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Timely wear evaluation is crucial in maintaining the functionality of bridge expansion joints (BEJs), ultimately ensuring the safety
of bridges. Despite the signifcance of trafc load simulation (TLS) in simulation-based evaluation methods, existing TLS ap-
proaches face challenges in accurately modeling in situ trafc fow at a high fdelity. Tis paper presents a novel methodology and
its application for evaluating the wear performance of BEJs, employing a Transformer-enhanced TLS approach. Initially, a tailored
dataset is crafted for data-driven car-following modeling, leveraging an established spatial-temporal trafc load monitoring
system. High-fdelity TLS with a mean absolute error (MAE) of 0.1738m/s is then achieved using Transformer modules equipped
with an attention mechanism. To evaluate the fnal wear life of BEJs, transient dynamic analysis and a calibrated fnite element
model of the bridge are employed to extract cumulative displacement. Additionally, a surrogate model is developed to depict the
relationship between the hourly trafc weight on the entire bridge deck and the cumulative displacement of BEJs, yielding an
impressive R-squared value of 0.96619. Comparative results demonstrate the superior performance of our proposed TLS approach
over other data-driven approaches, with the linear model derived from our TLS approach outperforming the model generated by
the conventional Monte Carlo-based TLS approach. To conclude, our proposed TLS emerges as a comprehensive and precise
methodology for the wear evaluation of BEJs.

1. Introduction

Bridge expansion joints (BEJs) constitute integral structural
components designed to enable bridges to accommodate
thermal movements and vibrations induced by trafc loads,
wind forces, and seismic activities. However, the wear of
slide bearings has emerged as one of the most frequent
failure incidents for BEJs in long-span bridges, resulting in
a service lifespan for BEJs that is considerably shorter than
that of the bridge itself. Terefore, it is imperative to employ
efective and predictive wear evaluation methodologies for
BEJs to prevent structural damage and minimize additional
maintenance costs [1, 2].

Although factors such as severe climatic conditions and
unsuitable material components can infuence the wear

state, it has been confrmed that the primary cause of wear
damage in BEJs is the cumulative displacement at the end of
the girder [3–6]. Data analysis research, based on dis-
placement gauges from structural health monitoring (SHM)
systems, has been conducted. A variety of methods, in-
cluding correlation ftting [3, 7–11], mechanical perfor-
mance analysis of bridge structures [12–15], Bayesian
approaches [16, 17], statistical machine learning [18], and
data reconstruction [19, 20], have been utilized to examine
the displacement patterns of BEJs for damage evaluation.
Te fndings indicate that the wear damage of BEJs is pri-
marily due to large cumulative displacements, which are
signifcantly infuenced by temperature and trafc loading.
Te temperature factor imparts a consistent trend to cu-
mulative displacements and exhibits a linear relationship [9].
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Conversely, trafc loading contributes signifcantly to the
cumulative displacements of BEJs [3, 21]. However, trafc
patterns are more spatially and temporally random, com-
plicating the establishment of a relationship between trafc
loads and cumulative displacements.

Despite the importance of SHM systems, the costs as-
sociated with their real-time installation and maintenance
can be substantial. Moreover, wide-range gauges situated at
the girder’s end may operate at a low frequency (i.e., 2Hz
[7]), which presents difculties in detecting displacement
peaks and valleys, particularly when vehicles are entering or
exiting the bridge. To address this issue, numerical simu-
lation techniques have been introduced and applied for the
wear evaluation of BEJs. Tese techniques integrate trafc
loads with mechanical analysis. Considering the signifcance
of trafc loads in the evaluation of BEJs, trafc load sim-
ulation (TLS) methods are vital as they ofer substantial
inputs for the analysis procedure. A commonly used TLS
method is the Monte Carlo sampling of vehicle loads, which
leverages data from the practical weigh-in-motion (WIM)
system [22–24]. Te recorded trafc load data undergo
statistical analysis, and distribution equations of vehicle
parameters are derived for subsequent TLS [25, 26]. Con-
sequently, vehicles are generated based on statistical arrival
times and traverse the lanes at constant speeds. Utilizing
a fnite element model (FEM) of the bridge structure, dis-
placement histories and corresponding cumulative dis-
placements are calculated to assess the wear performance of
BEJs [3, 27]. To enhance the accuracy of displacement
calculations, vehicle-bridge dynamic analysis has been in-
corporated into TLS [21].

However, the precision of TLS in these studies is
somewhat compromised. Tis is primarily due to the in-
ability of the Monte Carlo sampling-based method to
consider vehicle interactions [28, 29]. Such interactions can
induce speed fuctuations among vehicles, which in turn
infuence the distribution of trafc loads. Terefore, while
these methods are widely accepted and utilized, theymay not
provide the high precision required for certain compre-
hensive bridge evaluations.

In recent years, microscopic trafc simulation ap-
proaches have been proposed, with a focus on the detailed
description of each vehicle’s movement on the road
[30, 31]. Tese approaches aim to enhance the fdelity of
trafc simulations, thereby improving the accuracy of
structural evaluation procedures [32]. A key concept in
microscopic trafc simulation is the car-following model,
which takes into account the interactions between each
pair of leading and following vehicles, thereby facilitating
the simulation of comprehensive trafc fows on the road.
Data-driven car-following models have gained increasing
popularity in recent decades [33]. Tese models leverage
trafc surveillance data to establish trafc fow charac-
teristics. A multitude of studies have been conducted
using a specifc dataset known as the Next Generation
SIMulation (NGSIM), provided by the Federal Highway
Administration [34].

In terms of algorithms, to enhance the feature extraction
capability of traditional models such as K-neighbouring

[35], support vector machine (SVM) [36], and artifcial
neural networks (ANNs) [37], deep learning-based methods
have been introduced and employed for the car-following
prediction problem. Te recurrent neural network (RNN)
model, which takes into account the historical status of
leading and subject vehicles, has been validated to simulate
typical trafc phenomena [38]. Following this, models based
on long short-term memory (LSTM) and gated recurrent
unit (GRU) have been applied to the car-following pre-
diction problem [39, 40] and have shown superior perfor-
mance compared to the basic RNN model due to their more
efcient memory cells [41]. Additionally, the Sequence-to-
Sequence (Seq2Seq) and Encoder-Decoder architecture have
demonstrated their advantages in multistep input and
output performance [42, 43].

