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Recently, the demand for high-precision balancing of rotors has increased in the automobile industry, as more rotors are designed
to rotate at ever-higher speeds to maximize energy efciency. Te accumulation of measurement uncertainty in the balancing
process decreases the accuracy of the unbalanced mass estimation, which is the ultimate goal of balancing. Here, the problem of
uncertainty is shown through a Monte Carlo simulation of signals acquired from an actual production line. To reduce the efect of
measurement uncertainty in the balancing procedures, a signal-processing technique that increases the dynamic reliability of the
signal is proposed. Te suggested method is based on density-based spatial clustering of applications with noise (DBSCAN) with
the use of the orthogonality-based averaging method. Specifcally, by adjusting radius values while clustering samples through the
use of the DBSCAN method, the outliers that arise due to uncertainty are successfully removed. In this work, our proposed
automatic-adaptive DBSCAN (AA-DBSCAN) method is validated by applying it to a balancing machine used for blower rotors in
fuel cell electric vehicles. Te results show that the deviation of the extracted infuence coefcients is up to 0.0050, whereas the
proposed method reduced it to less than 0.0037. In addition, the suggested procedure reduced the deviations of the unbalanced
mass phase estimation by 35.2% as compared to the results found by the conventional method. Consequently, through the
validation test, the suggested method was found to have the largest vibration decrease of any method considered in the study.

1. Introduction

Recently, the requirements for a high-precision balancing
approach have become more urgent due to the paradigm
shift of transportation methods that use electricity or hy-
drogen. In addition, advances of the semiconductor industry
have enabled the realization of high-precision integrated
circuits. In general, balancing is carried out in a way that
measures the amount of balancing while rotating the ro-
tating body to be balanced using a driving unit and by
performing the balancing through the application of
a counter mass or by cutting [1, 2]. Because uncertainties,
such as driving unit control, power transmission, and sensor

uncertainties, are inherently included in this process, a de-
viation in the balancing results is inevitable, even in tests
under the same conditions. Attempts to reduce these un-
certainties have been consistently explored in the signal
processing feld [3]; however, most of them have used the
method of removing the uncertainty by using the concept of
the average through continuous repeated tests to satisfy the
criteria. As an alternative, signal processing methodologies
have also frequently sought to estimate and remove un-
certainty by adding a measuring point or balancing
conditions.

Te most frequently used method for balancing a rotor
system is to rotate the master specimen at a constant speed,
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derive the infuence coefcient from it, and then estimate the
amount and position of unbalanced mass of the target
specimens based on this information [4, 5]. In addition,
a method of balancing using a waterfall chart, which extracts
vibrations from a variable-speed system, is also widely used
[6, 7]. Similar to the infuence coefcient method, a tech-
nique for on-site feld balancing has been developed, as well,
and has been used for a system in its assembled state [8, 9].
Still, researchers seek a balancing method in two primary
areas: improvement in balancing accuracy and reduction in
balancing time. However, the common pursuit of all of these
existing balancing methods is to develop and apply a method
that maximizes the accuracy of balancing because balancing
is directly related to the life cycle of the rotor system. In
addition, developers of balancing machines have tradi-
tionally applied their own knowledge to satisfy their cus-
tomer’s requirements, with no incentive to disclose
methodologies more broadly. Tat said, various signal
processing methodologies have been studied to improve the
estimation accuracy of the balancing. Studies on balancing
that consider the measurement uncertainty [10], the am-
plitude and phase uncertainty of the vibration signal based
on the fuzzy theory [11–13], and the uncertainty of the
weight and position of the balancing weight have been
conducted in prior work [14]. In addition, research has been
accomplished to develop active balancing technology
according to the rotating speed, examining the infuence
coefcients by using the driving unit and feedback control;
however, the focus has been on the design of the mechanical
parts rather than on the dynamic-reliability-related content
explored through the signal processing [15].

In this study, to extend the work of these previous
studies, we apply the density-based spatial clustering of
applications with noise (DBSCAN) method to remove the
uncertainty accumulated in the unbalanced mass estimation
process. Further, we propose to use an adaptive DBSCAN
method and confrm its efectiveness through the entire
process of actual balancing. Te adaptive DBSCAN ap-
proach is modifed to automatically defne the two hyper-
parameters: the minimum number of data to form a core
group and the density radius value. For the conventional
DBSCAN method, the two hyperparameters should have
been defned manually, which requires several trials. In
contrast, the proposed automatic-adaptive DBSCAN (AA-
DBSCAN) determines the two hyperparameters automati-
cally to remove outliers. While studies related to adaptive
DBSCAN have been ongoing recently with other researchers
[16–18], few studies have been conducted with the goal of
eliminating measurement uncertainty in rotating systems or
balancing machines; important issues remain to be solved.

