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Modal parameters are used as safety assessment indicators for evaluating the structural integrity of buildings in various ways. In
particular, the modal damping ratio plays a crucial role in accurately predicting the serviceability and safety of buildings, starting
from the initial design stage. However, the identification results of the modal damping ratio can become unstable due to
measurement time, initial configuration conditions used in the analysis, and nonstationary responses included in the structural
response. To address the instability issue, this study proposes a long short-term memory-based frequency domain decomposition
(FDD-LSTM) method. The FDD-LSTM method utilizes the acceleration response of the building as input data and the modal
damping ratio obtained from the FDD method as output data, constructing an LSTM network model for the relationship between
the acceleration response and modal damping ratio. The FDD-LSTM method exhibited a discrepancy of less than 0.02% compared
to the reference value of the modal damping ratio obtained through free vibration response. Furthermore, when applied to data
acquired from an actual building, the method demonstrated a variance of approximately 5%. The proposed FDD-LSTM method is
validated for stability performance using a three-degree-of-freedom numerical analysis model, a 3-story steel frame structure
model, and a 117-story high-rise building. The FDD-LSTM method, trained on a large dataset, enables generalized estimation and
addresses instability issues related to modal damping ratio.

1. Introduction

With the increasing construction of large-scale and supertall
buildings, the adoption of structural health monitoring
(SHM) systems to assess and monitor the safety of various
structural components is rapidly increasing [1-3]. In SHM
systems, building safety can be evaluated by installing ad-
vanced sensors on major structural components to observe
changes in responses. The structural response data obtained
through advanced sensors in SHM systems contains in-
formation that can be extracted and used to evaluate building
safety [4-8]. Although various techniques have been de-
veloped to extract safety information from structural re-
sponses [9-11], system identification (SI) technology is
generally used as a representative method. The indices
identified by SI technology typically include modal param-
eters, including natural frequency, mode shape, and modal
damping ratio, with these parameters used as indicators of

building safety [12-16]. Changes in natural frequency can be
used as an indicator to determine whether building safety is
deteriorating [17, 18], while changes in mode shape can be
used as an indicator to identify locations at which building
safety is deteriorating [19, 20]. Furthermore, the modal
damping ratio serves as an indicator for determining the
dynamic response of a structure during the initial design
stage, predicting the system’s response to external loads such
as earthquakes and wind, and allowing for preassessing the
usability of the building to be constructed and the safety of the
structure under load. SI technology, which provides impor-
tant safety evaluation indicators, has been actively used in
various industrial fields where safety issues are important due
to vibrations, such as civil, mechanical, aviation, and ship-
building industries [21-23].

SI research for identifying modal parameters has mainly
evolved based on frequency domain decomposition (FDD)
methods that analyze the structural responses in the
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frequency domain [24] and stochastic subspace identifica-
tion (SSI) methods that analyze them in the time domain
[25-28]. The FDD method identifies the natural frequency
and mode shape based on the power spectral density (PSD)
function of the obtained raw data and identifies the modal
damping ratio by performing an inverse Fourier transform
on the identified mode frequency components. The SSI
method analyzes the raw data to obtain the covariance,
constructs a Toeplitz matrix, acquires system matrices A and
C through this process, and performs decomposition to
identify modal parameters. Both methods represent the
frequency and time domains, and SI techniques based on
these methods have been developed recently [13, 14, 29, 30].
Kim et al. [31] developed an SI method with computational
time advantages using filtered response orthogonality, in
which the complex decomposition procedures associated
with the FDD method were not required. Park and Oh [32]
proposed an SI method that can identify modal parameters
in real-time for tall buildings using a filtered response as
a target. Yun et al. [33] proposed a minimum condition-
based SI method, considering that identification accuracy
can be reduced due to the initial setting parameters of FDD.
In addition, Xu et al. [34] suggested an SI method that
removes harmonic components to use the data, considering
that the identification of natural frequencies can be limited
due to harmonic components in raw data.

