction for Untrained Stress Levels

4.3.1. Databank Confguration. Te robustness of the 1D
CNN deep learning model was investigated for stress
monitoring using partially untrained EMI data. As explained
in Section 2.4, the training databank was generated by ex-
cluding EMI datasets corresponding to specifc stress levels.
In this case, the 216 signals from SA 2, described in Section
4.2.1, were utilized to construct three distinct training
datasets. Table 4 presents the design of the three training
datasets as follows: (1) training dataset 1 (198 signals): Tis
dataset excluded stress level S4 from the initial 216 signals;
(2) training dataset 2 (180 signals): this dataset excluded
stress levels S4 and S6 from the initial 216 signals; and (3)
training dataset 3 (162 signals): this dataset excluded stress
levels S4, S6, and S9 from the initial 216 signals.

Tree training datasets were used to train three separate
1D CNN models. Tese models were evaluated using the
testing dataset (216 signals) which included stress levels S4,
S6, and S9. By evaluating the performance of the 1D CNN
models on the testing dataset, the study aimed to assess the
robustness of the models when confronted with partially
untrained EMI data, specifcally with the exclusion of certain
stress levels.

4.3.2. Training Process. Figure 23 shows the loss and RMSE
values of the 1D CNN deep learning model trained using the
training dataset 1, which excluded stress S4. In Figure 23(a),
the training loss exhibited a rapid reduction in the initial ten
epochs, followed by a gradual decrease up to the 60th epoch
and then continued to decrease with slight fuctuations from
the 61st to the 100th epoch. Te validation loss experienced
a sharp drop with signifcant variations in the frst seven
epochs. Te validation loss fuctuated and reached its lowest
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Figure 18: Average performance of trained 1D CNN deep learning model. (a) Stress evaluation. (b) Actual stress vs. predicted stress.
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Figure 19: Noise injection to raw EMI signals for data argumentation (stress level S1). (a) 2% noise. (b) 4% noise. (c) 6% noise. (d) 8% noise.
(e) 10% noise. (f ) 12% noise. (g) 14% noise. (h) 16% noise.
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Figure 20: Loss and RMSE values of 1D CNN deep learning model after 100 epochs. (a) Loss. (b) RMSE.
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Figure 21: Continued.
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point at the 41st epoch, followed by slight fuctuations until
the end of the learning process. It is noted that the selected
model achieved a training loss of approximately 0.73 at the
41st epoch, corresponding to the lowest validation loss of
nearly 1.14.

Figure 23(b) shows the training and validation RMSE.
Te training RMSE rapidly decreased in the initial ten
epochs and continued to decrease with slight variations
throughout the 100-epoch training process. Te validation
RMSE exhibited a rapid decline with high variations in the
frst seven epochs. Afterwards, the validation RMSE un-
derwent fuctuations until the end of the learning process. It

is observed that the training RMSE of the predicted stress
and actual values was approximately 0.97 at the 41st epoch,
corresponding to the lowest validation RMSE of nearly 1.34.

4.3.3. Stress Prediction Results. Tree 1D CNN deep learning
models were evaluated on training datasets 1–3, and their re-
sults are shown in Figures 24–26. Te fgures indicated a good
agreement between predicted and actual stresses, suggesting the
models’ ability to accurately predict untrained stress levels.

Comparing the RMSE values, there were slight difer-
ences between excluded and included stress levels.
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Figure 22: Relation between RMSE and noise levels. (a) Trained levels of noise (0%–5%). (b) Untrained levels of noise (6%–16%).
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Figure 21: Efects of noises on the accuracy of 1D CNN deep learning model. (a) 2% noise. (b) 4% noise. (c) 6% noise. (d) 8% noise. (e) 10%
noise. (f ) 12% noise. (g) 14% noise. (h) 16% noise.

Table 4: Dataset scenarios for evaluating the performance of the 1D CNN deep learning model.

Training dataset
Testing datasetTraining dataset 1

(excluded S4)
Training dataset 2
(excluded S4, S6)

Training dataset 3
(excluded S4, S6, S9)

Signal number 198 180 162 216
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Prediction errors increased when more stress levels were
excluded from the training dataset. However, the RMSE
value for dataset 2 was slightly higher than that of dataset 3,
possibly due to the nonlinear characteristics of EMI

responses. In addition, selecting the trained models at their
best epochs could be the reason.

