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Over the last decade, concepts such as industry 4.0 and the Internet of Tings (IoT) have contributed to the increase in the
availability and afordability of sensing technology. In this context, structural health monitoring (SHM) arises as an especially
interesting feld to integrate and develop these new sensing capabilities, given the criticality of structural application for human life
and the elevated costs of manual monitoring. Due to the scale of structural systems, one of the main challenges when designing
a modern monitoring system is the optimal sensor placement (OSP) problem. Te OSP problem is combinatorial in nature,
making its exact solution infeasible in most practical cases, usually requiring the use of metaheuristic optimization techniques.
While approaches such as genetic algorithms (GAs) have been able to produce signifcant results in many practical case studies,
their ability to scale up to more complex structures is still an area of open research. Tis study proposes a novel quantum-based
combinatorial optimization approach to solve the OSP problem approximately, within the context of SHM. For this purpose,
a quadratic unconstrained binary optimization (QUBO) model formulation is developed, taking as a starting point of the modal
strain energy (MSE) of the structure. Te framework is tested using numerical simulations of Warren truss bridges of varying
scales. Te results obtained using the proposed framework are compared against exhaustive search approaches to verify their
performance. More importantly, a detailed discussion of the current limitations of the technology and the future paths of research
in the area is presented to the reader.

1. Introduction

Modern structural health monitoring (SHM) constitutes
a powerful framework to detect, locate, and identify damage
in a structural system [1]. At its core, it is a hybrid technique
that makes use of both sensing data and physical models to
correctly assess the health state of one or more structural
components. While in older structures, the sensing tech-
nology and data collection systems relied heavily on expert
inputs via the execution of manual inspections, the current
trend is towards developing intelligent SHM systems that
can leverage the increasing afordability and availability of
modern sensing technology to remotely monitor a structure.
Tis shift in paradigm serves multiple purposes. First, it
increases the safety of the structure’s operation, decreasing

the exposure of human beings to dangerous maneuvers
required to collect data. Second, it decreases the downtime
usually required to perform manual inspections. Finally, it
allows expert personnel to continuously monitor the
structure, detecting relevant damage indicators early and,
therefore, decreasing even further the downtime and costs
incurred due to corrective maintenance activity. All these
advantages result in a structural system that is more reliable,
safe, and cost-efcient to operate.

Examples of the use of intelligent SHM methodologies
are abundant in the literature. For example, Meruane et al.
[2] present how diverse machine learning techniques can be
used to identify impacts in aerospace structural components
remotely. Feng and Feng [3] present a review on the use of
computer vision for SHM of civil infrastructure, ranging
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from the identifcation of dynamic response to the detection
of damage. Azimi et al. [4] present a state-of-the-art review
on the usage of deep learning techniques for the damage
identifcation and quantifcation in civil structures. Finally,
on amore general note, Bao et al. [5] present a general review
on the usage of data-driven approaches for SHM, focusing
the discussion on future trends and opportunities.

However, what all these techniques have in common is
that they are all mostly data driven. Consequently, theymake
the underlying assumption that quality information can be
retrieved from the structure using an appropriate sensor
confguration. Tis is not a trivial assumption to make. Te
identifcation of changes in the dynamic properties of the
structure, which are mostly conducive to identifying and
locating anomalies and damage, strongly depends on where
the information is captured, i.e., where the sensors are lo-
cated. Tis situation gives rise to the problem commonly
known as the optimal sensor placement (OSP) problem. An
OSP problem is usually formulated as a min-max optimi-
zation problem. On the one hand, the goal is to capture
enough information such that posterior monitoring and
diagnosis tasks can be fulflled with the desired accuracy. On
the other hand, due to sensor costs and operational re-
strictions, this level of captured information should be
achieved using the minimum number of sensors possible.
Te latter restriction is important because when sensors are
integrated into a structure, they become another component
in the system, requiring their own maintenance schedule
and reliability assessment.

In mathematical terms, the OSP problem can be clas-
sifed as a discrete optimization problem, where the re-
quirement is to fnd an optimal sensor layout within the
structure in accordance with some metric of ftness.
Obtaining the exact solution for this class of optimization
problems is difcult because they usually present a combi-
natorial nature: the requirement is often to choose m sensor
positions of n candidate locations in the structure (n≫m).
Tis characteristic makes the number of feasible sensor
layouts to rapidly increase with the scale of the structural
system. For example, a small structure comprising 10
candidate locations and a budget of fve sensors will have 252
feasible confgurations that need to be evaluated, while
a medium system composed of 100 candidate locations and
a budget of 10 sensors will result in 1.73 × 1013 possible
combinations. Tis characteristic of the OSP problem
renders the obtention of its exact solution an intractable
problem in practical situations.

Currently, researchers tackle the OSP problem using
a wide variety of solution strategies. Broadly, these algo-
rithms can be divided into two classes: deterministic and
stochastic algorithms. Te frst class corresponds to those
algorithms that use deterministic rules to transverse the
solution space in search of high-performance confgura-
tions. Stochastic algorithms, in change, use stochastic rules
to transition between feasible solutions, allowing them to
transverse a wider amount of the solution space, and often
reach better solutions. Heuristic and metaheuristic strategies
are usually in this category. Tey have gained considerable
popularity over the past decades in the feld of OSP due to

their relatively high efciency in the treatment of larger
problems. Genetic algorithms [6] and biology-based algo-
rithms [7] are among the most relevant examples of these
classes of solution strategy for the OSP problem.

Genetic algorithms work by initially setting a starting
population of candidate solutions, which are iteratively
combined and evaluated, only preserving for the next it-
eration of those that fulfll a predetermined criterion of
ftness. After a certain termination criterion is met, the best
solution found is proposed as the near-optimal solution. A
varied range of genetic algorithms has been used in the
determination of OSP confgurations. For example, Yi et al.
[8] proposed an improved genetic algorithm for the de-
termination of sensor placement in a high-rise building in
the north of China. More recently, Civera et al. [9] presented
a multiobjective genetic algorithm that takes into account
the diferent damage scenarios that may afect structures,
guiding the optimization towards those confgurations that
can easily detect and identify certain types of failures.
Biology-based algorithms are designed to emulate certain
aspects of animals, in general the foraging behavior of in-
sects, in the aid of locating high-performance solutions. A
modifcation of the well-known ant colony optimization
algorithm [10], widely used in the solution of the traveling
salesman problem, was used by Feng et al. [11] to improve
the accuracy of OSP for a transmission tower model, beating
traditional genetic algorithms. Sun and Büyüköztürk [12]
applied a diferent algorithm inspired by the social behavior
of bees. Teir approach is tested using one simulated
structural model and two real-world examples. Finally,
Gomes and Pereira [13] proposed a modifcation to the
frefy algorithm to perform SHM in the fuselage of com-
mercial airplanes. For a complete review of the algorithms
used for solving the OSP problem, the reader is referred
to [14].

However, when the scale of the structural system is large,
and therefore the number of candidate sensor locations is
high, researchers have had to rely on preprocessing tech-
niques or simplifying assumptions over the structural nu-
merical models to reduce the number of locations before
solving the optimization problem [14]. For example, Sun and
Büyüköztürk [12] proposed to solve the OSP problem using
the bee colony algorithm by frst reducing the size of the
original structural model with the iterated improved reduced
system (IIRS) technique.With this approach, they are able to
tackle the OSP problem in a case study concerning
a structural building with 185 degrees of freedom (DOFs) by
reducing it frst to a smaller system with only 74 DOFs.
Błachowski et al. [15] proposed the use of convex relaxation
and model reduction to transform a large OSP instance into
a smaller, continuous one. With these two simplifcations,
they tackle a case study consisting of a transit bridge with
71,804 nodes, which after the model reduction step consists
of a total number of candidate locations equal to 3,447.
Moreover, Yang and Xia [16] propose the use of a multi-
objective optimization approach to connect the selection of
nodes in the model reduction stage with the election of
optimal DOFs for sensor location. Tey validated this ap-
proach in a numerical case study involving a truss structure
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connecting two satellite bodies consisting of 117 candidate
positions. What all these solution strategies have in common
is the utilization of a simplifcation step over the original
structural system, which likely places another penalization
over the general accuracy of the solution approach.

Our interest in this paper is to explore a novel category of
quantum computing algorithms that have the potential to
not require these types of model reduction steps. Tese
techniques are currently divided into two main categories
depending on the physical implementation of the quantum
hardware in which they are executed. Te frst category uses
quantum annealing (QA) [17] to solve quadratic un-
constrained binary optimization (QUBO) problems. Based
on the quantum adiabatic theorem, these algorithms frst
prepare a quantum system to encode a given optimization
problem. Ten, they evolve this system towards a lower
energy state that represents a near optimum of the original
optimization problem [17]. In contrast, the second category
approximates the behavior of quantum annealing using
gate-based quantum computers. In general, gate-based
quantum computing is a more fexible hardware imple-
mentation than QA, and therefore, it has received more
attention from mainstream media and technology compa-
nies such as IBM or Google. Te main approach for solving
combinatorial problems using gate-based quantum com-
puters is through the quantum approximation optimization
algorithm (QAOA) [18, 19], an approximation model of QA
that can leverage the recent advances in gate-based quantum
hardware. Both categories of quantum optimization solvers
have already seen use in practical case studies. For example,
Herman [20] presents a survey on quantum computing for
its application in fnance, with a special emphasis on
portfolio optimization techniques using both QA and
QAOA. Similarly, Yarkoni et al. [17] present a review of
quantum annealing for industry applications, which include
solutions for scheduling and trafc fow optimization
problems. In a closer context to SHM, Speziali [21] applied
QA to fnd a near-optimal solution for the placement of
pressure sensors in a water distribution network (WDN).
Te proposed approach frst models the WDN as a mathe-
matical graph, where the nodes are either tanks or junctions,
and the edges are pipes connecting the diferent parts of the
system. Te OSP confguration is found by solving the
minimum vertex covering problem, ensuring that the
number of edges (pipelines) that are not monitored by an
adjacent pressure sensor is minimized.