In this study, for the purpose of high-precision bal-
ancing, the design of the accelerometer-based measuring
unit in a balancing machine is proposed, and the vibration
characteristics and equipment operation range are analyzed.
In addition, in the balancing process, the measurement
uncertainty accumulation is analyzed/explained using
Monte Carlo simulations. Although the orthogonality-based
average method [19], which is one of the previously pro-
posed uncertainty removal methods, is applied, it is

confrmed that the reproducibility was very low by exam-
ining the repeated measurement results of the test specimens
when the balancing amount was computed. Tis low re-
producibility is due to the accumulation of uncertainty from
the measurements of the master specimen in the work of
determining the infuence coefcients. To resolve this
phenomenon, a signal processing procedure that can in-
crease the dynamic reliability of signals is proposed to
mitigate measurement uncertainty, as suggested for adaptive
DBSCAN when orthogonality-based average methods are
applied. In addition, a case study is explored to verify that the
dynamic reliability of the measured signal can be improved
while the measurement uncertainty is decreased using the
proposed technique, and it was confrmed that uncertainty
can be alleviated when the suggested procedure in this study
is applied.

Te remainder of this paper is structured as follows. In
Section 2, the measuring unit for a balancing machine is
designed, and its performance and uncertainty are discussed.
In Section 3, the dynamic reliability enhancement meth-
odology, including the automatic-adaptive DBSCAN ap-
proach is proposed. In Section 4, the proposed method’s
efectiveness is verifed through the examination of a case
study of a standard specimen. In Section 5, conclusions are
ofered.

2. Design and Uncertainty Analysis of the
Measuring Part in a Balancing Machine

2.1. Design of the Measuring Part in a Balancing Machine.
Briefy, the measuring part of a balancing machine is
composed of a belt-driving part, a sensing part, and an
isolating part. Te belt-driving part is in charge of the ro-
tational excitation to generate centrifugal force due to un-
balance; the sensing part is the part that measures the
vibration signal generated by the centrifugal force. Lastly, the
isolating part is an element that is designed to block un-
intended vibration that may be measured in the sensing part.
Te detailed confguration of the measuring part of the
balancing machine used in the study was designed and
manufactured as shown in Figure 1(a), with consideration of
manufacturing convenience, compact confguration, and
improved isolation performance. Te designed balancing
machine integrates a steel frame and stone plate with one
isolating part to maximize the isolation performance. Te
sensing part in the balancing machine was designed in the
form of a thin beam to minimize the disturbance and other
directional modes, except for the measured axis. Table 1
describes the detailed design specifcations of the driving
part, sensor part, and isolation part.

In a design process of a balancing machine, the natural
frequencies of a balancing machine should be considered. If
the two frequencies are located closely, the accuracy of an
unbalance estimation of a rotor may decrease due to res-
onance. Tus, to test if natural frequencies of the balancing
machine do not overlap with the operation frequency, an
impact hammer test was performed. Figure 2 presents the
location of the sensors for the impact hammer test. A fre-
quency response function (FRF) of each signal from each

2 Structural Control and Health Monitoring



sensor is shown in Figure 3.Te result shows that the natural
frequencies of all sensors are not close to the target rotation
frequency, which is 55Hz in this study.

Acceleration was chosen as the quantity for deriving the
amount of vibration induced by the unbalanced mass.
Measurement of acceleration has advantages, such as con-
venience of sensor installation and lightweight sensors; here,
an accelerometer with a sensitivity of 500mV/g was selected
as the sensor for the sensing part. Te sampling frequency
was determined as 50 kHz, considering the reliability of the
measured data and the aliasing efect. Two measurement
locations were chosen; they are indicated as planes 1 and 2 as
shown in Figure 4. Te overall process for estimating the
amount of unbalance through appropriate signal processing
from the rotation of the belt-driving part with the specimen
is shown in Figure 5.