Overall, these results confrm the efectiveness of the
proposed 1D CNN model in accurately predicting stress
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Figure 23: Loss and RMSE values of 1D CNN deep learning model trained by training dataset 1 (excluded stress S4). (a) Loss. (b) RMSE.
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Figure 24: Stress prediction on the training dataset 1 (std: 0–5%). (a) Excluded S4. (b) Included S4.
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Figure 25: Stress prediction on the training dataset 2 (std: 0–5%). (a) Excluded S4,6. (b) Included S4,6.

Structural Control and Health Monitoring 19



RMSE = 1.54
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Figure 26: Stress prediction on the training dataset 3 (std: 0–5%). (a) Excluded S4,6,9. (b) Included S4,6,9.

Table 5: Specifcations of the four 1D CNN architectures (M1−M4).

Layers Type Depth Filter Stride
Model M1
1 Conv 4 1× 6 1
2 ReLU — — —
3 Maxpool — 1× 2 2
4 Conv 4 1× 4 1
5 ReLU — — —
6 Maxpool — 1× 2 2
7 Conv 8 1× 5 1
8 ReLU — — —
9 Maxpool — 1× 2 2
10 Fc1 48 — —
11 Fc2 32 — —
12 Fc3 1 — —
13 Regression — — —
Model M2 (see Table 1)
Model M3
1 Conv 4 1× 6 1
2 ReLU — — —
3 Maxpool — 1× 2 2
4 Conv 4 1× 4 1
5 ReLU — — —
6 Maxpool — 1× 2 2
7 Conv 8 1× 5 1
8 ReLU — — —
9 Maxpool — 1× 2 2
10 Conv 8 1× 5 1
11 ReLU — — —
12 Maxpool — 1× 2 2
13 Conv 8 1× 5 1
14 ReLU — — —
15 Maxpool — 1× 2 2
16 Fc1 48 — —
17 Fc2 32 — —
18 Fc3 1 — —
19 Regression — —
Model M4
1 Conv 4 1× 6 1
2 ReLU — — —
3 Maxpool — 1× 2 2
4 Conv 4 1× 4 1
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Table 5: Continued.

Layers Type Depth Filter Stride
5 ReLU — — —
6 Maxpool — 1× 2 2
7 Conv 8 1× 5 1
8 ReLU — — —
9 Maxpool — 1× 2 2
10 Conv 8 1× 5 1
11 ReLU — — —
12 Maxpool — 1× 2 2
13 Conv 8 1× 5 1
14 ReLU — — —
15 Maxpool — 1× 2 2
16 Conv 8 1× 5 1
17 ReLU — — —
18 Maxpool — 1× 2 2
19 Fc1 48 — —
20 Fc2 32 — —
21 Fc3 1 —
22 Regression — —
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Figure 27: Training loss of the four 1D CNN architectures (M1–M4).
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Figure 28: Continued.
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levels, even when trained with limited EMI signals corre-
sponding to a few stress levels.

5. Conclusion

Tis study aimed to develop the stress monitoring method via
smart aggregate (SA)-based EMI monitoring integrated with
the 1D CNN deep learning. Te EMI measurement model was
designed for the SA-embedded concrete body under com-
pression.Te 1D CNNmodel was developed for deep learning
raw EMI signals corresponding to various stress levels. Tree
approaches for concrete stress monitoring were designed to
deal with data availability, signal noises, and untrained stress
levels. Te compressive experiments were conducted on three
SA-embedded concrete cylinders to build databanks for the 1D
CNN model. Te performance of the proposed stress-
monitoring method was extensively evaluated for the SA-
embedded concrete cylinders to investigate the feasibility of
the K-fold cross-validation to deal with the data availability and
the efects of noises and untrained data on the accuracy of stress
estimation.

Based on the analyzed results, the following conclusions
could be drawn:

(1) Te proposed 1D CNN model successfully extracted
hidden damage features from rawEMI signals obtained

from SA sensors. Te model was implemented to
autonomously process these signals and accurately
estimate concrete stress values in units of MPa;

(2) Te proposed model accurately estimated the stress
values in the three concrete cylinders across twelve
stress levels. In the 10-fold cross-validation, the stress
prediction exhibited good performance, with RMSE
errors ranging from 0.85 to 2.14MPa. On average,
the stress prediction results were closely aligned with
the actual stress values, except for the stress level S1.
It suggests that the K-fold cross-validation has the
feasibility to deal with the data availability issue due
to real-world EMI measurement.

(3) Te accuracy of the 1D CNN model was noticeably
afected by the addition of noise to the EMI signals.
Te RMSE errors in stress prediction exhibited
a linear increase as the percentage of noise was in-
creased. Te efect of the noise level on the model
accuracy could be adjusted by employing empirical
functions. Tese functions allow for calibration and
optimization to mitigate the adverse efects of noise
on the performance of the 1D CNN model.

