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A novel methodology for the characterisation of the nonlinear behaviour of post-tensioned r.c. bridges, which exploits the
response to heavy trafc travelling during operational conditions, is presented. Tis type of bridges shows a nonlinear elastic
behaviour due to the partial opening of cracks under heavy loads whose entity is related to the intensity of the prestressing force.
Te properties of this response vary because of material relaxation or damage of the prestressing system. Te study exploits the
abilities of the Hilbert–Huang transform (HHT) to extract the instantaneous properties of the dynamic response, and a novel
procedure to characterise the nonlinear elastic response is presented and investigated through theoretical applications on
simplifed dynamic systems. A frequency-amplitude correlation chart is proposed as a visual tool to retrieve useful information on
the nonlinear response related to the instantaneous variation of the natural frequency with the response amplitude. With the aim
of denoising and eliminating spurious contributions introduced by the local nature of the information extracted through the
Hilbert spectral analysis, a probabilistic model is proposed for the result interpretation, through which the probability distribution
of the instantaneous natural frequencies conditional to diferent levels of the response amplitude is provided and potential bridge’s
response modifcations and anomalous behaviours of the prestressing system can be detected. An extensive parametric analysis is
performed to assess the infuence of the most relevant parameters governing the problem and verify the efectiveness of the
proposed strategy.

1. Introduction

Tis study concerns the identifcation of mechanical
properties of post-tensioned reinforced concrete (r.c.)
structures. Such systems are prestressed by internal slipping
tendons encapsulated within a protective sleeve and linked,
only at a later stage, to the structure (after tendon ten-
sioning) by in situ grouting injection of their encapsulating
ducting. In this case, the main feature of interest is the entity
of the prestressing force that controls the structure load
capacity. Even though some of the following concepts can be
used in many structural systems, this study is specifcally
oriented to the characterisation of prestressing forces acting
on bridge decks consisting of parallel beams, connected by
an upper r.c. slab. Te one at hand is among the most
difused typologies built around the 70−80s in many

countries [1–3]; the vulnerability of these bridges is quite
high due to the level of degradation they are usually exposed
to, in particular regarding the state of conservation of the
precompression system (presence of humidity into the
protective sleeves and corroded tendons) and to make things
worse it shall be acknowledged that the healthy state of such
components cannot be evaluated through visual inspection
or conventional tests, but special inspections are needed
[4–7]. Tis aspect strongly refects on the reliability of these
systems, which is notably infuenced by the actual state of the
cables, whose degradation gradually increases over time
[8–10].

Te prestressing force and the cable path are usually
designed to limit the structure cracking under service
conditions [11, 12], and the system response is essentially
linear. In this case, a deviation from the linear response
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arises only when the external loads attain high values, close
to the maximum values considered in the design. Long-term
rheological phenomena (concrete creep, concrete shrinkage,
and steel relaxation), defects in the construction process, or
steel corrosion of the cables provide a reduction in the
prestressing force and a rise in the nonlinearity of the re-
sponse under travelling loads. Cracking usually closes again
once the load decreases and returns below a given threshold
value. Te system response can be classifed as nonlinear
elastic, and the transition between the initial stifness and the
reduced stifness due to cracking is ruled by the intensity of
the efective prestressing force.

Te identifcation of the prestressing force and its
monitoring over the time cannot be carried out exploiting
low energy input methods, e.g., through operational modal
analysis [13], because prestressing force does not afect the
fexural stifness in the linear response range, and a marginal
infuence can only be observed in more complex vibration
modes (e.g., torsional modes), as widely demonstrated in
theoretical and experimental studies ([14–18]).

Te characteristics of the nonlinear behaviour of the
system can be studied by exploiting the strong input pro-
duced by the passage of heavy trucks. Tis type of loads
provides a dynamic response involving high displacements
and relevant strain energy for a limited time duration. Heavy
loads regularly travel over the bridge and a continuous
monitoring is possible under service conditions. However,
the travelling loads provide a nonstationary and nonlinear
response; furthermore, the characteristics of the travelling
load itself are generally unknown. Terefore, the analysis of
data requires specifc methods.

In the present study, the problem is approached by
exploiting the abilities of the Hilbert–Huang transform
(HHT) to extract the instantaneous property of vibration
motions [19, 20], and this information is combined with the
total displacements in order to characterise the nonlinear
elastic response due to the prestressing force. In particular,
the local motion consequent to a vehicle crossing the bridge
generally consists of a carrier deformation history, which can
be associated with the deformation produced by a quasi-
static passage, and a further overlapped vibration motion
related to the load velocity and the dynamic properties of the
bridge, the latter depending on the instantaneous stifness
varying with the current total deformation. Te HHTmakes
it possible to derive the instantaneous tangent stifness from
the instantaneous frequencies of vibration modes, and the
correlation with measures depending on the total strain
energy, e.g., displacement or curvature, allows us to recover
the nonlinear elastic response.