For such a balancing problem, which has two correction
planes with two vibration sensors at a single rotation speed,
at least four measurements are required, including the ex-
traction of the infuence coefcient using a master specimen.
During the measurements, uncertainty at each test could
accumulate. In Section 2.2, the accumulation of measure-
ment uncertainty that happens when estimating the un-
balance using the manufacturedmeasuring part is explained,
and the detailed signal processing procedures proposed to
improve it are outlined in Section 3.

2.2. Measurement Uncertainty Analysis of the Balancing
Machine

2.2.1. Infuence Coefcient Method (ICM). Te infuence
coefcient method is widely used tomeasure the unbalance of
a rotor. Te infuence coefcient method is based on the
assumption of linearity between the infuence coefcient and
the vibration response. Te infuence coefcient is defned as
the efect of a unit’s unbalanced mass on the magnitude and
phase of the vibration signal. Te coefcients can be a single
value or a matrix of multiple values, according to the number
of balancing (correction) planes (N), the number of vibration
measurement points (M), and the number of rotation speeds

(O). Balancing (correction) plane indicates an axial position
of a rotor where a correction mass can be placed, and the
measurement point denotes a number of sensors attached to
a balancing machine. To obtain the infuence coefcient, the
magnitude and phase of the rotational speed component (1X)
are extracted from the measured vibration response. Te
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Figure 1: Measuring part of the balancing machine: (a) belt-driving, sensing, and isolation parts and (b) sensing part.

Table 1: Specifcations of the measuring part of the balancing
machine.

Items Specifcations Quantities
Actuator (rotor) 1,000 rpm∼5,000 rpm 1 EA
Accelerometer PCB 333B40 500mV/g 2 EA
Correction plane Front and rear 2 EA
Measurement plane Front and rear beams 2 EA

4

3

1

2

Frame

Bed

Figure 2: Experimental setup for impact hammer test of the
balancing machine.
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unbalanced mass (mu) of the rotating body generates an
excitation force with the rotational speed (ω) of the vibration
signal by F � mueω2. Te equation shows the linear re-
lationship between the unbalanced mass and the excitation
force (vibration), which indicates a linear relationship be-
tween the vibration response and the unbalanced mass as
well. Note that any vibration signals including displacement,
velocity, and acceleration can be used because the ICM uses
the relative efect of signal vectors.

Te balancing method that uses the infuence coefcient
has been widely used for large turbomachinery, such as
turbines and compressors. Similarly, the method is also used
in small-scale rotors with faster rotational speeds, where
short production time is required. For example, turbo-
chargers of automobiles, which are produced in a signif-
cantly large quantity, use the infuence coefcient method to
reduce the production time. Regardless of the application,
the principle of the infuence coefcient method is identical.
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Figure 3: Frequency response of impact hammer test: (a) sensor 1, (b) sensor 2, (c) sensor 3, and (d) sensor 4.
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Figure 4: Sensing part of the balancing machine, including correction planes 1 and 2.
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For example, the balancing procedure of 2 correction
planes (N) and 2 measuring points (M), at a single rpm (O),
by the infuence coefcient can be described as follows. First,
the vibration response at the initial state is obtained and
presented as follows:

V
→

O � V
→

1O, V
→

2O􏼒 􏼓, (1)

where V
→

iO denotes vibration response in complex form at
the ith measuring point. Te magnitude of a vibration re-
sponse vector is defned by the magnitude of 1X frequency,
and the phase of a vibration response vector is defned by the
absolute phase of 1X frequency with respect to a key phasor
signal. Ten, a trial mass (m) is placed at correction planes
a and b, sequentially. Te vibration response at each trial is
defned as V

→
a and V

→
b, respectively, and the response can be

described as shown in the following equations:

V
→

a � V
→

1a, V
→

2a􏼒 􏼓, (2)

V
→

b � V
→

1b, V
→

2b􏼒 􏼓. (3)

Next, the infuence coefcient matrix (ICM) is derived by
the following equation:

A �
α→1a α→1b

α→2a α→2b

⎡⎢⎢⎣ ⎤⎥⎥⎦ �

V
→

1a − V
→

1o􏼒 􏼓

m
,

V
→

1b − V
→

1o􏼒 􏼓

m
,

V
→

2a − V
→

2o􏼒 􏼓

m
,

V
→

2b − V
→

2o􏼒 􏼓

m
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

where α→ix is the infuence coefcient of a unit weight on the
x correction plane at the ith measuring point. As the ICM is
derived from three trials, the magnitude and angle of un-
balanced mass and of an identical rotor can be estimated
through the inverse ICM, which is stated in the following
equation:

A
− 1

× V
→

t �
α→1a, α→1b,

α→2a, α→2b.
⎡⎣ ⎤⎦

− 1

V
→

1t V
→

2t
􏽨 􏽩

T
,

where  V
→

t � V
→

1t, V
→

2t􏼒 􏼓.