Following the trend of new applications that arise from
this new feld of research, this paper’s main objective is to
consider the capabilities and limitations of gate-based
quantum optimization for the solution of the OSP prob-
lem in civil structures. For this, a novel quadratic un-
constrained binary optimization (QUBO) model based on
the modal strain energy (MSE) criteria is proposed and
approximately solved using the QOAO algorithm. For this
purpose, we resort to a series of numerical experiments
performed using quantum computing simulation software,
which are run directly on a desktop computer. Two Warren
truss bridges of diferent scales are used as case studies for
these experiments, in order to show how the proposed

methodology scales with the size of the structure. Tis paper
constitutes, to the best of the authors’ knowledge, the frst
application of QAOA for the OSP problem in a structural
engineering context.

Tis paper makes three primary contributions. First, it
aims to present a clear introduction to quantum computing
for the civil engineering community, focusing on the rele-
vant subject of sensor placement optimization. Second,
using the aforementioned case studies, it aims to present the
state of quantum computing optimization for the feld,
stating its current limitations and outlining future research
opportunities. Tird, and fnal, it outlines future research
paths that tackle the limitations we have found, to hopefully
motivate the community to start exploring the diferent uses
of quantum computing in their respective felds.

Te paper is organized as follows: Section 2 presents
a brief introduction to the OSP problem, along with the main
metric used as the objective function in its solution. Section 3
introduces a self-contained gate-based quantum computing
theoretical background, focusing the attention on those as-
pects that are relevant to the QAOA technique, which is
presented in Section 4. Section 5 presents the QUBO model
formulation for the OSP problem and relevant imple-
mentation details for its application on the QAOA model.
Ten, Section 6 introduces the two case studies used to
compare the proposed approach with exhaustive search so-
lution techniques. Section 7 concludes the paper by critically
assessing the current capabilities of quantum-based optimi-
zation techniques and outlines future paths of research in the
area. Finally, a preprint has previously been published in [22].

2. BackgroundonOptimalSensorPlacement for
Civil Structures

SHM strategies using vibration-based modeling (VBM) rely
on the hypothesis that damage can be detected, located, and
identifed using as a proxy indicator the changes in the
dynamic properties of diferent structural components. Te
dynamic behavior in the linear regime of most structures can
be mathematically represented as a system of NDOF dif-
ferential equations, where NDOF is the number of degrees of
freedom in the structure. Equation (1) represents this system
in the matrix notation:

M
€
X
→

(t) + C
_

X
→

(t) + KX
→

(t) � F
→

(t). (1)

In equation (1),M, C, and K are the mass, damping, and
stifness matrices of the system, respectively, while F

→
(t) is

an arbitrary excitation function. Te determination ofM, C,
and K is usually dependent on both experimental and
physical modeling techniques. Te natural frequencies and
modal shape vectors of the system can be obtained by solving
the eigenvalue problem portrayed in the following equation:

M− 1KX
→

� ω2
n X
→

. (2)

Once solved, the squared natural frequencies and modal
shape vectors of the system can be identifed as the eigen-
values and eigenvectors, respectively. Te modal shape
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vectors store important information about the dynamic
characteristics of the system, as they constitute a linearly
independent base from which the movement of the structure
can be reconstructed. For this reason, many of the strategies to
optimally locate sensors in a structure are focused on cap-
turing a large amount of this modal information. To this
extent, a wide variety of objective functions for the OSP
problem have been formulated in the literature. A common
category of ftness criterion groups of those algorithms is
based on the Fisher information matrix (FIM). For example,
the efective independence (EI) approach, originally proposed
by Kammer [23], uses both the FIM and the mode shape
matrix to fnd the sensor locations that maximize the amount
of linear independency in the measured modal vectors.

However, the exposition in this paper is centered around
the modal strain energy criteria (MSE) [24], as it allows for
the interpretation of the OSP problem as a quadratic un-
constrained binary optimization (QUBO) problem, making
it suitable for its implementation in quantum-based opti-
mization schemes.Te reason for this will become evident in
Section 5, where the quantum approximate optimization
algorithm (QAOA) is detailed.

2.1. Modal Strain Energy (MSE). An energy-based objective
function for theOSP problem can be formulated bymaximizing
the strain energy captured by the chosen sensor locations. Tis
function is known as the modal strain energy [24], and its
mathematical form is depicted in the following equation:

MSE(S) � 􏽘

NDOF

i�1
􏽘

NDOF

j�1
􏽘
p∈S

􏽘
q∈S

ϕpikpqϕqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (3)

where ϕpi is the component corresponding to the p-th DOF
of the i-th modal shape vector and kpq is the (p, q) com-
ponent of the stifness matrix. While the MSE metric does
not assure that the sensor locations will produce partial
modal shape vectors with a lower degree of linear de-
pendence, it has been reported that the modal strain energy
is correlated with higher signal-to-noise ratios in the sensor
locations [25–27], favoring the identifcation of damage in
structures afected by perturbations from the environment
or the usage of the structure itself.

3. Background on Gate-Based
Quantum Computing

Tis section presents an introduction to gate-based quantum
computing, following a functional approach. First, we in-
troduce what a quantum computer is by briefy describing
the three operations it can perform. Ten, we explain each
one of the operations in great detail, prioritizing a mathe-
matical and computational explanation instead of a physics-
based one. We continue our exposition with a description of
the quantum circuit model, a graphical representation of
algorithms that a quantum computer can execute. Finally,
we close this introduction with a brief discussion about
quantum computing simulators, the tool used to run all the
results presented in this paper.

A quantum computer is a physical machine designed to
perform three main operations: (i) create and store quantum
states, (ii) modify those quantum states, and (iii) measure
those quantum states to extract classical information. By
performing these three operations, a quantum computer is
capable of ingesting, processing, and returning information
to a user, efectively performing computation. Whether this
novel computation paradigm presents advantages over
traditional computational paradigms is currently a feld of
active research. However, there is strong theoretical evidence
to suggest that given a quantum computer with enough
capacity, quantum computing can produce algorithms that
are vastly more efcient in certain tasks than traditional
algorithms [28, 29].

In what follows, we describe in detail each of these
operations. However, it is necessary to frst present a brief
explanation of the notation used in quantum computing,
since it uses symbols traditionally used in contexts outside of
those of SHM and OSP.

3.1. Bra-Ket Notation. Before presenting our introduction to
this novel topic, it is necessary to introduce the bra-ket no-
tation, heavily used in quantum computing. For the rest of this

article, a complex column vector Ψ
→

1 ∈ CN×1 will be repre-
sented using the ket notation as |Ψ1〉. Similarly, a conjugate
transpose vector will be denoted using the bra notation as

Ψ
→†

2 � 〈Ψ2| ∈ C1×N. Te inner product between these two
vectors is written according to the following equation:

〈Ψ2 Ψ1
􏼌􏼌􏼌􏼌 〉 � Ψ

→
2 · Ψ

→
1 ∈ C. (4)

In addition, the tensor product between two complex
vectors |Ψ1〉 ∈ CN1×1 and |Ψ2〉 ∈ CN2×1 can be written in
short form using the notation shown in the following
equation:

Ψ1
􏼌􏼌􏼌􏼌 〉 Ψ2

􏼌􏼌􏼌􏼌 〉 � Ψ1Ψ2
􏼌􏼌􏼌􏼌 〉 � Ψ

→
1 ⊗ Ψ

→
2 ∈ C

N1 ⊗CN2 . (5)

Te bra-ket notation is extensively used in quantum
computing to represent the quantum states and quantum gates.

3.2. Creation and Storage of Quantum States: Qubits and
Systems of Multiple Qubits. Te quantum computer, as
a hardware component, is capable of creating and storing
a quantum state. A quantum state, in simpler terms, is the
state (at a certain moment in time) of a quantum system.
Mathematically speaking, this quantum state is represented
as a complex vector |Ψ〉 ∈ CN×1 with unitary norm. Te
simplest possible quantum state corresponds to the special
case N � 2. In this case, the quantum state is commonly
known as a qubit, and it represents the minimum unit of
information in quantum computing. Equation (6) depicts
a qubit using the ket notation, as a two-dimensional complex
vector:

|ψ〉 �
c0

c1
􏼢 􏼣, (6)
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where c0, c1􏼈 􏼉 ∈ C. Every qubit |ψ〉 can be decomposed as
|ψ〉 � c0|0〉 + c1|1〉, where |0〉 and |1〉 are the basis vectors,
shown in the following equation:

|0〉 �
1

0
􏼢 􏼣;

|1〉 �
0

1
􏼢 􏼣.

(7)

Because of this decomposition, an arbitrary qubit |ψ〉 is
said to be in a superposition of states |0〉 and |1〉, controlled
by the complex coefcients c0 and c1.

A qubit |ψ〉 can also be represented graphically using the
Bloch sphere. In the Bloch sphere, every possible quantum
state that a qubit may encode is mapped to a point in the
surface of a sphere of unitary radius. For this, the complex
coefcients c0 and c1 are frst represented in polar form, in
the following equation:

|ψ〉 � c0|0〉 + c1|1〉

� r0e
iξ0 |0〉 + r1e

iξ1 |1〉,
(8)

where ξ0 and ξ1 are angles. Equation (8) shows that a qubit’s
state depends on four real coefcients, r0, r1, ξ0, ξ1 ∈ R.
However, it can be demonstrated [30] that using the re-
striction of the Bloch sphere unitary radius, we can reduce
this set to only two coefcients, obtaining the qubit repre-
sentation shown in the following equation:

|ψ〉 � cos
θ1
2

|0〉 + e
iθ2 sin

θ1
2

|1〉, (9)

where 0≤ θ1 ≤ π and 0≤ θ2 ≤ 2π are interpreted as the polar
and azimuthal angles in a unitary sphere. It is straightforward
to notice that the poles of the sphere, when θ1 � 0 or θ1 � π,
represent the basis states |0〉 or |1〉, respectively. Figure 1
shows the Bloch sphere representing an arbitrary qubit state.