Meanwhile, with the recent developments in system
identification (SI) technology, an increasing number of
studies have applied deep learning (DL) models [35-37]. DL
models use learning-based estimation algorithms between
input and output, demonstrating excellent applicability,
versatility, and high accuracy performance in various fields,
such as image recognition, natural language processing
(NLP), speech recognition, and time series prediction
[38-40]. Furthermore, DL models acquire information of
input data features and discern intricate patterns and re-
lationships, enabling them to make predictions, thus facili-
tating the modeling of complex nonlinear relationships that
are challenging to approach mathematically. As learning
occurs in an end-to-end manner, models can be simpler and
more efficient; thus, high performance can be expected. Re-
cent efforts have focused on addressing computational time
and complexity issues in the SI field using DL models. Kim
and Sim [41] developed a DL algorithm that can solve
computational time problems by searching for modal fre-
quency peaks in frequency graphs with noise using a region-
based convolutional neural network (CNN). Yang et al. [42]
proposed a vision-based modal frequency identification
technique using CNN and long short-term memory (LSTM).
They developed an efficient method for modal parameter
identification using the cantilever beam’s frame image as
input and the natural frequency as output. Mugnaini et al. [43]
proposed an SI method that eliminates various spurious
modes that occur in the SSI method using statistical principles
and machine learning (ML), providing an approach that is
objective and completely independent from user experience.
Liu et al. [44] proposed a DNN-based modal parameter es-
timation method, which structured the acceleration response,
modal response, and mode shape as input/output
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relationships. Subsequently, Liu et al. [29] suggested an ef-
fective method to address the computational complexity issue
by training the future/past output matrix of the SSI method as
input and system parameters and a matrix as output using
a DNN. In summary, a wide range of DL models, such as ML,
DNN, CNN, and LSTM, have been applied in SI technology,
leading to ongoing research on identifying modal parameters.

Despite the various SI studies conducted, the problem of
identifying modal parameters lies in the instability of
identifying the modal damping ratio [45]. Magalhdes et al.
[45] showed that in the identification of modal damping
ratio, FDD-based modal parameter identification becomes
less stable than that of natural frequency results. There can
be various reasons why the identification stability of the
modal damping ratio is not as good as that of the natural
frequency, but generally, there are two main causes. First, the
use of insufficient measurement data may lead to poor
damping ratio results [33, 45]. Yun et al. [33] revealed that
because the FDD method assumes ambient vibration re-
sponses as white noise input, as the measurement time
decreases, modes are not sufficiently excited, the amplitude
of the natural frequency decreases, and the identification
accuracy of the modal damping ratio reduces. Second, the
influence of aerodynamic damping may lead to poor modal
damping ratio results. Vortex-induced vibration in the di-
rection perpendicular to the wind direction due to vortex
shedding can cause resonance in the structure through lock-
in phenomena, leading to aerodynamic damping exhibiting
a negative damping ratio [46]. Consequently, the identifi-
cation of the structure’s modal damping ratio may become
more unstable [45, 47]. Other factors that may reduce the
identification accuracy of the modal damping ratio include
nonstationary vibration present in the measurement data
and sensor measurement conditions such as sampling fre-
quency. Various hyperparameters used in the FDD method
(such as frequency resolution, number of fast Fourier
transform (NFFT), window function, and overlap) may also
affect the results [48]. Thus, the identification of the modal
damping ratio can become more unstable than that of the
natural frequency and mode shape due to various reasons
[33, 45].

Considering the aforementioned issues in identifying the
modal damping ratio, the LSTM algorithm can be a good
alternative to address these problems. The LSTM algorithm
is a recurrent neural network (RNN)-based model developed
for learning time series data [49-52]. It features memory
cells and gates to address the long-term dependency
problem that arises as the length of the data increases.
Therefore, the LSTM model is useful for performing gen-
eralized predictions, even for data with significant de-
viations, by capturing the long-term temporal correlations in
the data, suggesting that stable estimation performance can
be expected even when the training data contain noise,
outliers, or abnormal responses [42]. In fact, various studies
have shown that the LSTM model provides stable estimation
results even in the presence of noise or outlier data [52, 53].
Thus, the stability properties of LSTM imply that it can solve
the instability problem while identifying the modal damping
ratio that occurs in the FDD method. In addition,
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considering the ability of the LSTM model to handle long-
term dependencies, such as in time series data and time-
history data, it is considered a reasonable approach for SI
techniques that require large amounts of time-history data.
Moreover, when considering the complex calculation pro-
cess of the FDD method, which uses transform functions
and decomposition methods and incurs increased compu-
tational costs [31, 33], the development of a simplified and
efficient LSTM model-based SI technique that directly learns
the relationship between acceleration responses acquired
from structures and modal parameters is necessary.