In the last two decades, HHTwas widely used in diferent
contexts involving nonlinear and nonstationary system re-
sponses, and some applications were also developed for
bridge analysis, with diferent objectives [21, 22]. A state of
the art about the use of HHT in bridge engineering can be
recovered in [20], and some more recent applications are
reported in [23]. Only a few number of investigations were

oriented to evaluate variations within the nonstationary
response (see Chapters 14 and 15 of the book of Chen et al.
[20]). Tese authors demonstrated the ability of HHT to
extract instantaneous dynamic properties for bridge re-
sponse, but they did not focus on the nonlinear relationship
between the response and the prestressing force or other
signifcant state variables, which is the core of the study
presented in this paper.

However, the analysis of the outcomes of HHT is not
trivial, because Hilbert transform provides quasi-local in-
formation that may show irregularities in time. In this
study, a probabilistic model is proposed to analyse the
nonlinear trend arising between instantaneous tangent
stifness and structural displacements. Te model can be
inferred from measures recorded during a number of
passages of vehicles with signifcant mass and can be po-
tentially used for anomaly detection even if the travelling
load is unknown.

An extensive parametric analysis is performed in this
paper on simple dynamic systems to assess the infuence of
the most relevant parameters governing the problem and
verify the efectiveness of the proposed strategy. Te paper is
structured as follows: Te adopted problem formulation
concerning a nonlinear elastic beam response under trav-
elling loads is presented in Section 2, the proposed meth-
odology for the outcome analysis is described in Section 3,
the method applications and related parametric in-
vestigations are presented in Section 4, and fnally, the main
conclusions are summarised in Section 5.

2. Problem Formulation

Te dynamic response of bridges under travelling loads has
been widely studied in the last decades ([24–28]).

Models for the response of a simply supported beam
subjected to a single force moving with constant velocity can
be recovered in [29–32], and the relevant solution for a linear
system with constant mechanical properties along the beam
is reported in [21]. Tis solution is obtained by a modal
decomposition, and the frst-mode contribution is generally
dominant, at least for what concerns the midspan dis-
placement, and the efects of structural damping are
usually small.

In the following, a general formulation is presented, and
the solution for a linear system with constant properties is
recalled. Furthermore, the approximate solution for the
nonlinear problem is presented.Te latter will be used in the
subsequent chapter for a parametric analysis, in order to
study the response of single degree of freedom systems.

Let x ∈ [0, L] be the variable identifying the points of
a beam with length L, t ∈ [0,∞) denotes time, u(x, t) ∈ U ×

–[0,∞) is the transverse displacement, and U is the func-
tional space of possible beam deformations. Diferential
problem governing the beam motion consists of the fol-
lowing feld equation complemented by proper initial and
boundary conditions:
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€u(x, t) + c(x) _u(x, t) + b x; u″( 􏼁u″(x, t)( 􏼁″ � p(x)Δ(x − vt),

u(x, 0) � _u(x, 0) � 0,

u(0, t) � u(L, t) � u″(0, t) � u″(L, t) � 0,

(1)

where primes and superposed dots denote spatial and time
derivatives, respectively; Δ is the Dirac delta function;
functions c and b are known potentially variables along the
beam and describe dissipative properties and the ratio be-
tween bending stifness and unit mass, respectively; p is the
ratio between the travelling constant force and the unit mass,
and v is the load velocity. It is assumed that the bending
stifness is nonlinear, and it is related to the curvature u″.
Te feld equation describes the motion during the load
travelling time T � L/v, and after that, free vibrations occur.
Te presented formulation is based on Euler–Bernoulli
beam theory, and it is adequate to describe the response of
slender beams where shear strain and rotational inertial term
can be neglected [15].

For undamped linear response c(x) � 0 and constant
beam properties b(x, u″) � b0, analytical expressions of the

vibration modes φk(x) and vibration circular frequencies ωk

can be easily obtained:

φk(x) �
1
2L

sin kπ
x

L
􏼒 􏼓,

ωk �
π2

k
2

L
2

��

b0

􏽱

,

(2)

and the set of vibration modes provides a complete series of
functions in the subspace U0 ⊂ U of u satisfying the
boundary conditions. Te weak formulation of the problem
[33, 34] can be obtained multiplying the diferential equa-
tions by the vibration modes and integrating by parts
(dependence on x and t is understood):

〈€u,φk〉 + 〈c _u,φk〉 + 〈b u″( 􏼁, φk( 􏼁″〉 � 〈pΔ(x − vt), φk〉,

u(x, 0) � _u(x, 0) � 0,
∀k, (3)

where

〈v, w〉 � 􏽚
L

0
v(ξ)w(ξ)dξ. (4)

Vibration modes are orthonormal functions, i.e.,
〈φk,φj〉 � δij, with the Kronecker delta δjk. Approximate
solutions can be obtained by assuming u(x, t) � qj(t)φj(x)

(repeated index denotes summation) and considering
a limited number of vibration modes k � 1, ..., N:

€qk + 􏽥cjk _qk + 􏽥bk q1, . . . , qN( 􏼁 � 􏽥pk,

qk(0) � _qk(0) � 0,
(5)

where 􏽥cjk � 〈cφj,φk〉 is a generalized damping term, 􏽥bk �

〈b(ql(φj)″), (φk)″〉 is a generalized stifness term, and the
loading term is as follows:

􏽥pk � 〈pΔ(x − vt), φk〉 � pφk(x − vt). (6)

In the case of constant properties, only diagonal terms
survive and the contributions related to each vibration mode
can be studied separately. Analytical expressions are re-
ported in [21]. Some results about this case are recalled: (i)
the response is ruled by the speed ratios Sk � kπv/ωkL be-
tween the circular frequency associated with the moving
load and the beam vibration circular frequencies; (ii) the

efect of damping of bridges is marginal; (iii) the contri-
bution of higher modes can be neglected at the midspan
section of the beam. So, a single-degree-of-freedommodel is
often used in the problem analysis when the midspan de-
fection only is of interest. In the following investigation,
results concerning the nonlinear response of the system will
be considered, and a single-degree-of freedom system is
studied by considering the frst term only on the series φk. A
preliminary study was carried out to verify if previous
conclusions hold in the nonlinear case, within the range of
stifness variations of interest: the comparison of solutions
considering only the frst termwith solutions involvingmore
terms, and more vibration modes, confrmed previous
statements in the range of interest. Te single-degree-of-
freedom model reduces to

€q + 􏽥c _q + 􏽥b(q) � 􏽥p,

q(0) � _q(0) � 0.
(7)

3. Proposed Methodology

Te methodology proposed in this paper exploits the capa-
bility of the Hilbert–Huang Transform (HHT) in extracting
the instantaneous features of the vibration motion of a dy-
namic system (e.g., the bridge deck or simply a beam) [19]. In
particular, the local motion induced by the passage of a ve-
hicle is of interest here, which produces a nonlinear and
nonstationary deformation time history on the system that
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can be seen as the combination (superposition) of a de-
formation produced by a quasi-static transit, whose entity
depends on the moving load weight, and a series of vibration
motions depending on the moving load velocity and the
dynamic properties of the bridge, the latter depending itself
on the committed instantaneous stifness.

Te idea presented in this study is that of exploiting HHT
to evaluate the instantaneous frequencies (varying due to
nonlinear response) of the system (from the dynamic vi-
bration mode characterising the bridge response) and to
correlate them with a measure depending on the total strain
energy (displacements are used in this work, but other
quantities, e.g., the curvature, could be used) in order to
recover information on the current nonlinear elastic re-
sponse. It is underlined that instantaneous frequencies or,
more precisely, the derivatives of the phase angles are di-
rectly related to the instantaneous tangent stifness (e.g.,
d􏽥b(q)/ dq), the latter being a sensitive parameter that makes
it possible to fully recover the nonlinear behaviour of the
system once it is correlated to a strain measure (e.g., q). Tis
way, the nonlinear behaviour under heavy trafc can be
recovered even if the travelling load is unknown.

However, the analysis of the outcomes of HHT is not
trivial, because Hilbert transform provides quasi-local in-
formation that may show irregularities in time. In this study,
a probabilistic model is proposed to estimate the modal
frequencies conditional to diferent displacement levels. Te
model can be inferred from measures recorded during
a number of passages of vehicles with signifcant mass and can
be used for the subsequent nonlinear response identifcation.

Te methodology, qualitatively defned above, requires
diferent tools to be performed which can be summarised as
in the following four points, further detailed individually in
the next subsections:

(i) Empirical mode decomposition (EMD), required to
extract the vibrational component of the motion
carrying information on the system dynamic
properties;

(ii) Hilbert transform of the extracted dynamic com-
ponent of the motion, required to enrich the signal
with its imaginary part, permitting the extraction of
the instantaneous properties of the motion;

(iii) Correlation between the instantaneous frequencies
and the simultaneous response displacement within
a chart providing information on the system's re-
sponse nonlinearity;

(iv) Construction of a probabilistic model inferred from
the data of step iii, useful to ease the results' in-
terpretation and the identifcation of nonlinear
patterns of the response.

Te combination of tools i and ii, i.e., the empirical mode
decomposition and theHilbert spectral analysis, is also known
in the literature as the “Hilbert–Huang transform” (HHT)
and actually represents a signal processing technique de-
veloped by Norden E. Huang in the late 1990s [35] for
analysing signals with rapidly varying frequency components

or those with abrupt changes in amplitude, in other words
nonstationary and nonlinear signals.