However, several challenges remain in the current TLS-
based wear evaluation of BEJs, as detailed below. (1) Gaps
exist between the microscopic TLS method and its practical
application in the wear evaluation of BEJs and other bridge
components. (2) Tere is an absence of a specifc bench-
marking dataset for data-driven TLS research related to
long-span bridges. (3) Present data-driven vehicle trajectory
prediction models encounter challenges in modeling long-
term dependencies.

To address the challenges identifed, this study pres-
ents a comprehensive methodology for evaluating the
wear performance of BEJs using a Transformer-enhanced
deep learning TLS approach. Specifcally, a unique
benchmarking dataset for data-driven TLS research is
established, derived from a large-feld trafc load moni-
toring system that employs machine vision and WIM data
fusion. Furthermore, we propose a time-sequence model
for predicting vehicle speed histories, which leverages
Transformer modules to incorporate the attention
mechanism, thereby recognizing long-term serial signal
dependencies. Ultimately, precise wear evaluation of BEJs
is achieved through transient dynamic analysis of the FEM
of the long-span bridge. Te primary contributions of this
paper are four-fold. (1) We propose a data-driven
methodology that facilitates a more precise wear evalu-
ation of BEJs. (2) We provide a unique, frst-of-its-kind
dataset for benchmarking full-bridge TLS. (3) We develop
a vehicle speed prediction car-following model for TLS,
enhanced with Transformer modules within a deep
learning framework, which achieves a low MAE. (4) We
demonstrate that the linear surrogate model for BEJ wear
evaluation, calibrated from the proposed TLS loading,
outperforms conventional methods.

Tis paper is organized as follows. Section 2 introduces
our proposed framework for the wear evaluation of BEJs,
detailing the methods employed within the framework. In
Section 3, we provide comprehensive information on
benchmarking data collection and FEM verifcation for the
bridge under study. Te performance and feasibility of our
model for high-fdelity wear evaluation of BEJs are presented
in Section 4, along with discussions on comparative studies
with existing models. Finally, Section 5 provides a conclu-
sion, summarizing the key fndings and implications of our
research.
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2. Methodology

2.1. Overview. Tis paper presents a methodology for
evaluating the wear performance of BEJs using a Trans-
former-enhanced deep learning TLS approach. Te meth-
odology consists of three primary components, as depicted
in Figure 1.

Initially, a spatial-temporal trafc load monitoring
process is implemented using both visual and weighing
sensors. A computer vision system, comprising multiple
visual sensors, ensures complete coverage of the entire
bridge deck. Identifcation algorithms are utilized to collect
vehicle trajectory data. Te WIM system, incorporating
weighing sensors and induction coil sensors embedded
within the pavement, is used to capture specifc parameters
of each passing vehicle, including its length, axle weight, and
axle spacing.

Subsequently, a TLS approach, enhanced with deep
learning and incorporating Transformer modules, is
implemented. Following the initial phase, the vehicle tra-
jectory data undergo a smoothing process and are seg-
mented into car-following pairs. Tese pairs serve as the
training data for the deep learning model for the prediction
of the subject vehicle’s speed. Concurrently, the vehicle
weighing data are processed to determine the distribution of
key parameters, such as vehicle arrival frequencies and axle
weights. Tese distributions are then utilized to calibrate the
Monte Carlo simulators for random sampling. Te Monte
Carlo simulators, in conjunction with the deep learning
model, are then deployed for the generation of vehicles and
the evolution of trafc on the bridge deck, respectively. Tis
process results in the production of microscopic TLS data
over a designated time.

Finally, the TLS data are sequentially incorporated into
the FEM. Trough the execution of a transient dynamic
analysis, the displacement time histories of the girder’s end
are extracted. Ultimately, the cumulative displacements are
computed to estimate the wear life of the BEJs.

2.2. Full-Span Trafc Load Acquisition. To complete the
Transformer-enhanced data-driven TLS, the frst re-
quirement is the precise acquisition of on-deck trafc load,
both spatially and temporally. Our previous studies [44, 45],
which focused on a large-feld trafc load monitoring system
that utilizes the fusion of multivision andWIM sensing, have
enabled us to acquire full-span trafc load fow. Briefy, as
shown in Figure 2, our approach to trafc load acquisition
incorporates both the WIM system and the computer vision
system.

Within the WIM system, signals from both the in-
duction coils and weighing sensors are processed. Tis
involves the identifcation of impulse signals and the
integration of time-sequence signals, respectively. As
a result, we can determine the dimensions and axle
weights of each vehicle. Te WIM system, which is
commercially available, has been actively collecting ve-
hicle weight data since its installation.

In the case of the computer vision system, multiple high-
defnition cameras are mounted on the pylons to ensure
complete coverage of the entire bridge deck. Te video streams
captured by these cameras are fetched, rectifed, and stitched to
generate a panoramic image fow of the bridge deck. Tese
images are then processed using a trained YOLO-v4 object
detector and a Kalman flter. Te former is utilized to detect
vehicles within the image fow and to obtain their respective
coordinates and types. Te latter is applied to track these ve-
hicles based on the detections, thereby enabling the acquisition
of their trajectories. For a more comprehensive understanding
of the algorithms employed, readers are encouraged to refer to
our previous studies [44, 45].

2.3. Microscopic TLS Scenario. Car-following phenomena
are widely acknowledged as efective models for the ob-
servation and simulation of microscopic trafc fow. As
illustrated in Figure 3, a car-following pair is composed of
the subject vehicle and the vehicle leading it. In this context,
vi, Δv, and Δx denote the speed of the subject vehicle, the
speed diference, and the gap distance, respectively. Con-
sequently, a car-following model serves to illustrate the
interactions between adjacent vehicles. Te primary objec-
tive of a car-following model is to predict the speeds of the
subject vehicle based on these crucial parameters.