As it will be shown in Section 3.3, the Bloch sphere allows
for the interpretation of transformation operations over
quantum states as rotations around the X, Y, and Z axis.

In a similar fashion to classical computing systems,
where independent bits are of little use, single qubit systems
are heavily limited in the computations they can carry. For
this reason, quantum computers usually joined qubits to-
gether to generate useful quantum states. Given two qubits,
|ψ1〉 � c10|0〉 + c11|1〉 and |ψ2〉 � c20|0〉 + c21|1〉, their
multiqubit system is described by the outer product pre-
sented in the following equation:

ψ1ψ2
􏼌􏼌􏼌􏼌 〉 � ψ1

􏼌􏼌􏼌􏼌 〉 ⊗ ψ2
􏼌􏼌􏼌􏼌 〉

�

c10c20

c10c21

c11c20

c11c21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(10)

Equation (10) can also be expressed diferently. Rein-
terpreting c1 � c10c20, c2 � c10c21, c3 � c11c20, and c4 � c11c21,
the vector |ψ1ψ2〉 can be written as follows:

ψ1ψ2
􏼌􏼌􏼌􏼌 〉 � c1

1

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c2

0

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c3

0

0

1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c4

0

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� c1|00〉 + c2|01〉 + c3|10〉 + c4|11〉,

(11)

where the following short notation for the outer product has
been used: |0〉⊗ |0〉 � |00〉,|0〉⊗ |1〉 � |01〉,|1〉⊗ |0〉 � |10〉,

and |1〉⊗ |1〉 � |11〉. Tis pattern can be naturally extended
to larger systems composed of more than two qubits. In
general, an n-qubit system will consist of complex co-
efcients ci􏼈 􏼉

2n

i�1, given by the elements of the vector |Ψ〉 �

⊗ 2n

i�1|ψi〉. Tis manner of constructing quantum states in
a quantum computer has the following two crucial impli-
cations. First, all practical quantum states in quantum
computing will be of dimension N � 2n, where n is the
number of qubits used (and combined) in the system.
Second, and most importantly, there is an exponential
scaling between the capacity of the quantum computer,
measuring in its number of qubits, and the total number of
complex coefcients that it can store. Tis particularity of
quantum computing is the cornerstone of why researchers
believe it may hold promise to tackle challenges that remain
unresolved for traditional computers.

Another interesting quantum computing property is
entanglement. Some quantum states are mathematically and
physically valid, but they cannot be written as the Kronecker
product of n substates. An example of this is the state given
in the following equation:

|Ψ〉 �
1
�
2

√ |00〉 +
1
�
2

√ |11〉. (12)

To see this, note that the system of equations presented
in equation (13) does not have a solution. If neither c10, c20,
c11, or c21 can be zero following the restriction that c1 and c4

Z

Y

X

∣0〉

∣1〉

θ1

θ2

∣ψ〉

Figure 1: Bloch sphere representation of a single qubit.Te surface
of the unitary sphere encodes all the possible quantum states that
a qubit may hold. As a result, quantum states can also be completely
characterized, up to a global phase, by two real numbers: θ1 and θ2.

Structural Control and Health Monitoring 5



are nonzero, then if follows that c2 and c3 should also be
nonzero, which would not represent the quantum state
depicted in equation (12):

c1 � c10c20 �
1
�
2

√

c2 � c10c21 � 0

c3 � c11c20 � 0

c4 � c11c21 �
1
�
2

√ .

(13)

States that cannot be written as the Kronecker product
of n substates, such as the one presented in equation (12),
are known as entangled states. On the other hand, quantum
states that can be represented as a Kronecker product are
known as separable states. Entanglement is a very im-
portant quantum computing property, as it allows for the
creation of conditional relationships between qubits. For
example, if the frst qubit in the system depicted in equation
(12) is found in the |0〉 state, then it automatically follows
that the second qubit must also be in the |0〉 state (due to
the complex coefcient accompanying |01〉 being zero).
How to modify the quantum state of a system, and how to
create entangled states in a quantum computer will be
reviewed in Section 3.3.

3.3. Modifcation of Quantum States: Quantum Gates and
Unitary Matrices. Quantum states can be modifed through
the successive application of quantum gates. Quantum
gates are linear maps represented by unitary (a unitary
matrix U is a complex square matrix where its inverse is
also its conjugate transpose: U†U � UU† � I) matrices U.
Once a unitary operation is applied to a quantum state,
a new quantum state is obtained. Tis state evolution is
mathematically described in equation (14), where we have
used t as a variable indexing the steps in the overall
transformation that a quantum state may go through in
a quantum computer.

Ψt+1
􏼌􏼌􏼌􏼌 〉 � U Ψt

􏼌􏼌􏼌􏼌 〉. (14)

Quantum gates are usually divided into single qubit gates
and multiqubit gates, according to the number of qubits they
act on. Table 1 shows the most common single qubit gates,
along with an interpretation of their efect on the Bloch’s
sphere.

As can be seen in Table 1, some quantum gates are
parametric, i.e., they can receive an external parameter in the
form of an angle ξ. Tese gates will be shown to be fun-
damental to encoding optimization problems into a quan-
tum computer.

Multiqubit gates are in general used to induce condi-
tional relationships between the states of diferent qubits.
Te most used gates that represent these conditional

relationships are the controlled-not (CX) gate and Tofoli
(CCX) gate, also known as the double controlled-not gate.
Both gates are portrayed in Table 2, along with their
matrix form.

Te discussion around all the existing quantum gates and
their efects over quantum states is large enough to escape
the scope of this paper. For a complete review about
quantum gates and what structures they can form, the reader
is referred to [31].

In a similar fashion to qubits being concatenated to form
larger quantum states, quantum gates can also be concat-
enated using the Kronecker product to generate a global
unitary operation that conforms with the expression |Ψt+1〉
� U|Ψt〉, where |Ψt+1〉 and |Ψt〉 are the states before and
after the application of the unitary matrix. Tis concate-
nation process is better explained through an example. Let us
assume that a Hadamard gate, Rotation-Y gate, and CNOT
gate are applied over a four-qubit system. Tis situation is
depicted in Figure 2(a). Te fnal state before the mea-
surement operation can be computed as |Ψ〉 � U|ψ1ψ2
ψ3ψ4〉, with U given by the expression in the following
equation:

U � Had⊗Ry ξ1( 􏼁⊗CN ∈ C16×16
. (15)

Figure 2(b) portrays a slightly diferent scenario, in
which a Rotation-X gate has been applied over qubit |ψ1〉

after the initial Hadamard gate. For this case, the
fnal quantum state before the measurement operation
can be computed as |Ψ〉 � U2U1|ψ1ψ2ψ3ψ4〉, where U1 is
given by equation (15) and U2 is formed by padding the
missing gates in qubits ψ2, ψ3, and ψ4 with identity gates,
resulting in the expression shown in the following
equation:

U2 � Rx ξ2( 􏼁⊗ I⊗ I⊗ I ∈ C16×16
. (16)

Padding with identity gates is necessary for U2 to be an
element in C16×16 making the expression |Ψ〉 � U2U1|ψ1ψ2
ψ3ψ4〉, valid from a matrix multiplication perspective.
Expanding this example to the general case of an n-qubit
system, any operation over a quantum state can be un-
derstood as the application of m independent unitary op-
erations Ui􏼈 􏼉

m
i where each Ui ∈ C2n×2n

. Furthermore, the
total operation is the result of multiplying the unitary op-
erations, according to U � 􏽑

m
i�1Ui. Tis process of consol-

idation of unitary operations is shown graphically in
Figure 3.

Te dependence between the number of qubits that
a system contains and the size of the matrices it can
encode hints at the main advantage that quantum com-
puting has over traditional computing. As an example,
a quantum computer with 50 qubits can encode a unitary
matrix U ∈ C250×250 , which contains more than
1.267 × 1030complex-valued entries. Assuming that each
entry is stored using 16 bytes, storing this matrix in
a traditional computer would require roughly 2 × 1016
petabytes (a petabyte is equal to 1,000,000 gigabytes) of
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information. Tis amount of storage, and more impor-
tantly, the processing capabilities to operate such an
exorbitantly large matrix is several orders of magnitude
bigger than what is traditionally available to researchers

and practitioners nowadays. As such, we can think of
quantum computing as a technology that can enable al-
gorithms based on complex-linear algebra that require the
operation of extremely large constituents.

Table 1: Single qubit gates and their matrix representation.

Gate Symbol Matrix form Bloch’s sphere interpretation

Pauli-X PX
0 1
1 0􏼢 􏼣

Rotation by π with respect to the X-axis

Pauli-Y PY
0 −i

i 0􏼢 􏼣
Rotation by π with respect to the Y-axis

Pauli-Z PZ
1 0
0 −1􏼢 􏼣

Rotation by π with respect to the Z-axis

Rotation-X Rx
cos(ξ/2) −i sin(ξ/2)

−i sin(ξ/2) cos(ξ/2)
􏼢 􏼣

Rotation by ξ with respect to the X-axis

Rotation-Y Ry
cos(ξ/2) − sin(ξ/2)

sin(ξ/2) cos(ξ/2)
􏼢 􏼣

Rotation by ξ with respect to the Y-axis

Rotation-Z Rz
e

− iξ/2 0
0 e

iξ/2􏼢 􏼣
Rotation by ξ with respect to the Z-axis

Hadamard Had 1/
�
2

√ 1 1
1 −1􏼢 􏼣

Rotation by π with respect to the axis formed by the
unitary vector with elevation angle π/4 and null azimuthal angle

An interpretation of the gates’ efects on the Bloch’s sphere is also included for the reader’s convenience.