3.1. Empirical Mode Decomposition (EMD). Te empirical
mode decomposition (EMD), originally proposed by Huang
et al. in 1998 [35], consists of a “sifting and averaging”
procedure through which any nonlinear and nonstationary
signal y(t) can be adaptively decomposed into a number of
intrinsic mode functions (IMFs) ηk(t), without the need of
a priori basis as for Fourier and Wavelet-based methods:

y(t) � 􏽘
k

ηk(t). (8)

Te advantage of such decomposition for the purposes of
the present application lies in the fact that each extracted
IMF is a monocomponent amplitude- and frequency-
modulated signal [36], and thus, unlike the original sig-
nal, it is characterised by a monotonically increasing phase
and a positive instantaneous frequency, which represent
necessary conditions for a correct estimation of the local
dynamic features via the subsequent application of the
Hilbert transform (see next subsection). In order to be
classifed as IMF, the identifed subcomponents shall satisfy
two criteria: (1) within the whole time series, the number of
extrema and the number of zero crossings shall be either
equal or difer at most by one; (2) at any point in the time
series, the mean value of the upper envelope made by the
local maxima and the lower envelope formed by the local
minima must be equal to zero (i.e., the upper and lower
envelopes are locally symmetrical with respect to the time
axis).

A visual example of the outcomes provided by the EMD
procedure in the case of the response of a bridge under
a travelling load is given in Figure 1, where the sifting
process is applied to the response defection time history of
an elastic beam subject to a punctual load travelling with
constant velocity: Te original signal is shown on the top,
then, the identifed oscillatory modes are sorted top-down
from the highest to the lowest frequency content, so that in
this case, IMF 1 represents the dynamic oscillatory com-
ponent (the useful part for extracting local information on
the system response), IMF 2 represents the quasi-static
component (which can be neglected for the purposes of
the nonlinear identifcation method proposed in this study),
and the residual is shown on the bottom of the chart.

3.2. Hilbert Transform (HT). Te Hilbert transform H[y(t)]

(HT), applied to a generic signal y(t), provides the function
h(t) (Eq. (9)):

h(t) �
PV

π
􏽚
∞

−∞

y(τ)

t − τ
dτ, (9)

(PV being the Cauchy principal value of the integral)
containing the previously missing imaginary part (ih(t)) of
the original signal y(t), necessary to have a more complete
description through the new complex signal z(t):
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z(t) � y(t) + ih(t) � r(t)e
iθ(t)

, (10)

where i is the imaginary unit, r(t) is the modulus (radius of
rotation) and θ(t) is the phase angle:

r(t) �

�����������

y
2
(t) + h

2
(t)

􏽱

,

θ(t) � arctan
h(t)

y(t)
􏼠 􏼡.

(11)

Te information extracted through HT is fundamental to
recovering the local information about the system response
during the passage of a vehicle; indeed, the instantaneous
circular velocity ω(t) can be derived through diferentiation
of the phase angle:

ω(t) �
dθ(t)

dt
, (12)

and, if the signal represents an oscillation, it can be inter-
preted as an instantaneous natural circular frequency
(hereinafter referred to as instantaneous frequency or simply
frequency). In this regard, it must be noted that the direct
application of the HT to the original multifrequency signal
(e.g., the recorded monitored quantity y(t)) would only
provide misleading instantaneous frequencies, which may
show unphysical negative values over the time [37]. Tis is
the reason why HTmust be applied to the IMFs extracted via
the EMD procedure and more precisely to the specifc
component of vibration carrying information on the system
dynamic response (depicted with red lines in the example of
Figure 2, providing a representation of the original signal
y(t) and its dynamic frst oscillatory component IMF 1 in
both the (a) time domain and (b) complex plane).

3.3. Frequency-Amplitude Correlation Charts. Once the in-
stantaneous circular frequencies have been evaluated, the
data are correlated with a proper response measure; for
instance, the displacement or curvature amplitudes

represent suitable choices being state variables directly re-
lated to the total strain energy.

A frequency-amplitude correlation chart is thus pro-
vided to highlight potential changes in the circular fre-
quencies ω(t) (it is recalled that ω2 is proportional to the
tangent stifness of the system) with the amplitude of the
response (midspan displacements are used in this work as
response measures), allowing us to recover information on
the nonlinear elastic response of the system.

In Figure 3, a frequency-amplitude correlation chart is
shownwith illustrative purposes, where the typical responses of
a linear (red plots) and nonlinear (blue plots) elastic beam
subjected to the passage of a heavy vehicle travelling with
constant velocity are compared. Te nonlinear elastic response
is ruled by a bilinear model in which the natural frequency
values related to frst and second branch are denoted as ω0 and
ω1, respectively, and they are represented by dashed horizontal
lines in the fgure.Tis chart contains useful information about
the behaviour of the systems and highlights the unsymmetrical
response nonlinearity (where present) associated, in this ex-
ample, with the highest positive displacements.

3.4. Probabilistic Model. In general, the analysis of the
outcomes of HHT is not trivial, because Hilbert transform
provides quasi-local information that may trace irregular
paths. Tis refects on the results presented in the previous
chart (Figure 3) which might be not of immediate un-
derstanding, and useful information on the bridge response
might consequently remain hidden. To cope with this issue,
in this study, a probabilistic model is inferred from the
problem output to analyse the general trend of the response,
including local irregularities coming from the transform.
Te probabilistic model provides the distribution of the
modal frequencies conditional to the displacement level.