2.4. Transformer-Enhanced Deep Learning Model for Speed
Prediction. Deep learning techniques have gained signifcant
popularity, leading to the emergence of numerous data-driven
approaches that exhibit greater fdelity and robustness com-
pared to conventional methods [46].Te attention mechanism
and Transformer module, innovative architectures in the feld
of deep learning, have inspired research in computer vision and
natural language processing since their introduction in 2017
[47]. Te Transformer module typically combines an Encoder-
Decoder structure with an improved self-attentionmechanism.
Recently, the application of the Transformer module to time-
sequence forecasting problems [48, 49] has shown superior
performance compared to other sequence models.

As shown in Figure 4(a), the self-attention mechanism is
realized through the scaled dot-product operation. Initially,
the input sequence, denoted as X, is mapped into three
vectors: the query vectorQ, key vectorK, and value vectorV.
Tis mapping is computed as per the following equation:

Q � XW(Q)
,

K � XW(K)
,

V � XW(V)
,

(1)

where X ∈ RT×dx , W(Q) ∈ Rdx×dk , W(K) ∈ Rdx×dk , and
W(V) ∈ Rdx×dv are linear matrices. Here, T and dx denote the
length and dimensions of X, respectively, while dk, dk, and
dv represent the dimensions of Q, K, and V, respectively.

Further, as per equation (2), Q and K are aggregated
using the dot-product operation. Te resultant values are
then normalized by the scale factor

��
dk

􏽰
and subjected to the
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Softmax operation. Ultimately, the outcome is multiplied
by V to yield the fnal output vector Z.

Z � Attention(Q,K,V)

� Softmax
QKT

��
dk

􏽰􏼠 􏼡V.

(2)

In their work [47], Vaswani discovered the benefts of
linearly projecting vectors of varying dimensions, which led
to the proposition of the multihead self-attention (MHSA)
approach, as illustrated in Figure 4(b). MHSA allows the
model to attend to information from diferent representa-
tion subspaces at diverse positions simultaneously. Conse-
quently, MHSA constitutes a critical component of the
Transformer layer, as defned by the following equation:
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Figure 1: Overview of Transformer-enhanced TLS for wear evaluation of BEJs.
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Zi � Softmax
QiKi

T

��
dk

􏽰􏼠 􏼡Vi,

MultiHead(Q,K,V) � Concat Z1,Z2, . . . ,Zh( 􏼁WO
,

(3)

where h denotes the number of heads. All W are linear
weight matrices that are learned from the data.

In this study, we specifcally employ Transformer
modules for the time-sequence speed prediction of each
vehicle traversing the bridge deck, thereby achieving the
trafc evolution prediction within the TLS procedure. As
depicted in Figure 5, the input sequences are time series data
of three key parameters derived from the car-following pair

data, namely, (vi,Δv,Δx). Te dimension of the input se-
quence is 3 × T, where T denotes the number of historical
data steps.

Tese vectors are subsequently passed through the
Encoder-Decoder structure, which is composed of N

stacked Transformer modules and feed-forward layers.
Here N represents the number of identical layers that
constitute the Encoder and Decoder. Following this,
a fully connected layer is applied to generate the fnal
output. Te dimension of this output sequence is 1 × L,
where L denotes the number of predicted steps. Conse-
quently, the Transformer-enhanced model maps the input
sequence to the output sequence, as demonstrated in the
following equation:

Computer vision system

Collected vehicle trajectory dataCollected vehicle weighing data

WIM system

North
pylon
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pylon

…… ……

…… ……

Vehicle Detection and Tracking

Image Rectification and Stitching
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Figure 2: Full-span spatial-temporal trafc load acquisition [44, 45].
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Figure 3: A car-following pair in the microscopic TLS scenario.
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vi(t + 1), . . . , vi(t + L)( 􏼁 � Model

vi(t − T + 1), . . . , vi(t)

Δv(t − T + 1), . . . ,Δv(t)

Δx(t − T + 1), . . . ,Δx(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4)

2.5. Transient Dynamic Analysis for Displacement
Calculation. Te transient dynamic analysis (TDA) approach
is required to compute the displacement history of the bridge
under trafc loads, utilizing the following dynamic equation:

[M] u
..

􏼈 􏼉 +[C] u
.

􏼈 􏼉 +[K] u{ } � F(t){ }, (5)

where [M] represents the mass matrix, [C] denotes the
damping matrix, [K] signifes the stifness matrix, u

..
is the

node acceleration vector, u
.
is the node velocity vector, u is
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Figure 4: Attention mechanism in the Transformer module. (a) Scaled dot-product attention. (b) Multihead attention.
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the node displacement vector, and F(t) is the dynamic load
vector.

Te direct integration method, based on the Newmark-β
method proposed by Newmark in 1959, is an efcient ap-
proach to solving the dynamic equation. Tis method uti-
lizes the following iterative formulas:

_ui+1 � _ui +[(1 − c)Δt]€ui +(cΔt)€ui+1,

ui+1 � ui +(Δt) _ui + (0.5 − β)(Δt)2􏽨 􏽩€ui + β(Δt)2􏽨 􏽩€ui+1,

(6)

where β and c are integration constants that determine the
method’s precision and stability. Te Newmark-β method
remains stable if the time step satisfes the following
condition:

Δt
Tn

≤
1

π
�
2

√
1

������
c − 2β

􏽰 . (7)

Continuing to rearrange equation (6), we obtain

€ui+1 �
1

β(Δt)2
ui+1 − ui( 􏼁 −

1
βΔt

_ui −
1
2β

− 1􏼠 􏼡€ui,

_ui+1 �
c

βΔt
ui+1 − ui( 􏼁 −

c

β
− 1􏼠 􏼡 _ui −

Δt
2

c

β
− 2􏼠 􏼡€ui.

(8)

By substituting (8) into (5), we derive an equation that
contains only the unknown ui+1, which can be solved to
obtain ui+1. Further substituting ui+1 into equation (8), we
can determine _ui+1 and €ui+1, thereby accomplishing the
computation for a single time step.