(4) Te accuracy of the 1D CNN model was quite de-
creased as many stress levels were excluded from the
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Figure 28: Te evaluation results of the four 1D CNN architectures (M1–M4). (a) M1. (b) M2. (c) M3. (d) M4. (e) Comparison of mRMSE.
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training datasets. It is observed that the model
possesses a certain level of generalization ability and
can efectively extrapolate to unseen stress levels
based on the limited training data it received.Te 1D
CNN model was capable of accurately predicting
most stress levels with partially untrained databank
and, therefore, is promising for realistic applications.

Despite those promising outcomes of the proposed
methodology, some further researches still remain. (1)When
an internal crack is occurred in concrete specimens, the
change in the EMI signatures can be induced by not only the
applied stress but also the crack damage. Terefore, the
architecture of the proposed 1D CNN model should be
improved to not only predict the stress value but also dif-
ferentiate the stress efect and the damage efect. (2) Te
adaptability of the methodology will be further researched
for practical applications with diferent stress types and
concrete mixture proportions. Transfer learning techniques
should be implemented to efectively retrain the 1D CNN
model for new applications [65]. Since the 1D CNN model
was already well-trained by compressive stress data, it can be
conveniently retrained to predict other stress types or to deal
with other concrete types with only limited data. (3) Te
hyperparameters and the kernel size of the 1D CNN model
should be fne-tuned using an optimization method to better
predict concrete stress in the test specimens.

Appendix

A. Comparison of 1D CNN Architectures

A preliminary study was conducted to select an appropriate
1D CNN architecture for concrete stress monitoring. Four
1D CNN architectures (M1–M4) were designed based on the
previous well-established 1D CNN model [47]. Ten, the
performance of the four architectures was compared using
the 10-fold cross-validation method (see Section 2.4) using
the confguration of databank (see Section 4.1.1).

Te specifcations of M1–M4 are depicted in Table 5.
While the input and output of these architectures are
identical, their depth is diferent. Te architecture M1 was
constructed with three Conv layers, as presented in Table 5.
Te ReLu and Maxpool layers orderly follow the convolu-
tional layers. Tree Fc layers follow the fnal Maxpool layer.
Te architectures M2–M4 were built by increasing the depth
of M1. Specifcally, a set of three sequential layers of M1,
which are layer 7 (Conv), layer 8 (ReLu), and layer 9
(Maxpool), was doubled, tripled, and quadrupled to create
M2, M3, and M4, respectively. Further details regarding the
depth, flters, and strides of each layer in M1–M4 are de-
scribed in Table 5.

Te performance of M1–M4 was trained and evaluated
using the training and evaluation fold datasets for 10 folds
(see Section 4.1.1). Figure 27 shows the training loss value of
the four architectures during the learning procedure of 100
epochs. Te loss values were plotted in mean with a conf-
dence interval of standard deviation of the 10 training folds.
As seen in the fgure, the loss values quickly dropped after

the frst forty epochs and gradually decreased until the last
iteration. All architectures were well-converged after the
learning process. It is observed that the learning efciency of
M3 and M4 were lower than M2 and M1 although they were
built in more depth. Among the four architectures, M2
exhibited the lowest loss value in the learning process,
followed byM1,M4,M3.TeM2 architecture was efectively
trained in 100 epochs, outperforming the other architectures
in terms of learning optimal damage features from EMI
datasets.

Figure 28 shows the stress prediction results of M1–M4
when tested using 10 evaluation folds. In Figures 28(a)–
28(d), the legend “Fold” signifes the predicted stress results
for 10-folds, which are cumulatively plotted.Temean of the
predicted stress values is denoted by the legend “mFold”. It is
observed that the predicted stress points are varied around
the mean.Te prediction results of the four architectures are
quite accurate with similar patterns. However, it is found
that the M2 architecture showed a better performance than
others in predicting a higher stress above 10MPa. Figure 28
compares the mean values of the testing RMSE (mRMSE) of
the architectures M1–M4, with the error bars signifying
standard deviation of RMSE values derived from 10-folds.
Among the four architectures, M2 exhibited the lowest
mRMSE value (1.38MPa), followed by M4 (1.69MPa), M3
(1.72MPa), and M1 (1.76MPa). Te standard deviation of
M3 is the lowest, followed by M2, M4, and M1. Despite that
the standard deviation of M2 is slightly higher than M3, its
mRMSE value is considerably lower than that of M3.
Terefore, theM2 architecture was selected for the 1D CNN-
based concrete stress prediction model.
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