This study aims to resolve the instability issue when
identifying the modal damping ratio that may arise in the
FDD method by proposing an LSTM-based frequency do-
main decomposition (FDD-LSTM) method that combines
FDD with the LSTM model. The FDD-LSTM method uses
the acceleration response, which can be acquired from the
global behavior of a building, as input data for the LSTM
model and outputs the modal parameters. The relationship
between input and output is configured as a sequence-to-one
LSTM model that receives time series data as input and
returns a single output result. This paper is structured as
follows. Section 2 provides a brief theoretical introduction to
the FDD method and describes the LSTM model. Section 3
analyzes the standard deviation of the proposed FDD-LSTM
method and the FDD method using a 3-degrees-of-freedom
(3-DOF) numerical analysis model to compare their iden-
tification stability. Furthermore, the identification results of
modal damping ratio and natural frequency according to the
signal-to-noise ratio (SNR) are analyzed to verify whether
the proposed FDD-LSTM method exhibits stable identifi-
cation results even in the presence of noise. Finally, Section 4
validates the identification stability of the proposed
FDD-LSTM method using responses acquired from a three-
story steel test structure and a supertall building with
a height equivalent to 117 stories.

2. Methodology

2.1. Frequency Domain Decomposition. The FDD method
acquires modal parameters using ambient vibration re-
sponses obtained during building operation because the
FDD method assumes ambient vibration responses used for
analysis as white noise inputs. Acceleration responses, ac-
quiring which is an easy task, are primarily used as ambient
vibration responses, and acceleration responses can be
represented by the correlation function according to the
following equation:

Ry (1) = J

o
x(t + 1)x (t)dt. (1)
—00
x (t) is the real part signal of the acceleration response,
x (¢ + 7) is the time lag signal, and 7 represents the time lag.
The autocorrelation function obtained through equation (1)
can be used to construct the PSD function via Fourier
transform.

(o)
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Equation (2) allows the construction of the PSD, which is
then used as the element values of the PSD matrix in the
FDD. A PSD function is calculated for each esponse acquired
at different degrees of freedom. The autospectral density
function calculation for the same degree of freedom is real-
valued, whereas the cross-spectral density function for
different degrees of freedom is calculated as complex-valued.
For example, when there is a system with five degrees of
freedom, a 5 x 5 PSD matrix can be created. The length of the
PSD function is determined by half the NFFT used. The
constructed PSD matrix contains the periodic components
of the raw data signal, and by decomposing the complex
number-structured PSD matrix using singular value de-
composition, the singular values and vectors can be acquired
to obtain the natural frequency and mode shape of the
structure. The following represents the result of singular
value decomposition of the PSD matrix.

S .(f)=U.x.V" (3)

U and V are also a unitary matrix and a singular vector
matrix, respectively. Generally, the first column of U rep-
resents the mode shape at the frequency resolution Af. X
denotes a diagonal matrix with singular values as its ele-
ments, and H stands for the Hermitian transpose. The modal
assurance criterion (MAC) is calculated using the acquired
natural frequency and mode shape. MAC is a measure of the
correlation between mode shapes and can be determined
through the following equation:

2
"PZ‘P:“

MAC = 5
|0t o[ or o]

(4)

When calculating the mode shape vector corresponding
to the structure’s mode frequency using equation (4), the
correlation approaches 1 as the similarity increases. Fur-
thermore, the MAC value decreases as it moves away from the
mode frequency. Thus, the sinusoidal wave for identifying the
modal damping ratio can be acquired by inverse Fourier
transforming (IFT) complex values corresponding to the
MAC value standard of 0.7 to 0.9 or higher, and the loga-
rithmic decrement curve can be obtained through equation
(1) of the autocorrelation function. More specific methods can
be found in the following studies [24, 33, 45, 54].

2.2. Frequency Domain Decomposition Based on LSTM.
The LSTM algorithm, proposed by Hochreiter and
Schmidhuber [50, 55], was developed for learning time series
data. LSTM is an extension of RNN with an added cell state,
which solves the gradient vanishing problem that occurs as
the length of time series data increases, causing long-term
dependencies. Figure 1 illustrates the LSTM unit.