In more detail, it is assumed that pairs (ω, y) are the
samples of random variables (Ω, Y), whose statistical prop-
erties are described by the conditional probability density
function (PDF) fΩ|Y(ω | y; p), and related characteristic
parameters are collected in the vector p; the latter can be
inferred from an available set of data pairs (ωm, ym)

(m � 1..N). Te model parameters are evaluated by means of
themaximum likelihoodmethod, assuming the following log-
likelihood objective functions Lln(p) [38–40]:

Lln(p) � 􏽘
m

ln fΩ|Y ωm|ym; p( 􏼁􏽨 􏽩, (13)

where the pairs (ωm, ym) denote the mth data observation
from which the model provides the corresponding proba-
bility of occurrence.

For the aim of the present work, a normal Gaussian
model is adopted, but other shape functions could be used to
describe the conditional PDF, provided that they satisfy the
conditions of positive defniteness and unitary integral along
ω for each y.

Te two coefcients characterising the PDF, i.e., the
mean μ and the standard deviation σ of the distribution, are
assumed to vary with the response amplitude according to
the following equations:
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Figure 1: EMD applied to the response defection time history of
an elastic beam under travelling load with constant velocity.
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μ y, pμ( 􏼁 � p
μ
1 +

p
μ
2

1 + e
− y− p

μ
3( )

, (14)

σ y, pσ( 􏼁 � p
σ
1 + yp

σ
2 , (15)

with the model parameters collected in the vector p � [pμ, pσ].
Te shape function adopted to describe the mean trend over
the response amplitude y (equation (14)) is a three-parameter
sigmoid function, which is suitable to describe behaviours
characterised by the transition between two constant slope
branches and is able to catch the main features of the patterns
shown by the response data; the variance is assumed to vary
linearly with the response (equation (15)).

For the sake of clarity, the exemplifcative chart pre-
sented above in Figure 3 is now reproposed in Figure 4(a),
where the μ(y) and μ(y) ± σ(y) functions of the reference
probabilistic model are superimposed on the data with solid
and dashed lines, respectively (colours are pertinent to the
case of analysis); on the right side of the fgure, the PDFs of
the instantaneous frequency conditional to four levels (see
vertical dotted lines in the left plot) of the monitored
quantity are presented. It can be observed how the proba-
bilistic model provides a suitable tool to be used for a clearer
and faster extraction of information about the variations of
the local dynamic properties with the response amplitude.
Te nonlinear response and the transition of the system

from the branche with high stifness to the branch with low
stifness can be easily identifed from these results.

4. Method Application and Parametric Analysis

An extensive parametric investigation is performed to assess
the efectiveness of the proposed methodology in de-
termining the nonlinear response of a bridge structure under
travelling loads. A single-degree-of freedom model of a real
precast bridge is studied by using the analytical formulation
presented in Section 2, focusing on the midspan defection
response under the passage of moving loads with constant
velocity. Te frst term φ1(x) �

���
2/L

√
sin(πx/L) of the or-

thonormal sinusoidal series has been used for the numerical
solution, and the defection at the midspan x � L/2 is a(t) �

u(L/2, t) �
���
2/L

√
q(t) has been evaluated. Te dynamic

problem at hand has been numerically solved by the 4th

order Runge–Kutta method [41], implemented within the
MATLAB software [42].

First, a case study with a reference set of parameters is
analysed to present the applicability of the method.Ten, the
infuence of the parameters governing the problem is ana-
lysed by changing parametrically each term one by one in
a range of meaningful values, in order to assess the efec-
tiveness of the proposed methodology under various sce-
narios and conditions.
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Figure 2: Original signal and its dynamic frst oscillatory component: (a) time domain and (b) complex plane representation.
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Figure 3: Example of frequency-amplitude correlation chart: responses of linear and nonlinear elastic beam subjected to heavy
moving loads.
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Te section is concluded with an application considering
three trafc sequences as input rather than a single moving
load (Subsection 4.6).

4.1. Reference Case Study

4.1.1. System Properties. A single-degree-of freedom system is
derived from the formulation presented in Section 2 consid-
ering the frst term of the analytical expression of the vibration
modes, according to the reasons illustrated before. Te system
properties, assumed to be representative of the linear response
of real precast bridges and able to provide realistic responses,
are as follows: span length L � 35.0m, elastic modulus
E � 35 · 106 kN/m2, inner damping ratio ξ � 2%, inertial
moment J � 1.62m4, area A � 6.0m2, and material density
ρ � 2500 kg/m3 (mass per unit length m � 15000 kg/m). Te
cross-section properties are reported in Figure 5, and the
characteristic ratios EJ/GAL2 and J/AL2, relevant to shear
deformability and rotational inertial contribution, respectively,
are negligible and confrm that the model presented in Section
2 is adequate for the problem at hand.