To utilize the Newmark-β method for evaluating the
wear damage of BEJs, a sequential approach is established.
Tis approach, based on the proposed Transformer-
enhanced vehicle speed prediction model and TDA, com-
prises four major steps:

(i) Step 1. Calibrate the Monte Carlo simulators and
train the Transformer-enhanced model using ob-
served data. Ten, obtain TLS results for the
specifed time range.

(ii) Step 2. Load the TLS results onto the nodes of the FEM
according to the loading steps and locations. If there
are no nodes at the loading location, distribute the load
between the two adjacent nodes in inverse proportion.

(iii) Step 3. Import the loading data into the ANSYS
software in a step-by-step manner and initiate TDA
starting from the frst step.

(iv) Step 4. Extract the longitudinal displacement of the
expansion joint at each step. Ten, calculate cu-
mulative displacements to evaluate the wear damage
of the BEJ.

3. Experimental Setup

3.1. Bridge Information. An on-site experiment was con-
ducted on the Runyang Suspension Bridge (RSB), a bridge
that spans the Yangtze River in China. Te RSB is a long-
span suspension bridge, featuring a fat steel box girder and

two H-shaped reinforced concrete pylons. Te bridge in-
cludes a central span of 1,490m, two side spans of 470m, and
two pylons with a height of 207m. Te design incorporates
180 suspenders and 2 central buckles to connect the main
cable with the bridge deck. Additionally, the typical cross
section of the girder measures 38.7m in width and 3m in
height. Te deck accommodates six standard lanes and two
emergency lanes, with widths of 3.75m and 3m, re-
spectively. Figure 6 provides a depiction of the overall layout
of the RSB.

3.2.VehicleTrajectoryReconstruction. Upon the installation
of the trafc load monitoring system, vehicle trajectory
data can be collected across the entire bridge deck at each
time point. However, due to factors such as perspective
distortion, occlusion, and other imaging inaccuracies,
positional measurement errors may arise. Tese errors can
adversely afect the modeling performance of data-driven
approaches [50]. To mitigate this, we employ four pro-
cessing steps to reconstruct the raw speeds captured by the
monitoring system, based on previous research by
Montanino [51].

Firstly, extreme positional errors, referred to as “out-
liers,” are eliminated by substituting these data points with
synthetic ones. Secondly, random noise, which manifests as
excessive peaks and valleys, is mitigated by applying a low-
pass digital flter. Tirdly, unreasonable local trajectories are
examined and reconstructed using the physically consistent
rule of the vehicle. Lastly, residual noise is eradicated by
reapplying the low-pass flter.

An example of trajectory reconstruction is illustrated in
Figure 7(a), with the corresponding accelerations of the
vehicle shown in Figure 7(c). Simultaneously, the relative
speeds and gaps between the vehicle and its leading vehicle
are displayed in Figures 7(b) and 7(d). Te reconstructed
speeds exhibit enhanced consistency and reasonableness
compared to the raw data, thereby contributing to the
improved performance of subsequent training of data-
driven TLS models.

3.3. Finite Element Modeling and Verifcation. Upon ac-
quiring the TLS data, a precise FEM of the RSB is required to
compute the time-sequence displacements and further
evaluate the BEJ. A FEM of the RSB is constructed using
ANSYS software, as depicted in Figure 8. Concretely, the
Beam4 element type is employed for modeling the girder,
pylons, and central buckles. Te Link10 element type is used
for the main cables and suspenders, while the Mass21 ele-
ment type represents the weights from the pavements and
diaphragms. Lastly, the Combin37 element type is utilized
for the BEJs at both ends of the girder.

Specifcally, the Combin37 element type is designed to
simulate a nonlinear spring with force-speed characteristics,
with the damping force calculated using equation (9). Based
on prior research [52], we set c � 3750 kN · (m · s)− α and
α � 0.4.

f � c|v|
αsgn(v), (9)

Structural Control and Health Monitoring 7
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where c represents the damping factor, α is a constant ex-
ponent, sgn is a sign function indicating the direction of the
damping force, and v denotes the relative speed between the
two nodes of the element.

Te FEM of the RSB is validated in both static and
dynamic aspects. Initially, the longitudinal stifness of the
FEM is compared with data from an early static test [52].Te
static test contains two static loading cases, achieved by
positioning 52 identical trucks, each weighing 30.0 t. As
listed in Table 1, the longitudinal displacements of BEJs

calculated by the FEM align well with those from the
static test.

In addition, the dynamic behavior of the established
FEM has been computed, with the results presented in
Table 2. Te in situ testing results from a previous study
[53] serve as the measured frequencies for error evalu-
ation. Te results indicate that the modal parameters of
the FEM align well with the measured values, including
both the nature of modes and their corresponding
frequencies.
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4. Results and Discussion

4.1. Transformer-Enhanced Model Training and Evaluation.
For model training, the PyTorch framework is utilized to
conduct all deep learning-based experiments. Te experi-
ments are performed on a desktop PC equipped with an
Intel® Core(TM) i7-6700k CPU, 32GB RAM, and an
NVIDIA GeForce GTX 1080Ti GPU, with the support of
CUDA v10.2 and cuDNN v7.6.5.

In terms of setting training parameters, we set the
learning rate to 0.001. Te batch size for each update is set to
128, considering memory cost. As speed prediction is a re-
gression problem, the dropout rate is set to 0. Te total
number of epochs for the training process is initially set to
100, with early stopping of model training occurring if the
validation loss does not decrease after 10 epochs. Further-
more, by splitting the car-following pairs, we allocate the
training set, validation set, and test set in a ratio of 0.70 :
0.15 : 0.15.

Subsequently, for evaluation, we employ the mean
square error (MSE) and mean absolute error (MAE) metrics,
defned in equation (10). MSE is used to visualize the trend of
loss value during training, while MAE is applied to the test
set to evaluate the precision of the model after training.

MSE �
1
N

􏽘

N

j�1
􏽢vj − vj􏼐 􏼑

2
,

MAE �
1
N

􏽘

N

j�1
􏽢vj − vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(10)

where N represents the number of samples and 􏽢vj and vj

denote the predicted and actual speed of the j-th vehicle,
respectively.