The LSTM unit includes a forget gate, input gate, can-
didate value, and output gate. Each gate outputs values
between 0 and 1 or between —1 and 1 using the sigmoid and
hyperbolic tangent functions. These values represent the
proportions and degrees of information reflection controlled
by each gate. Thus, the LSTM model can selectively maintain
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FiGure 1: LSTM unit.

or delete important information in long-term sequence data.
After passing through the LSTM layer, the calculated pre-
dicted output is used to compute the loss function with the
target output (output data) as part of weight optimization.
The loss function employed in the study is mean square error
(MSE), which is calculated in the following equation:

NS
1=

(y;-7))" ©)

j=1

In equation (5), y represents the target output and ¥
represents the LSTM network’s predictions. The target
output y corresponds to the modal parameter results
identified using the FDD method. R represents the di-
mensionality of the output. The adaptive moment estimation
(Adam) optimizer, introduced by Kingma and Ba [56], was
utilized for weight optimization. The updates to the trained
network are determined by the following equation:

01 =6, - ﬁ@t' (6)

The parameter 0 correspond to the weight and bias, while
n represents the learning rate. The variable 771 denotes the
estimates of the first moment (the mean) of the gradients
and ¥ represents the second moment (the uncentered var-
iance) of the gradients. The parameter € is proposed with
a default value of 10~ ®. For more detailed information about
the Adam optimizer, refer to the following references
[56, 57]. The proposed FDD-LSTM method in this study
uses acceleration response as input data and modal pa-
rameters obtained from the FDD method as output data.
Figure 2 shows the configuration of the LSTM structure in
the proposed FDD-LSTM method. The input dimension is

determined by the system’s degrees of freedom, and the
time-history structural response is input into the sequence
input layer, which is input into the LSTM unit at each time
interval At. The weight size of the LSTM unit is determined
by the number of hidden units, considering the complexity
of the model and the amount of information remembered.
The loss function is calculated based on the determined
modal parameters as the target output, and the LSTM
weights are updated by the Adam optimizer.

3. Numerical Verification

3.1. Stability Analysis of the Modal Damping Ratio Obtained
from the FDD Method. This section analyzes the identifi-
cation stability of the natural frequency and modal damping
ratios identified by the FDD method. It has been verified
whether the identification results follow a normal distri-
bution through probability density functions, and if they do,
the standard deviation was used as a stability index [58]. For
this process, acceleration responses were obtained from a 3-
DOF numerical analysis model. The mass per floor of the 3-
DOF model is 5kg, the floor stiffness is 1000 N/m, and the
modal damping ratio is set to 1% for all modes. When the 3-
DOF model undergoes eigenvalue decomposition, the
natural frequencies appear as 1.0017 Hz, 2.8067 Hz, and
4.0558 Hz. A white noise input load was applied for 2000 s as
the excitation load, and the sampling frequency was set to
100Hz. To identify modal parameters using the FDD
method, we used a Hanning window and 50% overlap, with
the NFFT set to 200,000. The MAC value criterion was set to
0.8 or higher. Furthermore, under these excitation condi-
tions, a total of 360 sets of acceleration responses and FDD-
identified modal parameters were obtained. These datasets
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FiGUre 2: FDD-LSTM structure for the identification of modal parameters.

were used as a training dataset for the subsequent LSTM
training. Validation datasets and test datasets were divided
into 30 each for verification. The entire dataset comprised
300 training datasets, 30 test datasets, and 30 validation
datasets. Figure 3 shows the natural frequency and modal
damping ratio results of the first mode of the 300 training
datasets identified by the FDD method. As shown in Fig-
ure 3, the accurate value of the modal damping ratio is 1%,
and the standard deviation for the 300 training datasets is
0.1829. In addition, the accurate natural frequency value is
1.0017 Hz, and the standard deviation for the 300 training
datasets is 0.0073. Comparing the magnitudes of the stan-
dard deviations and ignoring units, the modal damping
ratio’s standard deviation appears to be larger than that of
the natural frequency, implying that the identification sta-
bility of the modal damping ratio is poor. Excluding the
influence of aerodynamics, the result is attributed to the use
of data with a measurement time of 2000 s, as mentioned in
the introduction regarding the instability of the modal
damping ratio. Moreover, the initial setting parameters for
FDD analysis, such as the window function, overlap ratio,
and NFFT, are believed to have caused instability in the
identification of the modal damping ratio, indicating that the
instability in the identification of the modal damping ratio is
indeed higher than that in natural frequency identification.
It is unknown whether using measurement data of more
than 2000 s would result in better identification stability than
the natural frequency because it is well-known that the
identification of the modal damping ratio is generally dif-
ficult and unstable [33, 45, 47].

Figure 4 shows the probability density function results of
the modal damping ratios for each mode. Because all modes
from 1 to 3 satisfy a normal distribution, stability evaluation
through standard deviation is possible.