Te system is assumed to respond according to a bilinear
elastic force-displacement law (Figure 6), where the
threshold of the response amplitude (midspan defection)
governing the passage from the frst to the second elastic
branch is equal to a∗ � 5.5mm and the stifness ratio is
k1/k0 � ω2

1/ω
2
0 � 0.60, with k0 and k1 identifying the frst and

second elastic stifness, respectively.
As long as the system defection maintains lower than a∗,

the frst natural frequency of the bridge is ω0 � 15.66 rad/s
(period T0 � 0.40 s) and the tangent stifness is constant and
proportional to ω2

0; the reduced natural frequency character-
ising the response in the second elastic branch is ω1 � 12.13
rad/s, i.e., T1 � 0.52 s. Tis can be considered representative of
the response of a healthy prestressed beam under service loads
close to the maximum values considered in the design.

Concerning the moving vehicle properties, a realistic
condition compliant with most of the National Highway
Codes to date in force in Europe [7, 43] is considered, i.e., an
heavy truck with a mass equal to 44.8t (maximum allowed

mass, weight P � 440 kN) travelling at a (maximum allowed,
constant) velocity v � 80 km/h. Te frequency associated
with the moving loads is ωv � 1.99 rad/s, and the corre-
sponding speed parameter is S � 0.1270.

Te response of the system to all the set of parameter
values presented above is analysed in next Subsection 4.1.2;
then, with the aim of assessing the infuence of the main
parameters and the efectiveness of the proposed method-
ology under various scenarios and conditions, a parametric
investigation is performed on a relevant subset of param-
eters, i.e. {a∗, k1/k0, P, S} (each parameter is varied one by
one keeping the other fxed at the aforesaid reference values).

4.1.2. Reference Results. Te response time history of the
defection experienced by the structural system (k1/k0 � 0.60,
a∗ � 5.5mm) under the moving load (P � 440 kN, v � 80
km/h) is shown in Figure 7(a), with the threshold a∗ iden-
tifying the elastic state transition represented by an horizontal
dashed line. It can be seen as this limit is only exceeded for
a small fraction of the travelling time (around 0.4 s), the latter
being equal to 2.53 s (note that the analysed time window is
6.3 s long because the tail of the signal contains also the
damped free vibration response of the system).

By applying the method described in Section 3, the in-
stantaneous frequency can be extracted and correlated to the
corresponding response amplitudes, providing the plot of
Figure 7(b). A black-dashed horizontal line identifes the ex-
pected value of the frequency ω0 � 15.66 rad/s. To ease the
result interpretation, a Gaussian probabilistic model is built on
the data according to the procedure detailed in Subsection 3.4:
the sigmoid-shapedmedian trend of themodel is superimposed
to the data through a continuous blue line, and the dispersion
(median± standard deviation) is shown by dashed blue lines.

Exploiting this model, information about the changes of
the instantaneous frequency can be inferred at any ampli-
tude value of interest, as shown in Figure 8 (charts from a to
f ) where the PDFs conditional to a set of increasing am-
plitude values (identifed by vertical light blue-dotted lines in
Figure 8) are presented. From the inspections of these PDFs,
the following points can be observed:
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(i) for low response amplitude values, the instantaneous
frequency remains, on average, approximately con-
stant and equal to the expected value ω0 (i.e., the
PDFs are centered on ω0);

(ii) for rising displacements, the instantaneous natural
pulsations reduce below ω0 and tend to stabilize on
the value ω1 for a> a∗ � 5.5mm;

(iii) the probabilistic model notably helps the graphical
visualization of such nonlinear pattern of the
frequency-amplitude response;

(iv) also, the dispersion of the instantaneous frequencies
shows some degree of variability with the amplitude;
in particular, it can be observed that values of σ
decrease passing from small to high displacements;

(v) the method is suitable to catch the response non-
linearity and its unsymmetrical features (i.e., non-
linearity only occurs for positive defection values).

4.2. Sensitivity to the Treshold Amplitude Governing the
Nonlinear Elastic Transition. In this section and in the fol-
lowing sections, the sensitivity of the outcomes to variations of
the nonlinear response is investigated. Variations in the pre-
stressing force can be due to diferent long-term causes, such as
the stress reduction due to concrete creep, concrete shrinkage,
and or relaxation of the cables’ steel, or they can be due to steel
corrosion. Tese phenomena usually provide the variations of
the threshold separating the frst branch of the nonlinear re-
sponse from the second branch, as well as the reduction of the
stifness of the second branch.Te two variations are separately
investigated, and in this section, the infuence of the threshold
value characterising the stifness change in the bilinear re-
sponse of the bridge is investigated. Te following three values
of a∗ are analysed (Figure 9): 4.0mm, 5.5mm, and 7.0mm (in
terms of forces, these transitions occur at 50%, 70%, and 90% of
the maximum force). Te remaining system and vehicle pa-
rameters are kept fxed at the reference values (P � 440 kN,
v � 80 km/h, and k1/k0 � 0.60).