(5)

In equation (5), V
→

t is the vibration response of the test
specimen.

2.2.2. Efect of Measurement Uncertainties in ICM. Te ICM
method is widely used in many industries to estimate the
unbalanced mass of a rotor. To calculate ICM, magnitude and
phase at a rotational speed frequency (1X magnitude and
phase) from the vibration signals are required by fast Fourier
transform (FFT). However, measurement of vibration signals
always includes uncertainty. As measurement uncertainty
exists in every vibration measurement, inaccurate results can
be obtained if the uncertainty is not considered. For example,
a turbocharger production line performs two-plane balancing
of every specimen as shown in Figure 6, which is identical to
the problem described in Section 2.2.1. To construct the ICM,
three independent tests are required, each containing un-
certainties. By randomly selecting the 1X magnitude and
phase from the measured vibration signals, the unbalanced
mass of a test specimen is calculated diferently for each
selected signal. Specifcally, a considerate amount of a second
long vibration signal can be extracted from a ten-second-long
signal. Tus, diferent results are obtained for each selected
vibration signal as shown in Figure 7.Te result indicates that
the phase of an unbalanced mass cannot be estimated pre-
cisely, as the distributions have signifcantly large deviations.
Te red dots are the three results estimated on-site.

Te most common method used to reduce such large
deviations is to average out a few samples. However, av-
eraging can still lead to a biased estimated result if the test
condition is not steady. For turbochargers, only a short
period of time is allowed in mass production lines, which are
capable of extracting only a few samples of 1X magnitude
and phase. Estimation of the unbalanced mass by a small
number of samples may lead to biased results.

Obviously, not all rotors are afected by themeasurement
uncertainty. However, as the size of the rotor gets smaller
and the speed faster, even a small amount of uncertainty can
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Figure 5: Procedure for estimation of the unbalanced mass of the rotor.

Structural Control and Health Monitoring 5



decrease the accuracy of the unbalanced mass estimation.
Tus, the next section suggests a novel method to reduce the
uncertainty of vibration signals.

3. Suggestion of a Dynamic Reliability
Enhancement Methodology for
a Balancing Machine

3.1. Overall Scheme. As a signal-processing method to
eliminate the measurement uncertainty (as described in
Section 2.2), this study proposes a signal-processing method
that consists of the following three steps. First, by using the
orthogonality between the sine function of the fundamental
frequency and measured acceleration signal, the amplitude
and phase of the fundamental frequency component at
planes 1 and 2, corresponding to the rotational speed, are
computed. Secondly, the amplitudes and phases at planes 1
and 2 are regarded as features and performed principal
component analysis (PCA) to distinguish themmore clearly.

Each feature was normalized using the standard deviation
andmean value of the four features, and then a principal axis
transformation was performed. Tirdly, by using the
adaptive-clustering method, we estimate the amplitudes and
phases in the representative group with relatively high
density for four features composed of the vibration am-
plitude and phase information calculated from two planes.
Tis makes it possible to eliminate the uncertainty of the
measured signals where a relatively high noise level exists but
where high precision is still required. Te overall procedure
for signal processing is summarized in Figure 8.

3.2. Orthogonality-Based Average (OBA) Method. Te or-
thogonality of the sine function is the basis of the Fourier
transform. Te orthogonality-based fltering can extract
a specifc frequency component of a signal by multiplying
the original signal with two reference signals: a sine signal
and a cosine signal of a specifc frequency. Other frequency
components will sum up to zero value when a signal is

Figure 6: Drawing of a turbocharger test specimen.
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multiplied with the reference sine and cosine signals. Tus,
the “orthogonality-based fltering” will remove all frequency
components except the frequency component of a reference
signal. Using this characteristic, the rotational frequency
component of the rotor can be extracted from the vibration
signal. First, the signal is decomposed into the cosine and
sine components as described in equations (6) and (7). ym

denotes the mth sample of the vibration signal, f denotes the
rotational frequency, and tm denotes the time step of the mth

sample. Ucosine and Usine indicate the magnitude of the f

frequency cosine and sine components of the signal ym,
respectively. Ten, the squared sum of cosine and sine
magnitudes can be derived as in equation (8), which is
equivalent to the magnitude of the f frequency component
of the signal. Also, the phase of the signal can also be derived
using equation (9).