Next, LSTM training was conducted with the previously
obtained 300 training datasets to examine the stability of the
proposed FDD-LSTM method in this study. The hyper-
parameter settings for training were determined to be
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to 300 training datasets.

a learning rate of 0.0001 and a minibatch size of 100. The
maximum number of epochs was set to 1000, and the se-
quence length was set to 1000. Figure 5 shows the loss
function of the training data learned with LSTM. Because the
maximum number of epochs is 1000, a total of 600,000
iterations were performed, considering the sequence length,
minibatch size, and training dataset. The training loss and
validation loss reduce as the training progresses, indicating
that LSTM model training was successful.

3.2. Modal Damping Ratio Identified from the FDD-LSTM
Method. The test dataset results of the FDD-LSTM method,
which was trained with 300 training datasets, are shown in
Figure 6. The average modal damping ratio obtained by the
FDD-LSTM method was 0.9812%, with a standard deviation
of 0.0334%. The average result obtained by the FDD method
was 0.9616%, with a standard deviation of 0.2129%. As
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FIGURE 4: Probability density function of the modal damping ratio result with respect to 300 training datasets: (a) 1** mode, (b) 2™ mode,

and (c) 3" mode.

indicated by the identified results, the proposed FDD-LSTM
method in this study improved the identification stability
compared with the results identified by the FDD method, as it
has a smaller standard deviation. In Figure 6(b), the average
modal damping ratios of the FDD-LSTM method and the
FDD method are 0.9997% and 0.9771%, respectively, with
standard deviations of 0.0200% and 0.1295%, respectively.
Thus, the standard deviation result of the proposed
FDD-LSTM method is lower. Moreover, in Figure 6(c), the
averages of the FDD-LSTM method and the FDD method are
1.0246% and 1.0027%, respectively, with standard deviations
of 0.0146% and 0.1064%, respectively. The standard deviations
are smaller in the 2nd and 3rd modes as well, demonstrating
that the FDD-LSTM method exhibits improved identification
stability compared to the FDD method. To verify the accuracy

of each method, the mean square error (MSE), which is
a representative accuracy index, was calculated. The MSEs for
the FDD-LSTM and FDD methods were 0.0014% and
0.0453%, respectively. As a smaller MSE indicates better ac-
curacy, this result confirms that the FDD-LSTM method is
superior to the FDD method in terms of accuracy. In the 2nd
and 3rd modes, the MSEs for each method are 0.00039%,
0.01670%, and 0.00081%, 0.01090%, respectively, showing that
the FDD-LSTM method yields better accuracy.

The modal damping ratio results of the test dataset are
represented as boxplots. Boxplots are graphs used to evaluate
the stability of a model, with the red horizontal line within
the box representing the median and the upper and lower
horizontal lines of the box representing the 75% and 25%
percentiles, respectively. Boxplots can be used to understand
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the data distribution and outliers and to compare the sta-
bility of different models. The results in Figures 7(a) to 7(c)
show that the first quartile (Q1) and third quartile (Q3) of the
FDD-LSTM method, as well as the maximum and minimum
values, are located within the interquartile range (IQR) of the
FDD method. In the first mode results, the IQR of the
FDD-LSTM method is 0.03453%, whereas that of the FDD
method is 0.34175%. Moreover, in the second mode, the
IQRs are 0.03305% and 0.14891%, respectively, and in the
third mode, they are 0.0191% and 0.1455%, respectively. The
IQR of the FDD-LSTM method is smaller in all modes,
indicating that the stability has been further improved
compared to the FDD method.

Figure 8 shows the natural frequency results for the first
mode of the test dataset. Unlike the previous modal damping
ratio results, no difference in the standard deviation is
observed between the FDD method and the FDD-LSTM
method, signifying that the results identified by the FDD
method in natural frequency identification are consistent
and reliable.

3.3. Modal Identification of the FDD-LSTM Method according
to Acceleration Data with Noise. This section verifies whether
the FDD-LSTM method exhibits satisfactory stability even
with noise in the input data. The verification was performed
using the 3-DOF model from the previous section, and the
stability performance according to the noise was evaluated
using the trained FDD-LSTM model without additional
training. For this purpose, acceleration responses were
obtained from 100 sets with a white noise input load applied
to the 3-DOF model, increasing the SNR from 1 to 100 dB.
To closely examine the stability at each SNR level, 300 ac-
celeration responses each at the SNR of 80 dB, 60dB, and
40 dB were obtained. Figure 9 shows the identification re-
sults of natural frequency and modal damping ratio as SNR