Te response time histories of the defection experienced
by the three structural systems under the same moving load
are shown in Figure 10(a), while in Figure 10(b), the
frequency-amplitude correlation chart is presented for all
the analysed cases. Te PDFs of the instantaneous frequency
conditional to the amplitudes are provided in Figure 11. Te
same comments furnished for the previous case studies can
be applied to the current outcomes, with the following two
additional notes:

(i) the method is able to highlight the diferent non-
linear responses, and the threshold a∗ afects the
rapidity of the transition from the initial frequency
ω0 to the reduced frequency ω1; indeed, the fre-
quencies start changing later (higher response
values) for higher thresholds a∗;

(ii) the threshold a∗ has no infuence on the entity of the
frequency modifcations, being the slope of the
second elastic range equal in all the three analysed
cases, and thus, all the PDFs tend to shift toward the
same minimum reduced frequency value ω1;

(iii) it is fnally observed that even with very low levels of
nonlinearity (as characterised by the case of a∗ �

7.0mm), the proposed tool is capable of detecting the
efects induced on the instantaneous frequencies, as
testifed by the frequency shift observed on the PDFs
conditional to the highest displacements.

4.3. Sensitivity to the Levels of Nonlinearity. Te infuence of
various levels of nonlinearity is now investigated by con-
sidering three values of the system stifness ratio k1/k0
(Figure 12): 40%, 60%, and 80%. Te other system and
vehicle properties are kept fxed at the reference values
(P � 440 kN, v � 80 km/h, and a∗ � 5.5mm).

In Figure 13(a), the response time histories are com-
pared; in Figure 13(b), the frequency-amplitude correlation
chart is presented, and the PDFs of the instantaneous fre-
quency conditional to the response amplitudes are provided
in Figure 14.

Also in this case, the methodmakes it possible to identify
diferences in the nonlinear response.

Te outcomes show how the diferent stifness ratios k1/k0
mainly afect the entity of the instantaneous frequency re-
duction. Indeed, diferent k1/k0 ratios correspond to diferent
values of the reduced frequencyω1. No signifcant shifts of the
conditional PDFs are observed for response amplitudes
a< a∗, while beyond this threshold, it can be seen how the
lower the k1/k0 ratio, the higher the frequency reductions.

4.4. Sensitivity to the Speed Ratio. In this section, the ability of
the method to identify the nonlinear response within the
typical range of travelling velocities is investigated, considering
diferent values of the speed parameter S (defned as the ratio of
half the driving frequency to the bridge frequency, see Section
2). Tis is of interest because the maximum displacement does
not rise proportionally with the velocity, not even in the linear
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Figure 8: Instantaneous frequency distributions conditional to increasing levels of the response amplitude.
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correlation chart.
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case, as already acknowledged in the technical literature [21]. In
particular, the system properties are kept fxed at the reference
values (k1/k0 � 0.60, a∗ � 5.5mm), while the following set of
vehicle velocities are analysed: 60km/h (S � 0.0952), 80 km/h
(S � 0.1270), 100 km/h (S � 0.1587), and 120km/h (S �

0.1905). Te moving load with P � 440 kN is considered.
With the aim of shedding light on the infuence of this

parameter on the bridge response, a preliminary brief
comparison is proposed in Figure 15, where the response
time histories of the midspan defection experienced by the
system assumed linear elastic (Figure 15(a)) and nonlinear
elastic (Figure 15(b)) are shown; it can be noted as a dynamic
response is still observable for all the range of vehicle ve-
locities (thus S ratios) investigated. Te attained maximum
displacements do not rise proportionally with the velocity,
and the trend can be better appreciated and understood from
Figure 15(c), where the dynamic amplifcation factors (DAF,
i.e., the ratio of the dynamic to the static response) for a wide
range of vehicle velocities are plotted (analysed velocities
highlighted by coloured circles). For the sake of com-
pleteness, DAFs are also computed and shown for the case of
the nonlinear system; the static value used for the nor-
malization is the one stemming from the linear system
response, so that the entity of the amplifcation produced by
the assumed level of nonlinearity can also be appreciated.

In Figure 16, the frequency-amplitude correlation chart is
presented for all the analysed cases, and the conditional PDFs
of the instantaneous frequency are provided in Figure 17. Te

outcomes show how the cases associated with higher DAFs
(80 km/h and 100 km/h) allow attaining higher displacements
helping to stabilize the instantaneous frequency values around
the reduced frequency value ω1. Transition from ω0 to ω1
starts occurring, in all cases, at displacements higher than the
threshold a∗ � 5.5mm, with the vehicle velocity not having
infuence on this aspect. In conclusion, it is worth noting how
the velocities producing clearer and more stable frequency
modifcations falls within the range of speeds at which heavy
trucks usually travel (in particular, the case of 80 km/h).