To optimize the performance of the Transformer-
enhanced model, we implement hyperparameter optimi-
zation. In this study, we select the number of layers,

historical inputs, and predicted outputs for optimization, as
they are the primary factors constituting the deep learning
model. Tus, training and evaluation are conducted for each
combination of hyperparameters, with the results depicted
in Figure 9. Te fnal selected parameters are listed below,
and the model achieved a minimum MAE of 0.1738m/s.

(i) N (number of layers): 3
(ii) T (historical inputs): 40
(iii) L (prediction outputs): 18

During the training and evaluation phase, the chosen
hyperparameters are utilized to monitor the model’s per-
formance. Te loss curve, as illustrated in Figure 10, dem-
onstrates a consistent decrease and convergence of loss
values for both the training and validation sets. Tis trend
signifes an enhancement in the model’s ability to predict
speed. Notably, the fnal loss values for the training and
validation sets are remarkably similar, suggesting that the
model is not overftting.

4.2. Comparison of Data-Driven TLS Models

4.2.1. Performance Comparison for Single-Step Prediction.
Previous studies have utilized machine learning and deep
learning models such as SVM [54], ANN [55], LSTM [56],
GRU [57], and Seq2Seq [58] to tackle the time-sequence
prediction problem of subject vehicles.

To evaluate the performance of various data-driven
models, we conduct a comparison of the prediction errors
on the test set between these models and the Transformer-
enhanced model. Tese comparative models are trained on
the same training and validation set as the Transformer-
enhanced model, with their hyperparameters optimized to
ensure the best possible results. Te MAE of all models is
detailed in Table 3.

As indicated by the table, the Transformer-enhanced
model achieves a lower error rate compared to the other

Table 1: Verifcation of the static behavior of the established FEM.

Static test (mm) FEM calculation (mm) Relative error (%)
1st case North end 463.10 422.03 −8.9
1st case South end 472.00 437.81 −7.2
2nd case North end 10.50 9.40 −10.5
2nd case South end 7.30 8.29 13.6

Table 2: Verifcation of the dynamic behavior of the established FEM.

Mode no. Nature of mode Measured frequency (Hz) FEM analysis (Hz) Error (%)
1 1st symmetric lateral 0.0586 0.0534 −8.9
2 1st anti-symmetric vertical 0.0877 0.0884 0.8
3 1st anti-symmetric lateral 0.1221 0.1228 0.6
4 1st symmetric vertical 0.1587 0.1504 −5.2
5 2nd symmetric vertical 0.1685 0.1668 −1.0
6 2nd anti-symmetric vertical 0.1880 0.1877 −0.2
7 1st symmetric torsional 0.2417 0.2307 −4.6
8 1st anti-symmetric torsional 0.3077 0.2862 −7.0
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models. Moreover, due to their ability to extract more
profound features from sequences, deep learning-based
time-sequence models outperform machine learning-
based models. At the same time, the Seq2Seq model dem-
onstrates superior performance over the original GRU and
LSTM models.

4.2.2. Performance Comparison for Full-Bridge Evolution
Prediction. Prior to its application in TLS, the trained
Transformer-enhanced model undergoes further validation
by comparing its trajectory prediction with the observed
data. Specifcally, for the tested subject vehicle, the positions
of its leading vehicle are maintained identical to the actual
observed data. Meanwhile, the speeds of the subject vehicle
are predicted by the Transformer-enhanced model at each
time step, with the latest vector (vi,Δv,Δx)T being updated
after each prediction. Tus, the updated positions of the
subject vehicle can be computed recursively by using the
following equation:

􏽢x(t + 1) � 􏽢x(t) + 􏽢v(t + 1)Δt +
1
2

(􏽢v(t + 1) − 􏽢v(t))Δt2.

(11)

Te trained deep learning models are employed for
predicting the trajectory of each subject vehicle in the test
set. Concurrently, the MAE of the vehicle speed at each step
for each subject vehicle is calculated and presented in
Table 4. Te results revealed that the errors of the entire
trajectory profles are larger than the errors of scattered
samples from Table 3, considering the cumulative efect.
Nevertheless, the trained Transformer-enhanced model
outperforms the others and achieves the lowest error at
0.4376m/s.

To provide a visual representation of the model evalu-
ation process, an example with errors similar to the MAE in
Table 4 is selected. As a result, the trajectory profle of vehicle
ID 1401 is chosen and depicted in Figure 11, which includes
the speed, speed diference, acceleration, and gap curves of
the car-following pair. As observed from Figures 11(a),
11(b), and 11(d), all trained deep learning models are ca-
pable of reconstructing the time-sequence trends of the
subject vehicle. Furthermore, by examining the acceleration

values in Figure 11(c), it is evident that the Seq2Seq and
Transformer-enhanced models exhibit less oscillation than
the LSTM and GRU models. Te Transformer-enhanced
model provides a smoother and more consistent output with
the observed data compared to other models.

4.3. TLS Based on Transformer-Enhanced Model and Monte
Carlo Sampling. Figure 1 illustrates the process following
the calibration of the Monte Carlo simulators and the
training of the Transformer-enhanced model, which enables
the implementation of the microscopic TLS for subsequent
applications.

In this study, a one-hour TLS is conducted, producing
spatial-temporal trafc load data for the entire bridge.
Specifcally, the Monte Carlo simulators generate vehicles
for each lane through random sampling, based on statistical
features extracted from the WIM data. Te Transformer-
enhanced model then predicts the speeds of each generated
vehicle in a step-by-step manner until they eventually exit
the bridge deck.

Figure 12 displays three frames of the simulated trafc
loads, with the gross weights of the vehicles indicated for
better understanding. Te trafc loads consist of all car-
following pairs across the entire bridge deck. Te proposed
TLS has demonstrated its capability for high-precision
modeling and simulation of the actual observed trafc
load fow. For instance, the pair highlighted in the blue box
accurately emulates the deceleration behavior of the subject
vehicle.

In addition to the microscopic behaviors of car-
following pairs, the macroscopic characteristics of the TLS
method have been validated through a comparison of vehicle
speeds derived from the TLS data and the observed data. For

Table 3: Comparative performance of data-driven models for speed prediction.