Table 2: Multiqubit gates and their matrix representation.

Gate Symbol Number of qubits (n) Matrix form
Controlled-NOT CX 2 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Tofoli gate CCX 3

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Matrices dimensions and the number of qubits (n) are always related by the relationship U ∈ C2n×2n

.

Had

Ry (ξ1)

CN

∣ψ1〉

∣ψ2〉

∣ψ3〉

∣ψ4〉

(a)

Had

Ry (ξ1)

Rx (ξ2)

CN

∣ψ1〉

∣ψ2〉

∣ψ3〉

∣ψ4〉

I

I

I

(b)

Figure 2: Quantum gates applied to multiqubit systems. (a) shows a possible combination where single gates are applied to certain qubits,
while a multiqubit gate is applied to the subsystem composed by |ψ3 and |ψ4〉. (b) shows how padding with identity gates is used to complete
the system of gates.
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3.4.MeasurementOperations over theQuantumState. So far,
we have reviewed how a quantum computer creates and
stores a quantum state through the combination of basic
units of information called qubits, and how these quantum
states can be modifed through the application of unitary
matrices known as quantum gates. Now, we turn our at-
tention to how information can be read out from the
quantum computer.

Notably, quantum states cannot be observed directly. In
other words, it is impossible to know exactly, and at the same
time, the value of all the complex coefcients that compose
the quantum state. Tis restriction is fundamental to
quantum mechanics, and it cannot be overruled. However,
what can be done is to perform a physical operation over the
quantum state known as “measurement.” In mathematical
terms, the result of this operation performed over |Ψ〉 ∈ C2n

will be one its basis vectors |ei〉, i ∈ 1, . . . , 2n{ }, in accordance
with the probability distribution described in the following
equation:

p ei

􏼌􏼌􏼌􏼌 〉􏼐 􏼑 � ci

����
����
2
, (17)

where ci is the i-th complex coefcient in the quantum state.
In other words, the probability of obtaining a certain basis
vector as a result of the measurement operation is com-
pletely controlled by the squared norm of the corresponding
complex coefcient. Tree important conclusions can be
derived from equation (17). First, we can see that this
presents a physics-based justifcation for the norm of all
quantum states to be unitary: it is a necessary condition for
the measurement probability distribution to be valid. Sec-
ond, if we repeatedly construct and measure the quantum
state, we can estimate the values of the squared norm of its
entries; however, we will never be able to estimate the values
of the original complex coefcients. Finally, and most im-
portantly, a quantum state can be understood as an “object”
encoding a categorical probability distribution over a space
of 2n elements. Moreover, the process of applying quantum
gates to modify the quantum state can be interpreted as
transforming this probability distribution. As the quantum
gates are unitary, and unitary matrices preserve the norm of
the vector upon which they are applied, we are always as-
sured that the resulting probability distribution will be
a valid one.

Before continuing exploring what are the implications of
this probabilistic interpretation of quantum computing, let
us review some brief examples to clarify this measurement

operation. Starting from the simplest possible case, equation
(18) shows the probability distribution corresponding to
a single qubit |ψ〉 � [c0, c1]

T.

P(|0〉) �
c0

����
����
2

c0
����

����
2

+ c1
����

����
2;

P(|1〉) �
c1

����
����
2

c0
����

����
2

+ c1
����

����
2.

(18)

Extending the probability distribution presented in
equation (18), measurement operations over two-qubits
systems are presented in the following equation:

P(|00〉) �
c0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽐
3
i�0 ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2,

P(|01〉) �
c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽐
3
i�0 ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2,

P(|10〉) �
c2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽐
3
i�0 ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2,

P(|11〉) �
c3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽐
3
i�0 ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2.

(19)

More generally, a measurement operation is described as
a Hermitian (a complex square Hermitian matrix H fulflls
� H†, i.e., it is equal to its conjugate transpose) matrix
Hv ∈ C2n×2n

. In this context, the subindex v � 1, 2, . . . 2n

denotes one of the possible basis vectors of the system. Tat
is, the measurement operation will measure the probability
of obtaining one specifc outcome. Tis probability, p(|ev〉),
is given by the following equation:

p ev

􏼌􏼌􏼌􏼌 〉􏼐 􏼑 � 〈Ψ H
†
vHm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Ψ〉, (20)

where |Ψ〉 is the quantum state just before the measurement
operation is applied. While a variety of measurement oper-
ators exist, this overview will be focused on projective
measurements. Tese types of operators are formed by per-
forming the outer product between two basis vectors.

For example, for a single qubit system |ψ〉 � c0|0〉

+ c1|1〉, equations (21) and (22) depict the operators cor-
responding to the pure states |0〉 and |1〉:

∣ψt+1〉 =

∣ψt+1〉 = U∣ψt〉 = U3U2U1∣ψt〉

G1 G4

G5

I

I

II

G6

G7

G2

G3

U1

U1 = G1 ⊗ G2 ⊗ G3

U2 = G4 ⊗ I ⊗ G5 ⊗ I

U3 = I ⊗ G6 ⊗ G7 ⊗ I

U2 U3

∣ψ1〉

∣ψ2〉

∣ψ3〉

∣ψ4〉

Figure 3: Consolidation of quantum operations. It is always possible to express the application of m gates over an n-qubit system as one
unitary operation by the usage of padding with unitary gates and the Kronecker product.
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H|0〉 � |0〉〈0|

�
1 0

0 0
􏼠 􏼡,

(21)

H|1〉 � |1〉〈1|

�
0 0
0 1

􏼠 􏼡.
(22)

If H|0〉 is applied to |Ψ〉, then the probability of mea-
suring |0〉 is given by equation (23), where the algebra in-
volved has been omitted for the sake of brevity.

p ev

􏼌􏼌􏼌􏼌 〉� |0〉􏼐 􏼑

�〈ψ H
†
|0〉H|0〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ψ〉

� 〈ψ||0〉〈0||0〉〈0‖ψ〉

� c0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
.

(23)

Projective measurement operations extend naturally to
multiqubit systems, where the Hermitian matrices are also
formed by applying an outer product operation between
basis vectors. For example, in a three-qubit system, a pos-
sible measurement operation is H|010〉 � |010〉〈010|. Tis
operation is used to measure the probability of obtaining as
a fnal deterministic state the bitstring 010, or in physical
terms, to fnd the frst, second, and third qubits in the states
0, 1, and 0, respectively.

Another important measurement operation is to com-
pute the expectation of a quantum state with respect to
certain Hermitian operator HA. Tis expectation is given by
the expression presented in equation (24). As it will be
shown in Section 4.2, this operation is fundamental for
computing the expected cost associated with the solution
obtained from a combinatorial optimization algorithm.

〈HA〉|Ψ〉 �〈Ψ HA

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Ψ〉. (24)

Te stochastic nature of the qubits (and in consequence,
of quantum systems) is one of the key diferences when
compared to the deterministic behavior of classical bits. Te
use of complex coefcients to encode probability distributions
allows the use of interference between quantum states. If
probabilities were to be defned as real numbers, then such
probabilities would only increase when added. Following the
setting presented in quantum computing, as probability
amplitudes are added, they can interfere with each other,
efectively resulting in a lower overall probability for a par-
ticular outcome after taking the squared norm of the result. A
physical interpretation of the inference property can be found
in the way waves can interfere between them, amplifying or
nullifying the resultant amplitude. Interference represents one
of the pillars of gate-based quantum computing, where a set of
predefned operations are applied to a quantum system to
increase the likelihood of certain states that represent the
solution for a computation problem.

3.5.QuantumCircuitModel. Te framework presented in this
section characterizes a quantum computer as a machine that
creates, modifes, and measures quantum states.Tis process is
done through the combination of diferent qubits to generate
an exponentially larger quantum state, and the successive
applications of unitary matrices to this quantum state.
Quantum programming, or the act to “program” a quantum
computer, can be summarized as selecting which gates to apply
to the initial quantum state, and if any of those gates are
parametric, which parameters do we enforce. Tis defnition
generates a quantum algorithm, which is no other thing than
a simple set of instructions describing which gates, in which
order, and with which parameters to apply over the initial
quantum state. Te initial quantum state of a quantum
computer is traditionally initialized in the basal state |00 . . . 0〉,
or |0〉⊗n for brevity.Tis gives all quantum algorithms the same
starting point and standardizes their application.

Te quantum algorithm can be graphically represented
in a schematic known as quantum circuit. Figure 4 (center)
depicts a diagram of a quantum circuit acting over n qubits.
Te gates are represented by blocks that are applied over one
or more qubits. At the end, we always include a measure-
ment operation, describing that the quantum state is meant
to be estimated through the process described in Section 3.4.

In terms of hardware, the current landscape of quantum
computing is known as the Noisy Intermediate-Scale
Quantum (NISQ) era [32]. NISQ hardware is characterized
by having small to medium computing capacities (measured
in the number of qubits available) and very limited error-
correction capabilities. Te practical efect of the latter is that
the result of the estimation of the square norm of the entries of
the quantum states are highly contaminated by noise in
current quantum computers. In this context, the most used
framework for researching quantum computing is using
a quantum simulator. A quantum simulator is a specialized
piece of software that runs on a traditional computer and
simulates exactly, and without measurement errors, the
process that occurs inside a quantum computer. Tat way,
researchers can test quantum algorithms and obtain the same
results that they would obtain on an error-corrected quantum
computer, which is still in its early development stages. For
this paper, all the results we will show are computed using
a quantum simulator, the detailed specifcations of which are
fully stated in Section 6.