increases. The natural frequency results in Figure 9(a) can be
identified as the natural frequency results of the original 3-
DOF model at 90dB and above. At 80dB and below, the
natural frequency identification is relatively widely dispersed
compared to that at 90 dB and above, resulting in a large
standard deviation and poor stability. Furthermore, the
identification results at 80 dB and below show biased esti-
mation and reduced accuracy compared to the results at
90dB and above. In the modal damping ratio results in
Figure 9(b), identification results are generally clustered
from 80 dB and above, indicating that stable identification is
possible from noise levels of 80 dB and above. Furthermore,
there is no biased identification tendency as the SNR de-
creases, unlike the natural frequency results. In conclusion,
as the SNR decreases, the natural frequency shows biased
identification results and reduced stability; therefore, the
results of the FDD-LSTM method are unreliable below
a certain noise level. In contrast, as the SNR decreases, the
modal damping ratio increases the standard deviation and
reduces the stability but does not show biased identification
results, suggesting that the results identified by the
FDD-LSTM method can be used below a certain noise level,
but the stability needs to be carefully reviewed. A more
detailed analysis of the stability performance of the modal
damping ratio was conducted using the probability density
function at noise levels corresponding to 80 dB, 60 dB, and
40dB.

Figures 10(a)-10(c) show the probability density function
results for the first, second, and third modes at noise levels of
80dB, 60dB, and 40dB, respectively. The stability of the
FDD-LSTM method gradually decreases as the noise level
increases from 80dB to 60dB and 40dB. The results are
consistent with the expectation in Figure 8 that accuracy and
stability decrease as the noise level increases. However, even at
the largest deviation of the first mode in the FDD-LSTM
method, the standard deviation at the 40 dB noise level is
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0.1518%, which is lower than the standard deviation of
0.2129% in the FDD method without noise, implying that the
FDD-LSTM method can offer better stability performance
than the existing FDD method even when noise is present.
Furthermore, by examining the identified standard deviation
results from the first to the third mode, it is evident that the
rate of increase in the standard deviation decreases as the
mode increases, indicating that higher-order modes are less
affected by noise. In fact, considering the results in Figure 7 of
Section 3.2, where the IQR of the third mode was the smallest,
it can be inferred that the stability of the third mode was the

best and the impact of noise was the smallest. The accuracy
indicator, MSE, decreases in the first mode in the order of
SNR 80dB, 60dB, and 40 dB, with values of 0.0032, 0.0102,
and 0.0209, respectively. The MSE results increased because
the standard deviation, representing stability, increased with
the noise level. In the stability evaluation according to the
noise level, the proposed FDD-LSTM method yielded lower
standard deviation results than the FDD method. Thus, by
utilizing the LSTM model, the proposed method effectively
solves the instability problem in the modal damping ratio
even when noise is present.



Structural Control and Health Monitoring

4. Experimental Study

4.1. Verification of the FDD-LSTM Method through the Three-
Steel Frame Model. The identification stability of the
FDD-LSTM method was verified using a three-story steel
frame model. Figure 11 shows the plan view, elevation view,
and actual photo of the three-story steel frame model. To
measure the dynamic response of the three-story steel frame
specimen, measurements were taken in the long side di-
rection, which is the X-direction without braces attached,
and the vibration in the Y-direction was minimized by
attaching braces. A PCB 333B30 model accelerometer with
a sensitivity of 100 mV/g was used as the measurement
acceleration sensor, and an IOTECH 4-channel logger was
used as the data acquisition device. The sampling frequency
for measurement was set to 256 Hz, and the ambient vi-
bration response was measured for approximately 60h to
construct training data. The free vibration response was also
acquired, and the modal damping ratios corresponding to
the first to third modes were identified. The free vibration
response was measured by artificially displacing the top of
the three-story steel frame with a thread and then cutting the
thread.

Figure 12 shows the mode shapes of the three-story steel
frame specimen. The mode shapes were obtained using the
FDD method, with the first mode identified at approxi-
mately 4.00 Hz, the second at 11.68 Hz, and the third at
17.51 Hz. Because the mode shape results at the identified
natural frequencies represent the unique deformation shapes
of the first to third modes, it can be judged that the spec-
imen’s modes up to the third mode were appropriately
identified.

Magalhdes et al. [45] recommend the use of free vi-
bration responses to accurately identify the modal damping
ratios, stating that the FDD method’s modal damping ratio
results using free vibration responses provide reliable
identification results. Figure 13 shows the modal damping
ratio results obtained using the FDD method with the free
vibration response. The modal damping ratios at each mode
were obtained through exponential function fitting, and the
first to third modes were identified as 0.14%, 0.09%, and
0.09%, respectively. These results are used as reference re-
sults for the three-story steel frame specimen in the sub-
sequent accuracy comparison of the FDD-LSTM method.