Model Detailed information MAE (m/s)

SVM Kernel: radial basis function 0.4321Regularization parameter: 5.0

ANN Nodes in hidden layer #1: 64 0.3241Nodes in hidden layer #2: 32

LSTM Nodes in hidden layer #1: 32 0.2463Nodes in hidden layer #2: 16

GRU Nodes in hidden layer #1: 32 0.2316Nodes in hidden layer #2: 8

Seq2Seq with GRU Encoder GRU: nodes in hidden layer #1: 32, nodes in hidden layer #2: 32 0.1961Decoder GRU: nodes in hidden layer #1: 32, nodes in hidden layer #2: 16

Transformer Encoder Transformer layers: 3 0.1738Decoder Transformer layers: 3

Table 4: Performance comparison of deep learning models for
full-bridge trajectory prediction.

Model MAE (m/s)
LSTM 1.4089
GRU 0.8069
Seq2Seq with GRU 0.6395
Transformer 0.4376
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a more quantitative analysis, we calculated the 25%, 50%,
and 75% quantile values of vehicle speeds, which are detailed
in Table 5. Overall, the vehicle speeds generated by the TLS
method show a strong alignment with the observed data,
especially in Lane #3, where the errors are less than 4%. Te
maximum error observed is 11.1% of the 25% quantile value
in Lane #5. Considering the signifcantly lower number of
vehicles and samples in Lane #5 used for model training
compared to Lane #3, it is expected that these errors could be
substantially minimized by enlarging the dataset in future
studies.

4.4. CumulativeDisplacements andWearDamage Evaluation
ofBEJ. Te simulated one-hour trafc load simulation (TLS)
data are incorporated into the established fnite element
model (FEM) with a time step of 0.1 s. By adhering to the
proposed four-step procedure, the time histories of bridge
expansion joint (BEJ) displacement are computed and il-
lustrated in Figure 13. Subsequently, the cumulative dis-
placement of the BEJ is determined, yielding a value of
3.684m for the simulated case. In reference to the critical
value of cumulative displacement of the polytetrafuoro-
ethylene (PTFE) plate, the wear life of an intact PTFE plate S

Sp
ee

d 
(m

/s
)

18

19

20

21

22

23

24

25

10 20 30 40 50 600
Time (s)

Observed
LSTM (MAE=1.4450)
GRU (MAE=0.7803)
Seq2Seq with GRU (MAE=0.6514)
Transformer (MAE=0.4857)

(a)
Sp

ee
d 

di
ffe

re
nc

e (
m

/s
)

10 20 30 40 50 600
Time (s)

-5

-4

-3

-2

-1

0

1

2

Observed
LSTM
GRU

Seq2Seq with GRU
Transformer

(b)

Ac
ce

le
ra

tio
n 

(m
/s

2 )

10 20 30 40 50 600
Time (s)

-1.5

-1.0

-0.5

0.0

0.5

1.0

Observed
LSTM
GRU

Seq2Seq with GRU
Transformer

(c)

G
ap

 (m
)

10 20 30 40 50 600
Time (s)

30

40

50

60

70

80

Observed
LSTM
GRU

Seq2Seq with GRU
Transformer

(d)

Figure 11: Trajectory profle of vehicle-1401. (a) Speed (v) curves. (b) Speed diference (Δv) curves. (c) Acceleration (dv/dt) curves. (d) Gap
(Δx) curves.

Structural Control and Health Monitoring 13



is designed to be 133 km [8]. By applying the cumulative
damage rule, the wear damage incurred during this hour can
be quantifed as 0.0028%.

Furthermore, 24-hour TLS and FEM loading are per-
formed, based on the recorded trafc volume of the RSB on
a specifc day [59]. Te hourly trafc weight is also docu-
mented, as shown in Figure 14(a). It can be observed that the
trend of cumulative displacement of the BEJ and the hourly
trafc weight are highly consistent, both exhibiting peak
values during morning and evening rush hours and low
values during the early morning of-peak hours. Te hourly
cumulative wear damage curve is also illustrated in
Figure 14(b). It is evident that, considering this trafc load
fow as the average level, the PTFE plate of the BEJ has
a typical usage time of 1/(6.48571 × 10− 4) � 1542 days.

4.5. Relationship Analysis between Trafc Weight and Cu-
mulative Displacement. While the TDA based on TLS and
FEM ofers an accurate evaluation of the wear performance
of the BEJ, this procedure can be time-intensive. For more
predictive and efective maintenance of BEJs, it is essential to
examine the relationships between cumulative displacement
and key parameters, necessitating a simplifed surrogate
model designed for engineering applications.
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Figure 12: TLS on the entire bridge deck.

Table 5: Quantitative comparison of speed distribution between TLS data and observed data.

Lane Item 25% quantile value 50% quantile value 75% quantile value

1
Observed data (m/s) 15.87 18.23 20.45

TLS data (m/s) 16.33 18.59 20.27
Relative error (%) 2.9% 2.0% −0.9%

2
Observed data (m/s) 19.20 21.91 24.60

TLS data (m/s) 18.01 20.54 22.89
Relative error (%) −6.2% −6.3% −6.9%

3
Observed data (m/s) 22.45 24.42 26.31

TLS data (m/s) 21.64 24.69 26.28
Relative error (%) −3.6% 1.1% −0.1%

4
Observed data (m/s) 22.07 23.87 25.61

TLS data (m/s) 21.38 22.35 23.97
Relative error (%) −3.1% −6.4% −6.4%

5
Observed data (m/s) 19.39 21.83 24.02

TLS data (m/s) 17.24 20.01 22.48
Relative error (%) −11.1% −8.4% −6.4%

6
Observed data (m/s) 14.99 17.07 19.50

TLS data (m/s) 14.94 16.25 17.86
Relative error (%) −0.3% −4.8% −8.4%
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Consequently, we conduct hundreds of simulations with
varying trafc volumes. Specifcally,Monte Carlo sampling and
the Transformer-enhanced deep learningmodel are utilized for
vehicle generation and trafc evolution prediction, respectively,
as depicted in Figure 1. Cumulative displacements of the BEJ
are then obtained through comprehensive TDA. Te scatter
plot, displayed in Figure 15, reveals a robust linear relationship
between the two variables. Te goodness of ft for the linear
model, represented by R-squared, achieved a value of
R2 � 0.96619. Tis ftted model can act as an accurate sur-
rogate model, facilitating rapid evaluation of BEJs’ long-term
performance in real-world engineering scenarios.