Ucosine �
􏽐

M
m�1 cos 2πftm( 􏼁∙ym􏼂 􏼃

􏽐
M
m�1 cos 2πftm( 􏼁􏼂 􏼃

2 , (6)

Usine �
􏽐

M
m�1 sin 2πftm( 􏼁∙ym􏼂 􏼃

􏽐
M
m�1 sin 2πftm( 􏼁􏼂 􏼃

2 , (7)

U �

��������

Uc
2

+ Us
2

􏽱

, (8)

φ � arctan
Us

Uc

􏼠 􏼡. (9)

Te orthogonality-based fltering is a very useful method
when the fuctuation of the rotational speed is not signif-
cant; it computes the representative magnitude and phase by
using the average value over several predefned cycles.
However, when the data for a relatively long time is used, the
computed value may not refect the fuctuation character-
istics. In addition, it may be difcult to estimate the exact
amplitude according to the variation of the rotational force.
Tus, the magnitude and phase were calculated from a vi-
bration signal of 20 rotations of the rotor through an em-
pirical study. Specifcally, a balancing machine user inquired
to reduce the balancing time, in which the maximum
number of rotations included was 20.

3.3. Automatic-Adaptive DBSCAN (AA-DBSCAN). Te
measurement uncertainty in the results of the orthogonality-
based average method still exists. Tis is manifested by the
signal-to-noise ratio of the sensor, the speed control in-
stability of the driving part, the bearing and belt vibration,
and the foor vibration. In order to achieve high-precision
balancing, which is gradually becoming more required in
industrial felds, it is necessary to remove this uncertainty as
much as possible and to increase the dynamic reliability of
the measurement part. In this study, based on DBSCAN
[20, 21], which is a widely used clustering method, a method
for classifying representative values based on data in dense
locations is suggested. Te basic concept of DBSCAN is
shown in Figure 9; it classifes the data without prior learning
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Figure 8: Overall procedure for signal processing with the proposed adaptive-clustering method.
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based on the predesigned error radius (ε) and the minimum
number of data within the radius (min. pts.) based on the
data at high density. Core points are defned as the center
point when there are more than min pts within the error
radius, and when a core point becomes part of a cluster of
diferent core points, it becomes one cluster connected to
each other. Points that belong to a cluster but cannot
themselves become core points are called border points, and
they mainly form the outskirts of the cluster. Points that do
not belong to any cluster are defned as noise points or
outliers.

Conventional DBSCAN does not input the number of
groups; instead, it gradually forms groups using the design
parameters, the radius, and the minimum number of data
within the radius. However, in the case of balancing, it is
necessary to fnd the hyper-parameters, the specifc values of
design parameters, through trial and error, according to the
target specimen and the test conditions. Because the process
is a very long and tedious, we propose a method of adapting
the radius value so that sufcient groups are divided in the
condition where the minimum number of data is fxed. Te
detailed procedure is described as following. First, it is
checked whether the number of valid data (Nvalid) is larger
than the outlier data, as described in equation (10), and we
confrmed whether the number of derived groups (Ngroup)
satisfes equation (11), except for outliers. Ten, as in
equation (12), the radius is gradually adapted or another
measured dataset is added until the condition for the
number of valid data (Ndata in core group) to be equal to or
greater than a certain level of criteria is satisfed. Tat is, the
loop is repeated until all conditions are satisfed, and the
average of the data in the group satisfying equations
(10)–(12) is calculated as a representative value.