Next, to construct the LSTM model for the FDD-LSTM
method, data measured for 60h were divided into 30 min
datasets to create the X and Y training datasets. A total of 120
datasets were constructed, of which 100 were used for
training and 20 for testing. The hyperparameters used for
training were determined to be a minibatch size of 20,
a maximum number of epochs of 2000, a sequence length of
2000, and a learning rate of 0.0001. Figure 14 shows the
identification results of the modal damping ratio for the 20
test datasets of the FDD-LSTM method. The identified
standard deviation results for the FDD-LSTM method were
identified in the order from the first to third modes as
6.7606 x 10~°%, 1.4398 x 10~*%, and 6.8690 x 10~°%, and
for the FDD method as 6.0604 x 10~*%, 3.2848 x 10~ %,
and 2.4686 x 10~ 4%, respectively. The FDD-LSTM method
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identifies the modal damping ratio with relatively consistent
results compared to the FDD method, and the standard
deviation results show smaller values than the FDD method,
indicating improved identification stability. Because there
are no outliers, anomalies, or abnormal results in the
identified results using the FDD-LSTM method, the mean
results can be used as an accuracy indicator, and the average
results of the modal damping ratios from the first to third
modes are identified as 0.1422%, 0.1037%, and 0.0966%,
respectively. The results using the free vibration response in
Figure 13 show a difference of less than approximately 0.02%
in the second mode. The proposed FDD-LSTM method
demonstrates satisfactory performance for both stability and
accuracy in the verification using the three-story steel frame
specimen.

4.2. Verification of FDD-LSTM Method through Supertall
Building with 117 Floors. The identification stability of the
FDD-LSTM method was verified using the acceleration
response of a supertall building with 117 stories. For this
purpose, acceleration response measurements were taken at
the top floor for approximately 84 h. The accelerometer used
was GioSIG’s AC-73, with a full-scale range of 0.5g, sen-
sitivity of 20V/g, and a sampling frequency of 100 Hz.
Figure 15 shows the floor plan of the supertall building and
the sensor locations. To measure the X-axis direction mode
through chl and the torsional mode through ch2, the
sensors were installed as shown in Figure 15(b).

Figure 16(a) shows the natural frequencies of the first to
third modes identified through the acquired structural re-
sponse. The PSD results of the data measured at the top floor
are presented; because measurements were only performed in
the X-axis direction, it is not possible to know if the first to
third frequency peaks include torsional modes. However, as
shown in Figure 16(b), torsion is observed in the mode shape
phase on the same plane, suggesting that the second mode is
a torsional mode. Furthermore, since the third mode shows
the same mode shape phase in the same plane, it can be
assumed to be the second mode along the X-axis. In real
buildings, it is impossible to obtain free vibration responses,
so modal damping ratios must be identified using as much
measured data as possible, and these results should be used as
reference values. When identifying the modal damping ratios
using all the data measured for 84 h, the first to third modes
are identified as 0.0075, 0.0076, and 0.0075, respectively.

The measurement data corresponding to 84 h, which is
approximately 30,000,000 data points, were divided into
300,000 data segments, and the FDD method was employed.
A total of 80 training datasets and 20 test datasets were
constructed. The hyperparameter setting for LSTM training
is the same as the steel frame specimen in Section 4.1.
Figure 17 shows the identification results of the modal
damping ratio for the 20 test datasets. As shown in the
legend of Figure 17, the standard deviation results of the
FDD-LSTM method are smaller than those of the FDD
method in all modes from the first to third. Indeed, com-
pared with the irregular identification results of the FDD
method in Figures 17(a) to 17(c), the FDD-LSTM method
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provides stable identification results. Moreover, the  asystem matrix, thereby identifying the modal parameters. To

FDD-LSTM method shows average results of 0.0075, 0.0076,
and 0.0079 for the first to third modes, with a maximum
relative error difference of about 5% compared to the ref-
erence result in the third mode. Considering the difference at
the fourth decimal place, it is deemed an acceptable relative
error result. As such, the FDD-LSTM method enables stable
estimation by generalizing the unstable identification results
shown by the FDD method based on a large amount of data.