While using a quantum simulator has clear advantages
over current quantum hardware, and in many cases, it is the
only approach to test quantum algorithms, and it is not
without its limitations. First, the traditional computer run-
ning the quantum simulator needs to store and operate the
unitary matrices, which scale exponentially with the number
of qubits. Because of this, simulating anything over 20 qubits
requires high-performance computing capabilities, even with
efcient algorithms for matrix multiplication. Second, since
the results of a quantum simulation are executing in a tra-
ditional computer, performance comparison are made dif-
cult since time is no longer a valid option for metrics.
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4. Quantum Approximate Optimization
Algorithm for Combinatorial Optimization

A combinatorial optimization problem (COP) is formulated
as fnding the optimal element among a discrete collection in
accordance with a certain criterion of performance. A special
class of COPs is binary optimization problem, where the
candidate solutions are binary vectors, and the performance
criterion is a mathematical function that takes the candidate
solutions as inputs and returns a numerical score as the
output. Te OSP problem can be formulated as a binary

optimization problem by considering x
→

i􏼚 􏼛
2NDOF

i�1
to be the set

of candidate sensor confgurations, represented as binary-

valued vectors. If for given candidate confguration x
→

i, the
position j is equal to 1 (xij � 1), then a sensor should be
placed in degree of freedom j.

In general, the solution space of binary COPs is pro-
hibitively large due to the number of possible combinations
that can be formed. For this reason, an exhaustive search
approach is usually infeasible for large-scale structures. In
addition, given the discrete nature of the solution space,
binary COPs cannot, in principle, be solved using gradient-
based optimization techniques, such as stochastic gradient
descent. Because of this, solution methodologies for binary
COPs often are designed as heuristics or metaheuristics:
algorithms that do not guarantee the discovery of an optimal
solution, but that attempt to fnd a near-optimal solution in
a reasonable computational time.

In this context, one of the most promising applications of
quantum computing is as a metaheuristic approach to solve
binary COPs. Te motivation for this is based on two aspects.
First, as seen in Section 3.5, repeatedly measuring a quantum
system naturally results in a probability distribution over set
of binary vectors. Additionally, this probability distribution
can be modifed by applying quantum gates. Consequently,
fnding the solution of a binary COP can be understood, in
quantum computing terms, as fnding a quantum circuit
which when executed, assigns a high probability to the vector

representing the optimal solution. Second, a quantum
computer is at its core a physical system and, therefore, it can
naturally evolve toward a lower energy state in the search for
equilibrium. If a 1-to-1 mapping between the energy levels of
the quantum system and the objective function value of each
feasible solution can be established, then a relationship be-
tween solving the optimization problem and obtaining
a lower energy state for the quantum system can be for-
mulated. In what follows, the theoretical principles behind
quantum-enhanced optimization are presented.

4.1. Quantum Time Evolution. Te core concept behind
quantum-enhanced optimization methods is the quantum
adiabatic theorem. Tis theorem states that if a quantum
system A is frst prepared in one of its ground energy states
and then transformed into quantum system B, then the fnal
state will correspond to a ground energy state B if and only if
the transition A⟶B was performed slow enough [33, 34].
Mathematically, this transition is given by equation (25),
where s(t) is a smooth transition function that fulflls s(t �

0) � 0 and s(t � T) � 1, and HA and HB are Hermitian
matrices known as Hamiltonians, representing the energy
levels of quantum systems:

H(t) � (1 − s(t))HA + s(t)HB. (25)

In equation (25), H(t) represent the Hamiltonian of the
combined quantum system at time t. Te way in which
a quantum state changes |Ψ(t)〉 through time depends on its
energy (i.e., its Hamiltonian and is given by the Schrödinger
equation), presented in the following equation:

i
d

dt
|Ψ(t)〉 � H(t)|Ψ(t)〉. (26)

Te solution of Schrödinger equation is shown in
equation (27). Note how the transformation of a quantum
state from 0 to T is controlled by a matrix exponential
operator.

…

… …

Solution!

…
Modification of the quantum state

Measurement operationInitial quantum state

Probability distribution
encoded in the initial

quantum state

Probability distribution
encoded in the final

quantum state

∣ψ1〉
∣ψt+1〉∣ψt〉

∣ψ2〉

∣ψ3〉

∣ψn〉
∣e1〉 ∣e2〉 ∣e3〉 ∣e2n〉 …∣e1〉 ∣e2〉 ∣e3〉 ∣e2n〉

G1
G2

G3

G4

G7

G6

U

Figure 4: Quantum circuit model. To the left is the initial quantum state probability distribution. At the center, a series of single and
multiqubit gates are applied to the quantum states to transform it. Finally, to the right, the fnal quantum state’s probability distribution is
shown.Te fnal objective of quantum computing is to enhance the probabilities of obtaining those basis states that represent the solution to
a certain task encoded in the quantum circuit.
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|Ψ(T)〉 � e
− 􏽒

T

0
iH(t)dt

|Ψ(0)〉

� U(0, T)|Ψ(0)〉.

(27)

Tis matrix exponential operator is a unitary operator,
and as such is commonly referred to as U(0, T). Te
composition property of time-evolution operators in

quantum mechanics dictates that if t1 < t2, then performing
an evolution U(0, t2) is equivalent as performing two dis-
joint and successive evolutions U(0, t1) and U(t1, t2). Using
this property, equation (27) can be rewritten as follows:

|Ψ(T)〉 � U(T − ∆t, T)U(T − 2∆t, T − ∆t) . . . U(∆t, 2∆t)U(0,∆t)|Ψ(0)〉

� 􏽙
P

j�1
U((j − 1)∆t, j∆t)⎞⎠|Ψ(0)〉,⎛⎝

(28)

where the application order of the unitary operators does
matter (i.e., they are not commutative) and Δt � T/P. Each
of the unitary operators Uj is given by the expression
presented in the following equation:

Uj � U((j − 1)∆t, j∆t)

� exp 􏽚
j∆t

(j−1)∆t
−iH(t)dt􏼠 􏼡.

(29)

If ∆t is sufciently small (or equivalently, P is sufciently
high), then H(t) can be considered as a constant in each
interval and therefore the integral can be approximated
according to the following equation:

Uj ≈ exp(−i∆tH(j∆t)). (30)

Replacing H(t) by the expression given in equation (25)
provides the fnal form for the operator Uj:

Uj ≈ exp −i∆t (1 − s(j∆t))HA + s(j∆t)HB( 􏼁( 􏼁. (31)

Equation (31) can be further divided using the properties of
the exponential function only when the matrices HA and HB

commute. Regrettably, that is not generally the case and
therefore it is necessary to use the Lie–Trotter–Suzuki de-
composition formula [35], which states that exp(i(H1 + H2)t)

can be approximated by exp(iH1t)exp(iH2t) + O(t2). Ig-
noring higher-order terms, equation (31) can be approximated
by

Uj ≈ exp −i∆t 1 − s(j∆t)HA( 􏼁( 􏼁exp −i∆t s(j∆t)HB( 􏼁.

(32)

Finally, the evolution of the quantum state |Ψ(t)〉 from
t � 0 to t � T can be expressed by the following equation:

|Ψ(T)〉 ≈ 􏽙
P

j�1
exp −i∆t(1 − s(j∆t))HA( 􏼁exp −i∆t s(j∆t)HB( 􏼁⎞⎠|Ψ(0)〉.⎛⎝ (33)

Equation (33) condenses the approach used by quantum
computing to solve COPs. Let us suppose that |Ψ(0)〉 is
defned as a ground energy level of the Hamiltonian HA, and
that HB is a Hamiltonian encoding the optimization
problem of interest. Ten, if the transformation between HA

and HB is performed in multiple steps, i.e., P≫ 1, or
equivalently Δt≪ 1, then state |Ψ(T)〉 should represent
a state that when measured will sample more frequently the
solutions vectors with a higher performance in terms of their
objective value. Furthermore, the matrix exponentiation of
a Hermitian matrix is a unitary matrix, and as such, can be
recognized as a valid quantum gate. Tis allows us to rewrite
equation (33) as follows:

|Ψ(T)〉 ≈ 􏽙
P

j�1
UHA

βj􏼐 􏼑UHB
cj􏼐 􏼑⎞⎠|Ψ(0)〉,⎛⎝ (34)

where βj � ∆t(1 − s(j∆t)) and cj � ∆ts(j∆t) are sets of
parameters for the unitary operations.

However, it is still necessary to overcome two relevant
challenges to fully realize an approach to solve a combina-
torial optimization problem in a quantum computer: (i) how
can we inform the quantum algorithm of the optimization
problem? In other words, how can we encode the objective
function of the optimization problem into a Hamiltonian
matrix HB? (ii) how can we represent the evolution of
Hamiltonian HA and HB as a series of basic quantum gates
in a gate-based quantum computer architecture. Te fol-
lowing sections explain how to tackle these two challenges.

4.2.HamiltonianEncoding ofQUBOProblems. Te objective
is to encode a combinatorial optimization problem into
a quantum system by mapping it to its total energy level
(Hamiltonian). In the remainder of this subsection, the
discussion will be limited to quadratic unconstraint binary
optimization (QUBO) problems. Section 4.4 will detail how
to incorporate constraints within the context of quantum
computing optimization. Te canonical form of QUBO
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problems applied to the OSP context is shown in the fol-
lowing equation:

min
x
→∈ x
→

i􏼈 􏼉
2NDOF

i�1

f( x
→

) � x
→T

Q1 x
→

+ Q2 x
→

, (35)

where Q1 ∈ R2NDOF
× R2NDOF , Q2 ∈ R2NDOF

× R2NDOF , and x
→

is a vector representing a bitstring of size 2NDOF .