Nvalid ≥Noutlier, (10)

Ngroup ≥Ngroup,cr, (11)

Ndata in core group ≥Ndata in group,cr. (12)

Ngroup,cr is designed to be two or more, as the minimum
number of groups, and Ndata in core group,cr is empirically se-
lected to be 20 or more, as the minimum number of valid
data. Here, an important part is the adaptationmethod of the
ε value, which applies the concept of the Bolzano method to
fnd the existence of a valid group. Te ε value is adapted by
repeating the process using half of the value of the previous
ones so that it converges to a certain value where all con-
ditions are satisfed. If equations (10)–(12) are not satisfed,
while the ε value decreases to a size that is no longer
meaningful (here, it is empirically selected as 0.001), the
above process is repeated by adding the number of datasets.
εi+1 is calculated as described in equation (13) when there is
a group between εi and εi−1 as shown in Figure 10.

εi+1 �
εi + εi−1( 􏼁

2
. (13)

In the case of i � 1 and i � 2, ε0, ε1 were set to 0 and 1,
respectively, and convergence was observed. Figure 11 shows
the detailed description of the automatic-adaptive DBSCAN
(AA-DBSCAN) methodology using a fowchart. Here, other
parameters are described above except dεcr and it is selected
as 0.01 through trial and error method.

4. Case Study: Results and Discussion

Te proposed AA-DBSCAN approach described in Section
3.3 is validated by applying it to a dataset acquired from the
balancing machine. A detailed description of the balancing
machine is described in Section 4.1 and results are provided
in Section 4.2.

4.1. Description of theValidation Experiment. To validate the
proposed method, a balancing case study was conducted, as
stated in Section 2.2. Te case study aims to derive the
unbalanced mass of two-correction planes with the two
channels of vibration signals at a fxed 3300 rpm, which
makes the solution deterministic. Te vibration signals were
acquired using a rotor, which is shown in Figure 12. Te
signals were measured for fve seconds only after the

α ε

εi+1 εi

εi+εi-1

y

2

y = f (ε)

εi-1

Figure 10: Description of the Bolzano method.
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Figure 9: Basic concept of DBSCAN.
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rotational speed of the rotor became stable using the testbed
shown in Figure 2. Te sampling rate of the vibration signals
was set to 50 kHz, and each test was performed three times to
assure the reliability of the experiment. A power spectrum
density (PSD) function of vibration signals at 3300 rpm is
presented in Figure 13. Te PSD function presents a clear
isolation frequency component at 55Hz.

Te experiment can be divided into two phases: an in-
fuence coefcient phase and a rotor unbalance estimation
phase. In the frst phase, three tests were performed to derive
the infuence coefcients of the proving rotor: an initial state,
a trial mass at plane 1, and a trial mass at plane 2. All three
tests were conducted three times. Using the acquired signals,
AA-DBSCAN was used to extract the magnitude and the
phase of the rotating frequency (1X), which is described in
Section 3. Trough the calculated magnitude and phase of
the 1X rotational frequency, the infuence coefcient of the
rotor was derived. Ten, in the rotor unbalance estimation
phase, a diferent rotor, which presents a diferent un-
balanced state, was tested. Using the infuence coefcient
derived from the previous phase, the unbalanced mass of the
rotor was estimated. To validate the estimated unbalance
mass, the calculated amount of mass is attached at the
opposite direction to the estimated unbalance mass

direction, which will ofset the unbalanced mass. If the
estimated mass is accurate, the magnitude of vibration will
decrease greatly as the unbalanced mass efect is compen-
sated. Estimated unbalanced mass by each method was
performed on the same test specimen, and vibration mag-
nitudes were compared to validate the efectiveness of the
proposed AA-DBSCAN method.

First, outliers of 1X magnitudes and phases of measured
vibration signals were analyzed. As vibration signals encounter
noises and shocks unregularly, outliers may be included in the
measured signals. Most of the time, the outliers decrease the

Balzano method Principal Component Analysis
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Adaptive DBSCAN

Reset ε [01]
initial values

Data set
initial values
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Ndata in group
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Nvalid data > Noutlier data
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εi – εi–1
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Figure 11: Detailed procedure of automatic-adaptive DBSCAN.

140
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Figure 12: A drawing of the proving rotor used for the validation
experiment.
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accuracy of the unbalanced mass estimation. Tus, outliers
removed by the AA-DBSCANmethod were verifed. Next, the
deviations in the intermediate results were compared. Con-
ventional methods do not consider the uncertainties, which
cause deviations. Terefore, the scattered result of infuence
coefcients was compared to that of the proposed AA-
DBSCAN method. Lastly, the decreased rate of vibration was
compared quantitatively. Each estimated unbalanced mass was
tested, and the decreased magnitude of vibration was com-
pared. A more accurate estimate of unbalanced mass presents
a larger decreased vibration magnitude.