Conventionally, only Monte Carlo sampling is employed
in the TLS procedure, which assumes that the generated
vehicles move at a uniform speed along the road centerline

to form TLS results. Tis method has been widely applied in
previous studies [8, 21]. For comparison purposes, we also
implemented an experiment involving hundreds of simu-
lations based on this method. Te results are shown in the
scatter plot in Figure 16, indicating that the linear re-
lationship still holds. However, the goodness of ft for the
model is R2 � 0.86463, and the slope is less than that of the
surrogate model obtained from the deep learning model
proposed in this paper.

In conclusion, our proposed Transformer-enhanced
deep learning model takes into account the interactions
between vehicles, thereby refecting the actual spatial-
temporal trafc load with high fdelity. Terefore, the sur-
rogate model based on our proposed Transformer-enhanced
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Figure 14: 24-hour analysis of cumulative displacement and wear damage of BEJ. (a) Hourly trafc weight and cumulative displacement.
(b) Cumulative wear damage by cumulative displacement.

BE
J c

um
ul

at
iv

e d
isp

la
ce

m
en

t (
m

)

Equation y = a + b*x
Intercept 0.25656 ± 0.05313
Slope 6.94182E-4 ± 1.24957E-
Residual Sum of Squares 4.3831
R-Square 0.96619

2000 3000 4000 5000 6000 7000 80001000
Hourly traffic weight (t)

1

2

3

4

5

6

Results of TLS by Deep-learning model
Fitting curve

Figure 15: Relationship between hourly trafc weight and BEJ
cumulative displacement (trafc evolution by deep learning).

BE
J c

um
ul

at
iv

e d
isp

la
ce

m
en

t (
m

)

Equation y = a + b*x
Intercept 0.37541 ± 0.11032
Slope 6.81452E-4 ± 2.59457E-5
Residual Sum of Squares 18.89693
R-Square 0.86463

2000 3000 4000 5000 6000 7000 80001000
Hourly traffic weight (t)

1

2

3

4

5

6

Results of TLS by Monte-Carlo sampling
Fitting curve

Figure 16: Relationship between hourly trafc weight and BEJ
cumulative displacement (trafc evolution by consistent-speed
assumption).

Structural Control and Health Monitoring 15



method outperforms the conventional Monte Carlo sam-
pling method with a consistent speed assumption and ex-
hibits more conservative damage results in this study.

5. Conclusions

High-fdelity TLS is crucial for the precise evaluation of BEJs
and other components of long-span bridges. Tis study
introduces a novel methodology for a more accurate eval-
uation of BEJ wear due to trafc loads, employing a deep
learning-based TLS approach. A deep learning time-
sequence model, constructed using Transformer modules,
is designed to predict microscopic trafc evolution, thus
generating high-accuracy trafc loads on the bridge deck for
wear evaluation. Subsequently, the cumulative displace-
ments of BEJs are determined through FEM loading, fa-
cilitating the assessment of BEJ wear damage. Additionally,
an experimental investigation on an in situ bridge has been
conducted, leading to the following conclusions:

(1) By utilizing a large-feld trafc load monitoring
system, we gathered comprehensive bridge trafc
load data and reconstructed vehicle trajectories,
thereby minimizing systematic measurement inac-
curacies. As a result, a custom benchmark dataset for
trafc load evolution was created for the frst time.

(2) A deep learning model incorporating the attention
mechanism and Transformer modules is developed.
Tis time-sequenced model predicts the speed his-
tories of a vehicle in trafc fow, enabling the pre-
diction of the entire trafc evolution in TLS. Te
trained model achieved an MAE of 0.1738m/s and
0.4376m/s for single-instance and full-bridge speed
prediction, respectively. Te performance of our
model surpasses previous models such as GRU [57],
LSTM [39, 40], and Seq2Seq [42].

(3) Our model was integrated with a Monte Carlo
sampling simulator for vehicle generation, estab-
lishing a TLS method for high-fdelity spatial-
temporal trafc loading. Transient dynamic analy-
sis was utilized to derive accurate time histories of
BEJ displacement.Te cumulative displacement over
24 hours was computed as 6.48571 × 10− 4. Sub-
sequently, a surrogate model was ftted to represent
the linear relationship between hourly trafc weight
and cumulative displacement. Tis model achieved
an R-squared value of 0.96619, indicating superior
performance compared to previous methods, which
had an R-squared value of 0.86463.

Te methodology proposed in this study provides
a comprehensive and precise approach for evaluating the
wear of BEJs. Looking ahead, our future work will focus on
expanding the TLS dataset to encompass a variety of en-
vironmental and trafc conditions. We also plan to make
this dataset publicly accessible to facilitate further research
in this feld. Additionally, we aim to further enhance the
accuracy of the deep learning TLS method for the perfor-
mance evaluation of other bridge components, such as
suspenders and cables.

Data Availability

Te data used to support the fndings of this study can be
obtained from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was fnancially supported by the National Natural
Science Foundation of China (grant nos. 52208198,
52238005, 52192663, and 51978514), National Key Research
and Development Program of China (grant no.
2021YFF0501004), and Fundamental Research Funds for the
Central Universities (grant no. 22120230569).

References

[1] J. Marques Lima and J. de Brito, “Inspection survey of 150
expansion joints in road bridges,” Engineering Structures,
vol. 31, no. 5, pp. 1077–1084, 2009.

[2] L. M. Chang and Y. J. Lee, “Evaluation of performance of
bridge deck expansion joints,” Journal of Performance of
Constructed Facilities, vol. 16, no. 1, pp. 3–9, 2002.

[3] T. Guo, J. Liu, and L. Y. Huang, “Investigation and control of
excessive cumulative girder movements of long-span steel
suspension bridges,” Engineering Structures, vol. 125,
pp. 217–226, 2016.