According to Farhi et al. [19], the Hamiltonian operator
H encoding the QUBO problem should fulfll the following
condition: given a measured quantum state of the form
|x〉 � [0 0 0 0 . . . 1 . . . 0 0]T ∈ R2NDOF , where the 1 is located
at position i, the result of computing the expectation of
a Hamiltonian matrix H under this state should be equal to
the original cost function evaluated at the corresponding

candidate sensor confguration x
→
. It is important to note

that |x〉 is a representation of x
→
, but they are not equal.

While |x〉 is a ket vector of 2NDOF dimensions that only

contains one entry equal to one, x
→

is a feasible solution
vector of the original QUBO, and therefore is a vector of
dimension NDOF that may contain any number of 1s and 0s

among its entries. Te relationship between x
→

and |x〉 is
bijective and given by

|x〉 � ⊗
NDOF

i�1
1 − xi( 􏼁|0〉 + xi|1〉, (36)

where xi is the i-th element of the vector x
→

and the ⊗
operator represents the Kronecker product. Take as an

example the decision variable vector x
→

� [1 1]T. Its

corresponding ket vector is |1〉⊗ |1〉 � [0 0 0 1]T. According
to equation (24), the expectation of Hamiltonian matrix H

given the state |x〉 is given by the expression presented in the
following equation:

〈H〉|x〉 � 〈x|H|x〉

� Hi,i

� f( x
→

).

(37)

From equation (37), it is clear that H should be a di-
agonal operator containing in its diagonal the corresponding
value of the cost function for each possible bitstring of length
NDOF. As this matrix directly encodes the cost function of
the optimization problem, it corresponds to the previous
defnition of HB. Figure 5 presents a graphical depiction
of HB.

However, directly constructing HB for a given relevant
QUBO problem is in general infeasible. First, its size in-
creases exponentially with the number of decision variables
in the original problem. Second, an explicit construction
involves computing the cost function for every possible
solution vector, an approach that is equivalent to solving the
QUBO problem by exhaustive search. Consequently, HB

needs to be modeled implicitly. For this, Hadfeld [36]
proposed a series of rules to translate terms from a QUBO
problem into the corresponding Hamiltonian form using
varied combinations of Pauli-Z gates. Te rules used in this
paper are summarized in Table 3.

For example, the Hamiltonian corresponding to the two-
variable cost function f(x1, x2) � a1x1 + a2x2 is given by
the following equation:

f x1, x2( 􏼁 � a1x1 + a2x2⟶ HB � a1
1
2

�I −
1
2

PZ1
􏼒 􏼓 + a2

1
2

�I −
1
2

PZ2
􏼒 􏼓 �

0 0 0 0

0 a2 0 0

0 0 a1 0

0 0 0 a1 + a2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where the solution vector x
→

� [0 0]T, corresponding to the
ket vector |x〉 � |00〉 � [1 0 0 0 ]T would produce an ex-
pectation 〈00|HB|00〉 � 0, in accordance with the corre-
sponding value of the cost function. As a second example, if

x
→

� [0 1]T, then |x〉 � |01〉 � [0 1 0 0 ]T and the

expectation results in a2, again matching the value of the
objective function at that point. Te same behavior can be

expected for the cases x
→

� [1 0]T and x
→

� [1 1]T.
If the function is modifed with a quadratic term,

f(x1, x2) � a12x1x2 + a1x1 + a2x2, the new Hamiltonian
(according to Table 3) will be as follows:
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f x1, x2( 􏼁 � a12x1x2 + a1x1 + a2x2

⟶ H2 � a12
1
4

�I −
1
4

PZ1
+ PZ2

− PZZ12
􏼐 􏼑􏼒 􏼓 + a1

1
2

�I −
1
2

PZ1
􏼒 􏼓 + a2

1
2

�I −
1
2

PZ2
􏼒 􏼓 �

0 0 0 0

0 a2 0 0

0 0 a1 0

0 0 0 a1 + a2 + a12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(39)

From equation (39), it is easy to note that the only state
where the term a12 is included into the cost function is the

state |x〉 � [0 0 0 1]T, which correspond to x
→

� [x1 x2]
T �

[1 1], as expected. A special case for the quadratic term is xixi,
which is equivalent to xi given that all variables are binary.

From the examples shown above, it is clear that the
encoding of a cost function into a Hamiltonian following the
rules presented in Table 3 is a linear operation. With this,
a grouping strategy can be followed to implicitly represent
any QUBO problem as a sum of three distinct types of
Hamiltonians multiplied by real coefcients, according to
the following equation:

HB � aI + 􏽘
N

j�1
bjPZj

+ 􏽘
N

j�1
􏽘

N

k�1
cjk PZZjk

, (40)

where bj, and cjk are real constants.Tis approach is valid for
any QUBO problem, independent of the size or number of
cross-relationships between the variables.

4.3. Quantum Optimization Approximation Algorithm.
Te QAOA approach, originally proposed by Farhi et al.
[19], provides the practical implementation of equation (34)
for a gate-based quantum computer. First, let us recall from

Section 4.1 that the evolution from the Hamiltonian HA

towards the Hamiltonian HB can be approximated by the
successive application of the parametric unitary matrices
UH1

and UH2
. Following the adiabatic theorem, the idea is to

choose HA such that a ground energy state (eigenvector
corresponding to the lower eigenvalue of the Hamiltonian
matrix) is easily defned and prepared in a quantum circuit.
For this, Farhi et al. proposes the use of the following
Hamiltonian:

HA � 􏽘

NDOF

j�1
PXj, (41)

where PXj � I⊗ I⊗ . . . PX . . . ⊗ I and PX is a Pauli-X op-
erator located in the j-th position while the rest of the
operators are identity gates. As expected, the operator
HA ∈ R2NDOF

× R2NDOF . Te reasons for using this Hamil-
tonian are three-fold. First, a ground energy state can be
easily generated by initializing an NDOF-qubit system in the
|0〉⊗NDOF state and then apply a Hadamard gate to each qubit
of the system. Second, a Hamiltonian of this form will
automatically not commute with the cost Hamiltonian HB,

a condition necessary for the QAOA algorithm to prevent it
from becoming trapped in low-quality minima. Tird, this

HB =

0

x1

x2NDOF

… 0
0 1 0 … 0 0 … 0 2NDOF2NDOF

… … … …
0 0 …

×
f ([ ])

1 1 … 1 1f ([ ])

0 0 … 0 0f ([ ])

Figure 5: Cost Hamiltonian diagonal structure. As the optimization problem is identifed as a QUBO problem, for NDOF decision variables,
the total number of possible candidate confgurations is 2NDOF .

Table 3: Basic Boolean functions and their Hamiltonian representation assuming a QUBO problem with NDOF decision variables.

Terms
in QUBO formulation Hamiltonian representation QUBO interpretation

Single binary term, xi 1/2 I − 1/2PZi
Linear term

Multiplication of two binary terms, xi · xj 1/4 I − 1/4(PZi
+ PZj

− PZZij
) Quadratic term

Tematrix I symbolizes an identity operator of size 2NDOF × 2NDOF . PZi
is the result of I⊗ I⊗ . . . PZ . . . ⊗ I, a Kronecker product of NDOF terms where the i-th

term is a Pauli-Z gate. Similarly, PZZij
is the result of I⊗ I⊗ . . . PZ . . . ⊗ . . . PZ ⊗ I, a Kronecker product of NDOF terms where the i-th and j-th terms are

Pauli-Z gates.
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Hamiltonian can be easily transformed into a unitary op-
eration U by performing matrix exponentiation. Given that
the Pauli-X operator commutes with itself, it is possible to
separate the exponentiation without using the Lie–
Trotter–Suzuki decomposition formula, and write as follows:

UHA
βj􏼐 􏼑 � exp −iβjHA􏼐 􏼑

� e
− iβj 􏽐

NDOF

k�1
PXk

� 􏽙

NDOF

k�1
e

− iβjPXk.

(42)

Replacing this expression in equation (42), it is possible
to obtain

UHA
βj􏼐 􏼑 � 􏽙

NDOF

k�1
e

− iβjPXk

� 􏽙

NDOF

k�1
I⊗ I⊗ , . . . , ⊗ e

− iβjPX ⊗, . . . , ⊗ I.

(43)

It can be proved that the expression e− iβjPX represents
a unitary matrix corresponding to a Rotation-X quantum
gate, according to the following equation:

e
− iβjPX � Rx 2βj􏼐 􏼑. (44)

Equations (43) and (44) show that the unitary operation
corresponding to the Hamiltonian HA can be represented in
a quantum circuit by applying to each qubit a Rotation-X
gate controlled by an angle 2βj � 2∆t(1 − s(j∆t)). Tis
circuit implementation is depicted in Figure 6.

Te process of mapping the Hamiltonian HB into
a unitary operation UHB

is similar. Combining equations
(33) and (40), it follows that

UHB
cj􏼐 􏼑 � exp −icjHB􏼐 􏼑

� exp −icj aI + 􏽘

NDOF

k�1
bkPZk

+ 􏽘

NDOF

k�1
􏽘

NDOF

m�1
ckm PZZkm

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.
(45)

It can be demonstrated that every term in HB commutes
with each other and, therefore, equation (45) can be re-
written as follows:

UHB
cj􏼐 􏼑 � exp −icja

�I􏼐 􏼑 􏽙

NDOF

k�1
exp −icjbkPZk

􏼐 􏼑 􏽙

NDOF

k�1
􏽙

NDOF

m�1
exp −icjckmPZZkm

􏼐 􏼑. (46)

Te frst term in equation (46) can be disregarded given
that it is a constant overall phase and therefore it is canceled
during the normalization process of the quantum state. As
a result, the unitary operation UHB

consists of two types of
terms: single and double Pauli-Z operators. Following
a similar approach to that used in the mapping of HA, the
Pauli-Z Hamiltonian results in a Rotation-Z when mapped
into a quantum circuit. In a similar fashion, the double
Pauli-Z operator results in a combination of CNOT and
Rotation-Z gates. Tese mappings are shown in Figure 7.