4.2. Results and Discussion

4.2.1. Efect of Outlier Removal. Initially, three tests, sum-
marized in Table 2, were performed to derive the infuence
coefcients. From the acquired fve-second-long vibration
signals, the amplitude and phase of 1X rotational speed were
extracted every 20 cycles using the orthogonality-based
averaging method. Te number of possible 20 cycles
within 5 seconds is 230,013, which is calculated by the fol-
lowing equation:

(50 kHz × 5 sec) – 18, 000 + 1 � 232,013. (14)

As the number is too large to present in a fgure, a few
selected points of magnitude and phase of the initial state are
presented. In Figures 14(a) and 14(b), two clusters are shown
in green and blue colors, while red indicates outliers. By
removing those outliers, the deviation can be reduced by over
30%. Among the two clusters, the one that has samples larger
than 20 is selected. Te results of AA-DBSCAN for the trial
weight state at each correction plane are shown in Figures 15
and 16, respectively. For the trial weight states, the green
cluster was selected to calculate the infuence coefcient. Note
that the amplitude increased signifcantly compared to that of
the initial state as the trial weights were attached.

4.2.2. Efect of Reduced Variance: Infuence Coefcient Ma-
trix (ICM). Infuence coefcient matrix (ICM),A, is defned
as the element that represents the infuence of the weight of
each correction plane. As the case study is defned by two
correction planes with two channels of signals at a single
target rotational speed, the ICM can be defned as follows:

A �
a11 a12
a21 a22

􏼢 􏼣, (15)

where aij indicates the infuence coefcient of the jth cor-
rection plane on the jth signal. To calculate the ICM, three
tests are required: initial state and trial weight on correction
plane 1 and 2 states, respectively. Uncertainty exists in each
test, which leads to diferent ICMs, even under the same
conditions. Specifcally, a large deviation of ICMs may sig-
nifcantly decrease the accuracy of unbalanced mass esti-
mation. Tus, the proposed AA-DBSCAN tries to estimate
the unbalanced mass of the rotor by reducing uncertainties,
while the conventional random selection approach estimates
the unbalanced mass without reducing any uncertainties. Te
result of the infuence coefcients is shown in Table 3. Te
proposed AA-DBSCANmethod showed the least deviation of
the infuence coefcients among themethods compared in the
table, which are shown in bold values. In addition, the
random selection method, which used the conventional in-
verse notch flter to extract the magnitude and phase, showed
the largest deviation of the infuence coefcients.

4.2.3. Efect of Accurate Estimation of the Unbalanced Mass.
Te magnitude and phase of the unbalanced mass were esti-
mated using the infuence coefcient. Trough a Monte Carlo
(MC) simulation study, the unbalanced mass values were es-
timated, independently; the results are shown in Figure 17. Te
MC simulation selects a 0.36-second-long signal, which is
equivalent to 20 cycles, randomly, from the 5-second-long
signals. Since a 0.36-second-long signal corresponds to 18,000
samples, the number of selections for a unit signal from 5-
second-long signal is 232,013 (50kHz ∗ 5 sec− 18000+1).
Random selection of vibration signal was performed for the
initial step, the trial #1 step, the trail #2 step, and the testing
specimen step, which gives a signifcant large number of possible
combinations, which is 232,0134. Tus, 10,000 were randomly
selected, and the results were obtained for each method.

For both correction planes, the magnitudes of the un-
balanced mass present minute diferences among the three
methods. However, the estimated phases raise a considerable
amount of diference among the methods. Specifcally, the

Table 2: Overview of test parameters for infuence coefcient
calculation.

Master rotor Weight Location Radius

Initial Correction plane 1 — — —
Correction plane 2 — — —

Trial #1 Correction plane 1 0.073 gram 300 deg 28mm
Correction plane 2 — — —

Trial #2 Correction plane 1 — — —
Correction plane 2 0.073 gram 180 deg 28mm
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Figure 13: Power spectrum density of vibration signals at 3300 rpm.
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phase estimation found by AA-DBSCAN showed 35.2% and
33.7% decreased deviation, as compared to those of the
random selectionmethod at each correction plane in Table 4,
which are shown in bold values. Te reduced deviations are
fairly predictable as outliers are removed when the infuence
coefcients are derived.