The proposed FDD-LSTM method was compared with
the time-domain identification technique of SSI-Covariance
(COV). The SSI-COV method constructs the structural re-
sponse as a block Toeplitz matrix and decomposes it to form

obtain reliable results for modal parameters, all 84 hours of
measured data were utilized. For the initial settings of
SSI-COV, the model order was set to 100, the number of
block rows was set to 40, and the stabilization criterion was set
to df =0.01, d¢ = 0.05, MAC = 0.90. Further details about
the SSI-COV method can be found in the papers by Peeters
and De Roeck [25, 26]. Figure 18 presents the stabilization
diagram and the results for the modal damping ratio. In
addition, Table 1 summarizes the results from the previously
identified FDD-LSTM, FDD, and SSI-COV methods. In
Figure 18(a), stable poles appear at approximately 0.13 Hz,
0.20Hz, and 0.30Hz as identified by the FDD method.
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Figure 18(b) displays the modal damping ratio results at each
stable pole. The first mode from the FDD-LSTM and FDD
methods differs by about 0.002 in the modal damping ratio
compared to the average results of the SSI-COV method. This
is supposed to be the result of differences in interpretation
between the frequency domain and the time domain.
Moreover, while the standard deviation for the first mode in
the SSI-COV method is lower than that of the FDD-LSTM

method, the latter shows higher values for the second and
third modes. This implies that the SSI-COV method becomes
less stable as it identifies higher modes. In contrast, the
FDD-LSTM method demonstrates less variability in the
standard deviations for the first to third modes, indicating
stability even for higher modes. Therefore, the FDD-LSTM
method, trained on a large dataset, can be expected to provide
more stable identification than existing SI methods.
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TaBLE 1: Comparison of results for each system identification method.
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5. Conclusion

This study proposed the FDD-LSTM method, which applies
the LSTM model to the FDD method, to address the in-
stability issue of modal damping ratio identification by the
FDD method. The FDD method has the disadvantage of
producing unstable identification results due to changes in
the modal damping ratio caused by measurement time,
initial settings, and abnormal responses in the measured
data. To overcome this issue, the LSTM model, which is

a type of DL model, was applied to address the instability
issue in the FDD method. The FDD-LSTM method enables
generalized estimation based on a large amount of data and
resolves the instability problem of the FDD method. This
improvement can be attributed to the inherent character-
istics of LSTM models, which include their ability to handle
time dependency, provide temporal smoothing, and learn
patterns. All the data used, including the x input data, can be
temporally connected using the stateful functionality of
LSTM, enabling stable estimation even in cases with
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substantial variability. The proposed FDD-LSTM method
was validated using a 3-DOF numerical model, a three-story
steel frame specimen, and a 117-story supertall building.

In the 3-DOF numerical model, the standard deviation
results for the first to third modes were smaller for the
FDD-LSTM method than for the FDD method, indicating
improved stability. Moreover, in the stability verification
based on noise levels, the FDD-LSTM method exhibited
a standard deviation of 0.1518% at a noise level of 40dB,
which was lower than the 0.2129% result of the FDD method
without noise. Consequently, even with 40 dB of noise in the
raw data, the FDD-LSTM method demonstrated better
safety performance than the FDD method. However, biased
identification results were observed for natural frequency
depending on the noise level, necessitating further analysis
in future research. In the three-story steel frame specimen,
the proposed method yielded lower standard deviation re-
sults in all modes from the first to third compared to the
FDD method. Furthermore, in the modal damping ratio
results obtained through free vibration response, the
FDD-LSTM method showed superior accuracy along with
stability, displaying a maximum difference of less than 0.02%
in the second mode. In the supertall building validation, the
FDD-LSTM method also showed improved stability with
lower standard deviation results in the identified modes
compared to the FDD method and exhibited satisfactory
accuracy, exhibiting a maximum relative error difference of
~5%. In comparison with existing SI methods, it was con-
firmed that the FDD-LSTM method is capable of stable
estimation even for higher-order modes.

As the FDD-LSTM method proposed in this study is
based on the modal damping ratio results obtained from the
FDD method to construct the training dataset, it is con-
sidered highly dependent on the identification results of the
FDD method. It was confirmed that if the FDD method does
not provide biased identification results and stability is
degraded, then stability can be improved through the
proposed FDD-LSTM method. However, in this study, it is
assumed that the modal parameters of the building do not
change due to structural damage. Therefore, in the future, it
will be necessary to verify whether the proposed method can
provide stable estimation results even when structural
damage occurs. In addition, it will be necessary to acquire
structural responses from various supertall buildings and
identify modal damping ratios to provide generalized
identification performance for the proposed FDD-LSTM
method. Through this process, it is expected to develop an
integrated model for the stable identification of modal
damping ratios that provides generalized identification re-
sults for all supertall structures.
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