As a summary, equation (34) represents a gate-based
quantum computing approximation of the quantum adia-
batic theorem. In this approximation, the quantum evolution
from a base Hamiltonian HA to a cost Hamiltonian HB is
executed by successively applying the unitary operations UHA

and UHB
to a ground energy state of HA. Tis is the basis of

the QAOA used to solve QUBO problems. While in the

quantum adiabatic theorem both the parameters βj and cj

directly depend on the function s(t), the original version of
the QAOA algorithm does not model this dependence due to
the function s(t), and the fnal evolution time T being un-
known. As such, the QAOA performs a classical optimization
loop over the full set of 2P parameters βj and cj to optimize
the objective function. A clear disadvantage of this approach
is the large number of parameters that need to be optimized,
adding complexity to the optimization landscape. As a solu-
tion, Brandhofer et al. [37] proposed to harness the mono-
tonically increasing nature of s(t) to model βj􏽮 􏽯

P

j�1 and

cj􏽮 􏽯
P

j�1 as monotonically decreasing and increasing sets, re-
spectively (recall that βj � Δt(1 − s(jΔt)) and cj � Δt s

(jΔt), and therefore as j⟶ P, βj will decrease and cj will
increase). For this, βj and cj are modeled as follows:
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cj � mc ·
2i − 1
2p

, for i ∈ 1, . . . , P{ },

βj � mβ · 1 −
2i − 1
2p

􏼠 􏼡, for i ∈ 1, . . . , P{ }.

(47)

Tis linear approach has two advantages. First, the op-
timization can be performed over only the set mc, mβ􏽮 􏽯 in-
dependently of the value of P, which greatly simplifes the
optimization process. Second, the physical meaning of β and c,
given by the quantum adiabatic theorem, is respected. As such,
this approach is used in all experiments shown in this paper.

Finally, the parameter P, described in Section 4.1 as the
number of intervals in which the timespan [0, T] is dis-
cretized, can be interpreted as a measure of how exact the
approximation will be with respect to the original quantum
adiabatic algorithm. As a result, it is expected to obtain
higher performance solutions (closer to the optimum) as P

increases.
Te QAOA is a hybrid algorithm in the sense that it still

requires a classical counterpart to optimize the parameter set
mc, mβ􏽮 􏽯. If the circuit is formed and measured multiple
times, a set of feasible solutions will be obtained. Tese
solutions can then be classically evaluated to obtain a metric
for the performance obtained by using certain values of
mc, mβ􏽮 􏽯. Finally, a classical optimization scheme can be
used to tune these parameters to converge towards an op-
timum. While the fnal measurement of a quantum circuit
will contain a certain degree of stochasticity, as the cost
Hamiltonian guides the search of a lower energy state, it is

expected that themeasurement process will assign larger and
larger probabilities to those solutions close to the optimum.

A nice interpretation of the QAOA technique is to
understand it as a black box that transform an optimization
problem defned over a discrete domain into one that is
defned over a continuous set of variables mc, mβ􏽮 􏽯. As such,
it opens the door to a wider variety of classical optimization
approaches, such as stochastic gradient descent (SGD). A
diagram of the quantum circuit for the QAOA algorithm is
shown in Figure 8.

4.4. Constrained Optimization Using QAOA. Te previous
sections described how gate-based quantum computing can be
utilized to solve quadratic unconstrained binary optimization
(QUBO) problems. However, many practical problems require
the modeling of constraints on their decision variables. For this
paper, the exposition will be limited to linear equality con-
straints on the number of sensors, as this is the most common
type of constraint found in the OSP literature. Equation (48)
shows a linear equality constrains, whose parameters are
contained in the diagonal matrix Q3 ∈ RNDOF × RNDOF :

Q3 x
→

� ns. (48)

Currently, there are two main approaches to in-
corporating these types of constraints into the QAOA
framework. Te frst approach is to add the linear constraint

as a penalization term of the form α(Q3 x
→

− ns)
2 into the

objective function. Te parameter α controls how much
a deviation with respect to the constrain is penalized. If fnely

I
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…
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…
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∣ψ2〉
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∣ψNDOF〉

∣ψk〉

…
…

∣ψ1〉

∣ψ2〉

∣ψNDOF–1〉

∣ψNDOF〉

∣ψk〉

∣ψ1〉

∣ψ2〉

∣ψNDOF–1〉

∣ψNDOF〉

∣ψk〉

Rx (2βj)

=
UHA (βj)

e–iΔt(1–s( jΔt))HA

e–iΔt(1–s( jΔt))PX

e–iΔt(1–s( jΔt))PX

e–iΔt(1–s( jΔt))PX

Rx (2βj)

Rx (2βj)

Rx (2βj)

Rx (2βj)

Figure 6: Circuit mapping for Hamiltonian HA.

∣ψ1〉

∣ψ2〉

∣ψk〉

∣ψNDOF〉

∣ψ1〉

∣ψ2〉

∣ψk〉

∣ψNDOF–1〉∣ψNDOF–1〉

∣ψNDOF〉

I

I

I

I

e–iγjbkPZk Rz (2γjbk)

(a)

+ +

∣ψ1〉

∣ψ2〉

∣ψk〉

∣ψm〉

∣ψNDOF–1〉

∣ψNDOF〉

∣ψ1〉

∣ψ2〉

∣ψk〉

∣ψm〉

∣ψNDOF–1〉

∣ψNDOF〉

I

I

I

I

I

e–iγjckmPZZkm

(b)

Figure 7: Quantum circuit mapping for Hamiltonian H2. (a) Single Pauli-Z operators, representing linear variables in the objective
function, are mapped into a single rotation-Z gate. (b) Double pauli-Z operators, representing quadratic terms in the objective function, are
mapped into a structure composed of two CNOT gates with a single Rotation-Z gate in between.
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tuned, the optimization algorithm will naturally avoid un-
feasible solutions due to their high cost. A natural advantage
of this approach is that the penalization term is also
a quadratic function and, therefore, can be naturally in-
corporated and encoded into a quantum circuit using the
techniques reviewed in Section 4.2. However, this approach
incorporates into the algorithm the complexity of fnding the
correct value for the hyperparameter α. Te second ap-
proach ofers a solution for this problem under the condition
that the matrix Q3 � I. Under this consideration, the lit-
erature proposes for the Hamiltonian HA, presented in
Section 4.3, to be changed for a “XY” Hamiltonian [37],
HXY, as shown in the following equation:

HXY � 􏽘
(k,m)∈G

PXk
PXm

+ PYk
PYm

, (49)

where G is a set containing all the pairs of the form
(1, 2), (1, 3), (1, 4), . . .(NDOF − 1, NDOF)􏼈 􏼉, without re-
peating indices. As expected, the terms in HXY commute
with each other and therefore its associated unitary oper-
ation can be written as follows [37]:

R
XY
km βj􏼐 􏼑 � e

iβj PXk
PXm

+PYk
PYm

􏼐 􏼑
�

1 0 0 0

0 cos
βj

2
􏼠 􏼡 i sin

βj

2
􏼠 􏼡 0

0 i sin
βj

2
􏼠 􏼡 cos

βj

2
􏼠 􏼡 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(50)

When an XY Hamiltonian is used instead of the Tra-
ditional Hamiltonian HA presented in Section 4.3, the initial
state needs to change to fulfll the requirement of being
a ground state of HXY. Te new initial state is known as
a Dicke state |DNDOF

ns
〉, and its formulation is shown in

equation (51), as described in [37]:

D
NDOF
ns

􏼌􏼌􏼌􏼌􏼌 〉 �
1

���������

NDOF

ns

⎛⎝ ⎞⎠

􏽶
􏽴 􏽘

k1 ,...,kNDOF
∈ 0,1{ },

k1+k2+,...,+kNDOF
.

k1 k2, . . . , kNDOF

􏼌􏼌􏼌􏼌􏼌 〉.

(51)

Tis initial state assigns equal probabilities to all those
states that contain exactly ns entries equal to one. Te XY
Hamiltonian HXY will then perform a “swapping” operation
between two qubits at a time (changing a pair of qubits from
0 to 1 and from 1 to 0), keeping the number of qubits fnally
measured as 1 constant and therefore exclusively exploring

solutions that are feasible under the constrain I x
→

� 􏽐
NDOF
i�1 ns.

Tis approach to tackling linear constraints has the advantage
of not adding the α hyperparameter to the model. However, it
is less fexible since it can only deal with constraints of the
form shown in equation (48). Additionally, the generation of
the Dicke state and the implementation of the XY Hamil-
tonian HXY require more quantum gates than the Traditional
Hamiltonian HA described in Section 4.3.

Both approaches will be tested in the numerical case
studies presented in this paper.

5. Proposed Framework for OSP Using QAOA

As mentioned in Section 2, the QAOA-based framework to
fnd near-optimal sensor confgurations in civil structures uses
the modal strain energy (MSE) as an objective function [22].
Te reason for this is the quadratic form of the MSE function,
which makes it ideal for its translation as a QUBO instance.
Since the QAOA is a combinatorial optimization solver, the
MSE is modifed to include binary variables that represent the
selection of sensor positions. Equation (52) presents the
modifed version of the MSE, where the dependency on the set
of selected sensor positions S (as shown in equation (3)) is
dropped in favor of the binary variables xp and xq:

MSE � 􏽘

NDOF

i�1
􏽘

NDOF

j�1
􏽘

NDOF

p�1
􏽘

NDOF

q�1
ϕpikpqϕqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌xpxq. (52)
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Figure 8: Quantum approximate optimization algorithm framework.
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As the term |ϕpikpqϕqj| is completely determined by the
dynamic properties of the structure, equation (52) represents
a quadratic objective function dependent on the set of binary
variables x1, . . . , xNDOF

􏽮 􏽯.
For this paper, we limit ourselves to only considering

equality constraints, i.e., we have a budget of ns sensors to
install in the structure. Tis constraint is presented as

􏽘

NDOF

i�1
xi � ns. (53)

Consequently, the optimization problem that is going to
be solved using the QAOA approach is described in the
following equation:

max 􏽘

NDOF

i�1
􏽘

NDOF

j�1
􏽘

NDOF

p�1
􏽘

NDOF

q�1
ϕpikpqϕqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌xpxq,

s.t. 􏽘

NDOF

i�1
xi � ns.