4.5. Infuence of Vehicle Weight. In order to stress the key
role played by the heavy trafc in the proposed method-
ology, the response under three travelling vehicles with
diferent weights is compared: 60 kN, 260 kN, and 440 kN, all
moving at a constant velocity equal to 80 km/h.

In Figure 18(a), the response time histories are com-
pared, and it can be seen as the frst elastic limit is only
exceeded for the heavy travelling load. In Figure 18(b), the
frequency-amplitude correlation chart is presented, and the
PDFs of the instantaneous frequency conditional to the
response amplitudes are provided in Figure 19 (charts from
a to f ). From the inspections of these results, it can be
observed that the weights of the light and intermediate
vehicles are not sufciently high to produce a nonlinear
response of the bridge; as a consequence, the corresponding
instantaneous frequency distributions remain unchanged
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with the mean fxed at the reference value ω0 within the
whole range of displacement amplitudes (there is just a slight
reduction of the dispersion with the response amplitudes).

4.6. Infuence of Consecutive Moving Loads (Trafc
Sequences). Te parametric investigation is concluded with
the analysis of more realistic trafc sequences characterised
by the passage of multiple vehicles with diferent mass,
velocity, and interarrival time. In particular, the three

sequences S1, S2, and S3 described in Table 1 are considered,
which difer from each other by the number of 440 kN heavy
vehicles (1 in S1, 2 in S2, and 3 in S3).

Te response defection time histories produced by the
three sequences are shown in Figure 20(a) (frst elastic
threshold exceeded by the passage of heavy vehicles only).
In Figure 20(b), the frequency-amplitude correlation
chart is presented, and the PDFs of the instantaneous
frequency conditional to four amplitude levels are pro-
vided in Figure 21.
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Figure 16: Frequency-amplitude correlation chart for diferent vehicle velocities.
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Results show how all the three sequences carry the same
relevant information on the system nonlinearity and the
presence of lighter vehicles within the same time window

does not jeopardise the observability of the phenomenon.
On the other hand, the presence of more than one heavy
vehicle might make the data more robust, helping to identify
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Figure 18: (a) Bridge defection time series and (b) frequency-amplitude correlation chart for travelling loads with diferent weight.
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Table 1: Features of the considered trafc sequences.

Trafc sequence
Load 1 Load 2 Load 3 Load 4

P (kN) v (km/h) P (kN) v (km/h) P (kN) v (km/h) P (kN) v (km/h)
S1 440 60 60 130 260 90 90 100
S2 440 60 440 70 260 90 90 100
S3 440 60 440 70 260 90 440 80
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Figure 20: (a) Bridge defection time series and (b) frequency-amplitude correlation chart for three diferent trafc sequences.
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the response deviation from linearity, so data recording over
a sufciently long time interval is recommended in order to
catch multiple truck passages.

5. Conclusions

A novel methodology was proposed to identify the nonlinear
response and prestressing level of post-tensioned r.c.
bridges. Te analysis is based on the input produced by the
heavy trafc travelling on the structure during its opera-
tional conditions. Te abilities of the Hilbert–Huang
Transform (HHT) to extract the instantaneous property of
the dynamic response were exploited, and a novel procedure
to recover the nonlinear elastic response of these systems
was presented and investigated through theoretical appli-
cations on simple dynamic systems.

Te main conclusions can be summarised through the
following points:

(i) A frequency-amplitude correlation chart was pro-
posed as a visual tool to retrieve useful information
on the nonlinear relationship between displacement
and tangent stifness.

(ii) With the aim of denoising and eliminating spurious
contributions introduced by the local nature of the
information extracted through the Hilbert spectral
analysis, a probabilistic model was proposed for the
result interpretation through which the probability
distribution of the instantaneous natural frequen-
cies conditional to diferent levels of the response
amplitude is provided. Te model has been inferred
by the maximum likelihood method, and satisfac-
tory results have been obtained using a normal
Gaussian PDF with simple variation laws for the
median and variance.

(iii) Te probabilistic model proved to be a useful tool to
highlight variations in the trend and to identify
potential anomalies that could result otherwise
hidden by the noisy data reported in the frequency-
amplitude correlation charts.

(iv) According to the outcomes of the parametric
analysis, the methodology revealed efective in
identifying nonlinear trends in the system response,
also in case of the low level of nonlinearity. In
particular, the analysis method makes it possible to
separately identify both the two main characteristic
parameters of the nonlinear behaviour: the
threshold of the stifness variation related to the
intensity of the prestressing force and the slope of
the second branch related to the girder properties.

(v) Furthermore, the method demonstrated to be ef-
fective in the range travelling load velocity of
practical interest.

Te study outcomes and the associated relevance call for
further investigations, such as: (i) application of the pro-
posed HHT-based methodology to real bridges using data
recorded from structural monitoring campaign, in order to
test and strengthen the theoretical results; (ii) alternative and

potentially more efective methods for pattern recognition
should be explored for the data analysis and anomaly de-
tection; (iii) higher modes should be included in the
methodology, given that they may not reveal negligible in
other more complex static schemes.
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