Still, the decreased deviation does not guarantee an ac-
curate estimation. Te biased estimate may lead to inaccurate
results, which can lead to a limited decrease of vibration.
Tus, to check which method has estimated the unbalanced
mass most accurately, an extra test was performed by
attaching the estimated unbalanced mass 180 degrees op-
posite from the estimated unbalanced mass location. If the
unbalanced mass calculation is accurate, the attached

counterweight will theoretically ofset the unbalance of the
rotor. Te results of the fnal validation step are shown in
Figure 18. Te vibration amplitude of the 1X rotational
frequency presented the lowest value when calculated by the
suggested AA-DBSCAN method. In other words, the sug-
gested AA-DBSCAN estimated the magnitude and the phase
of unbalanced mass more accurately than other methods.
Consequently, the proposed method not only reduced the
deviation of the estimated results, it also increased the pre-
diction accuracy, as compared to conventional methods.

In addition, the computation time was compared to
validate the proposed AA-DBSCAN can be applied in felds.
Te result showed that the average of ten trials for the
conventional method, the OBA method, and the proposed
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Figure 14: AA-DBSCAN results for 1X amplitude and phase at the initial state of the rotor.
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Figure 16: AA-DBSCAN results for 1X amplitude and phase at the trial weight on correction plane 2.

Table 3: Result of infuence coefcient matrix for each method.

Methods
Infuence coefcient matrix (A)

|a11| |a12| |a21| |a22|

Average Std Average Std Average Std Average Std

(Conventional) random selection 0.00919 0.0050 0.00070 0.00034 0.00071 0.00035 0.0087 0.00056
(Conventional) OBA 0.00923 0.0046 0.00075 0.00058 0.00088 0.00029 0.0087 0.00040
(Proposed) AA-DBSCAN 0.00914 0.00 7 0.0006 0.00026 0.00051 0.00027 0.0088 0.000 7
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Figure 17: Estimated magnitude and phase of the unbalanced masses for each method.
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AA-DBSCAN method showed 0.0073, 0.0516, and
0.3156 seconds. Although the AA-DBSCAN showed the
longest processing time, the elapsed time of 0.3156 seconds
has been accepted by users since it is a signifcantly short
time when compared to the whole balancing time.

5. Conclusions

In this study, for the purpose of high-precision balancing,
the design of an accelerometer-based measuring unit for
a balancing machine was presented, and its possible oper-
ating range was analyzed through actual measurements of
vibration. Te accumulation of measurement uncertainty
during the balancing process using the designed/manufac-
tured measuring unit in the balancing machine was
explained through Monte Carlo simulation. Although the
orthogonality-based average method, which is one of the
previously proposed methods for eliminating uncertainty,
was used, it was confrmed from the repeated measurement
results that uncertainty could still accumulate when de-
termining the infuence coefcients due to the accumulation
of uncertainty from the measurement of the master speci-
men. A calculation procedure to mitigate measurement
uncertainty was suggested by combining the proposed
automatic-adaptive DBSCAN (AA-DBSCAN) method and
the orthogonality-based average method. It was confrmed
that the proposed method can improve the dynamic re-
liability of the measuring unit based on the fact that, when
the existing method is used, the deviation of the extracted

infuence coefcients is up to 0.0050, whereas when the
proposed method is used, the deviation is reduced to less
than 0.0037. In addition, the estimated unbalance mass of
the rotor calculated by the proposed AA-DBSCAN approach
showed the most accurate results and the least deviation, as
compared to those of the conventional method.
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Table 4: Average and deviation of the estimated unbalanced masses for each method.

Methods

Estimated unbalanced masses
Correction plane 1 Correction plane 2

Mass (gram) Phase (deg) Mass (gram) Phase (deg)
Average Std Average Std Average Std Average Std

(Conventional) random selection 0.0868 0.0104 335.81 5.00 0.0852 0.0086 208.97 5.94
(Conventional) OBA 0.0861 0.0070 336.39 8.99 0.0849 0.0077 208.18 9.15
(Proposed) AA-DBSCAN 0.0849 0.0068 337.74  .24 0.0867 0.0066 211.15  .94
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Figure 18: Decreased magnitude of 1X vibration calculated by each method.
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