[4] J. H. Hu, L. H. Wang, X. P. Song, Z. H. Sun, J. F. Cui, and
G. P. Huang, “Field monitoring and response characteristics
of longitudinal movements of expansion joints in long-span
suspension bridges,” Measurement, vol. 162, Article ID
107933, 2020.

[5] G. M. Wu, D. H. Yang, T. H. Yi, H. N. Li, and H. Liu, “Sliding
life prediction of sliding bearings using dynamic monitoring
data of bridges,” Structural Control and Health Monitoring,
vol. 27, no. 5, 2020.

[6] X. Xu, M. C. Forde, A. Caballero, Y. Ren, and Q. Huang,
“Cost-efective maintenance policy for sliding surfaces of
bridge bearings using a gamma stochastic process for fore-
casting,” Structural Control and Health Monitoring, vol. 2023,
Article ID 5751636, 15 pages, 2023.

[7] Y. Q. Ni, X. G. Hua, K. Y.Wong, and J. M. Ko, “Assessment of
bridge expansion joints using long-term displacement and
temperature measurement,” Journal of Performance of Con-
structed Facilities, vol. 21, no. 2, pp. 143–151, 2007.

[8] T. Guo, J. Liu, Y. F. Zhang, and S. J. Pan, “Displacement
monitoring and analysis of expansion joints of long-span steel
bridges with viscous dampers,” Journal of Bridge Engineering,
vol. 20, no. 9, Article ID 04014099, 2015.

[9] Q. Xia, J. Zhang, Y. D. Tian, and Y. F. Zhang, “Experimental
study of thermal efects on a long-span suspension bridge,”
Journal of Bridge Engineering, vol. 22, no. 7, Article ID
04017034, 2017.

[10] Q. Xia, Y. Xia, H. P. Wan, J. Zhang, and W. X. Ren, “Con-
dition analysis of expansion joints of a long-span suspension
bridge through metamodel-based model updating consider-
ing thermal efect,” Structural Control and Health Monitoring,
vol. 27, no. 5, 2020.

[11] C. Q. Miao, Y. Deng, Y. L. Ding, and A. Q. Li, “Damage
alarming for bridge expansion joints using novelty detection

16 Structural Control and Health Monitoring



technique based on long-term monitoring data,” Journal of
Central South University, vol. 20, no. 1, pp. 226–235, 2013.

[12] R. B. Malla, M. R. Shrestha, M. T. Shaw, and S. B. Brijmohan,
“Temperature aging, compression recovery, creep, and
weathering of a foam silicone sealant for bridge expansion
joints,” Journal of Materials in Civil Engineering, vol. 23, no. 3,
pp. 287–297, 2011.

[13] E. McCarthy, T. Wright, J. E. Padgett, R. DesRoches, and
P. Bradford, “Development of an experimentally validated
analytical model for modular bridge expansion joint behav-
ior,” Journal of Bridge Engineering, vol. 19, no. 2, pp. 235–244,
2014.

[14] P. Di Mascio, G. Loprencipe, L. Moretti, L. Puzzo, and
P. Zoccali, “Bridge expansion joint in road transition curve:
efects assessment on heavy vehicles,” Applied Sciences, vol. 7,
no. 6, p. 599, 2017.

[15] Z. Sun, Z. L. Zou, and Y. F. Zhang, “Utilization of structural
health monitoring in long-span bridges: case studies,”
Structural Control and Health Monitoring, vol. 24, no. 10,
p. e1979, 2017.

[16] Y. Q. Ni, Y. W. Wang, and C. Zhang, “A bayesian approach
for condition assessment and damage alarm of bridge ex-
pansion joints using long-term structural health monitoring
data,” Engineering Structures, vol. 212, Article ID 110520,
2020.

[17] Y. M. Zhang, H. Wang, Y. Bai, J. X. Mao, X. Y. Chang, and
L. B. Wang, “Switching bayesian dynamic linear model for
condition assessment of bridge expansion joints using
structural health monitoring data,” Mechanical Systems and
Signal Processing, vol. 160, Article ID 107879, 2021.

[18] Z. H. Chen, X. W. Liu, G. D. Zhou, H. Liu, and Y. X. Fu,
“Damage detection for expansion joints of a combined
highway and railway bridge based on long-term monitoring
data,” Journal of Performance of Constructed Facilities, vol. 35,
no. 4, Article ID 04021037, 2021.

[19] Z. Sun, M. J. Sun, D. M. Siringoringo, Y. Dong, and X. M. Lei,
“Predicting bridge longitudinal displacement frommonitored
operational loads with hierarchical cnn for condition as-
sessment,”Mechanical Systems and Signal Processing, vol. 200,
Article ID 110623, 2023.

[20] Z.W.Wang, X. F. Lu,W.M. Zhang, V. C. Fragkoulis, M. Beer,
and Y. F. Zhang, “Deep learning-based reconstruction of
missing long-term girder-end displacement data for sus-
pension bridge health monitoring,” Computers & Structures,
vol. 284, Article ID 107070, 2023.

[21] G. L. Li, W. S. Han, X. Chen, T. Guo, Q. Xie, and Y. G. Yuan,
“Wear evaluation on slide bearings in expansion joints based
on cumulative displacement for long-span suspension bridge
under monitored trafc fow,” Journal of Performance of
Constructed Facilities, vol. 34, no. 1, Article ID 04019106,
2020.

[22] A. O’Connor and E. J. O’Brien, “Trafc load modelling and
factors infuencing the accuracy of predicted extremes,”
Canadian Journal of Civil Engineering, vol. 32, no. 1,
pp. 270–278, 2005.

[23] A. Getachew and E. J. Obrien, “Simplifed site-specifc trafc
load models for bridge assessment,” Structure and in-
frastructure engineering, vol. 3, no. 4, pp. 303–311, 2007.

[24] B. Enright and E. J. O’Brien, “Monte Carlo simulation of
extreme trafc loading on short and medium span bridges,”
Structure and infrastructure engineering, vol. 9, no. 12,
pp. 1267–1282, 2013.
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