(54)

When the equality constraint is introduced using
a Traditional Hamiltonian HA, the objective function is
modifed with the corresponding penalization term, as
shown in the following equation:

max 􏽘

NDOF

i�1
􏽘

NDOF

j�1
􏽘

NDOF

p�1
􏽘

NDOF

q�1
ϕpikpqϕqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌xpxq − α 􏽘

NDOF

i�1
xi − ns

⎛⎝ ⎞⎠

2

.

(55)

Te proposed framework to solve equations (54) or (55)
using the QAOA approach is listed below as an eight-step
process:

(1) Create a FEM model of the structure to obtain the
stifness and mass matrices.

(2) Solve the eigenvalue and eigenvector problem posed
by equation (2) to obtain the modal shape matrix Φ.

(3) Use equation (52) to compute the coefcients
􏽐

NDOF
i�1 􏽐

NDOF
j�1 |ϕpikpqϕqj| for each of the terms xpxq of

the QUBO objective function using the MSE criteria.
Recall from Section 4 that xpxp � xp since xp is
a binary variable.

(4) Apply the relevant constraints to the problem. In
particular, the proposed framework considers that
the number of sensors that can be placed on the
structure is equal to ns. As such, a restriction of the
type 􏽐

NDOF
i�1 xi � ns must be introduced via either

a penalization term or the use of the XY mixer
Hamiltonian, following the processes explained in
Section 4.4.

(5) Using the mapping strategies described in Section
4.3, generate the circuit corresponding to e− icjHB and
e− iβjHA or e− iβjHXY , depending on the penalization
strategy chosen in step 4. Repeat this structure P

times (j ∈ 1, . . . , P{ }) and fnalize with a measure-
ment operation.

(6) Te generated quantum circuit is executed and
measured ne times. During each measurement,

a binary vector x
→

representing a solution for the
optimization problem is obtained. Using the ob-
jective function, the cost of each of these solution
vectors is computed and averaged.

(7) A classical optimizer is used in conjunction with the
average cost to tune the parameters mc, mβ􏽮 􏽯 to-
wards a local optimum. Te quantum circuit is
treated as a black box function for this process, i.e.,
cost � QAOA(mc, mβ).

(8) Steps 6 and 7 are repeated until a stop criterion is
reached (either a metric of performance, a maximum
number of iterations or any other criteria particular
to the classical optimizer used).

Once the parameters mc, mβ􏽮 􏽯 have been successfully
tuned, a fnal set of quantum circuit measurement are ex-
ecuted to estimate the discrete probability distribution over
the space of feasible solutions. Te main objective of this
paper is to assess how well this probability distribution can
represent the solution of the original COP problem.

Finally, it is important to assess the number of gates
required by this proposed approach to map an optimization
problem into a gate-based quantum computer as a function
of the structure’s complexity and desired degree of accuracy.
For this analysis, we will assume the worst-case scenario,
which is a matrix K and Φ such that all the pairs xpxq have
a non-zero coefcient in the objective function. While this is
seldom to occur in practice, given that real matricesK andΦ
usually contain zero entries, it allows us to study the upper
limit in the number of gates as the size of structure increases.
Under the aforementioned conditions, and assuming that
the total number of degrees of freedom is NDOF, equation
(52) indicates that the maximum number of unique and
independent pairs xpxq with p≠ q in the objective function
is given by (N2

DOF − NDOF)/2 while NDOF terms are of the
form xpxp. Terefore, the objective function will have
(N2

DOF − NDOF)/2 quadratic terms and NDOF linear terms
(since xp represent binary variables, terms of the form
xpxpare equivalent to xp). Te extra terms added to the
objective function due to an equality linear constraint using
the penalization term technique can be factorized into these
terms, and thus do not produce extra gates in the quantum
circuit. As discussed in Section 4.2, each quadratic term in
HB will require three gates (remember that each quadratic
term is mapped using two CNOTgates and one Rotation-Z
gate), while each linear term will only require one. As such,
the size of the unitary operation UHB

is at most 3(N2
DOF −

NDOF)/2 + NDOF � 3N2
DOF/2− NDOF/2 gates. On the other

hand, the number of gates generated by HA will depend
linearly on the number of variables. Terefore, the size of
the overall quantum circuit is controlled by the cost
Hamiltonian encoding and is quadratic on NDOF. Figure 9
shows how the number of quantum gates scale with the
number of degrees of freedom in the structure for diferent
values of P.
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6. Experimental Validation

Tis section presents results regarding the application of the
proposed framework to two case studies of varying size.
However, before delving into the case studies description
and the results obtained by the QAOA approach, it is
necessary to list a set of experimental considerations taken
into account for the execution of the quantum circuits.

6.1. Experimental Considerations

6.1.1. Determination of the Penalization Parameter α.
Experimentally, we found that the QAOA performed better
when the objective values are in the range comprehended
between ∼1 and ∼10, approximately. For this purpose, we
divided each one of the QUBO terms 􏽐

NDOF
i�1 􏽐

NDOF
j�1 |ϕpikpqϕqj|

in the objective function by a constant corresponding to the
total modal strain energy contained in the structure. By
doing this, we are efectively normalizing the problem to
obtain values in the aforementioned range. Tis modifca-
tion of the objective function has the following advantages:
(i) it preserves the ranking of solutions, which is funda-
mental since we do not want to alter the optimization
problem, just to normalize it, (ii) it only requires to know the
value of the total modal strain energy contained in the
structure (assuming sensors at all degrees of freedom), which
is easily computable by a simple matrix multiplication op-
eration concerning the stifness and modal matrices and
does not require any type of optimization procedure, and
(iii) since the problem is already normalized, we can defne
α � 1 and still have a well-scaled penalization term, in which
all the feasible solutions have higher objective values than
the nonfeasible ones. With this approach, we avoid the
cumbersome process of defning the parameter α, which
usually requires extensive testing and is problem dependent.

6.1.2. Performance Measurement. For reporting purposes,
the raw value of the MSE achieved by the solutions obtained
with the QAOA approach does not give a clear indication of
how good or bad the solutions are. To overcome this
challenge, we will follow the approach described by
Brandhofer et al. [37] and defned a normalized performance
metric, r, shown in equation (56) for a given candidate

solution x
→

i ∈ x
→

i􏼚 􏼛
2NDOF

i�1
.

r x
→

i􏼒 􏼓 �

MSE x
→

i􏼒 􏼓 − MSEmin

MSEmax − MSEmin
, if 􏽘

NDOF

j�1
xij � ns,

0, if 􏽘

NDOF

j�1
xij ≠ ns,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

where xij is the j-th component of the candidate solution x
→

i,
and MSEmax and MSEmin are the highest and lowest modal
strain energies that can be obtained using a feasible confg-
uration, respectively. In equation (56), a performance of r � 0
is automatically assigned to all infeasible solutions. On the
other hand, the case r � 1 will correspond to the optimal
solution. Note that in a practical OSP problem, this nor-
malization performance metric would be impossible to
compute, since it requires knowledge of global maximum and
minimum solution. However, the case studies presented in
this paper are designed to be small enough that an extensive-
search solution is possible in a couple of minutes, hence
allowing for the normalized performance to be computed.

As explained in Section 3.4, the output of QAOA’s
quantum circuit is a quantum state that can be interpreted as
a discrete probability distribution over the space of feasible
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Figure 9: Number of quantum gates required to map the OSP problem for a structure of NDOF degrees of freedom, using multiple levels of
repetitions in the QAOA algorithm.

18 Structural Control and Health Monitoring



and nonfeasible solutions, pQAOA( x
→

i). Using equation (56),
we can give a performance metric for how well this dis-
tribution assigns probability to optimal solutions by
computing

r pQAOA􏼐 􏼑 � 􏽘
2NDOF

i�1
pQAOA x

→
i􏼒 􏼓 · r x

→
i􏼒 􏼓, (57)

where a weighted normalized performance is computed
using as weights the probability values assigns to each
feasible and nonfeasible solution.

6.1.3. Computational and Optimization Considerations.
Due to the general unavailability of quantum hardware at the
moment of writing this paper, all the results presented in this
section were obtained using a quantum simulator program,
which is a piece of code that can be executed in a traditional
computer to simulate the behavior of a quantum computer.
Tis places important limitations on the size of structures
that can be analyzed. In particular, since each qubit in the
quantum computer represents a degree of freedom in the
structure, we are limited to analyze structures of ∼20 degrees
of freedom. Te reason for this limitation is the exponential
nature of quantum states with respect to the number of
qubits. As mentioned in Section 3.3, unitary matrices reach
a size of 2n × 2n, where n is the number of qubits in the
system. As a consequence, the analysis of a structure with 20
candidate locations for sensors will require the execution of
operation concerning matrices with 220 × 220 � 1.099 × 1012
elements, which is already at the limit of what a desktop
computer can handle comfortably for experimentation
purposes.

Te quantum simulator used was PennyLane 0.33.1 [38],
executed as a Python 3.10.8 library in a computer with
128GB of RAM, and an AMD Ryzen Treadripper PRO
3955WX 16-Cores processor. For the classical optimization
loop, we have used the ADAM optimizer [39] to found
optimal values for mc, mβ􏽮 􏽯. Te optimization termination
criteria were the same for all experiments and correspond to
fnalize the optimization cycle if 500 iterations have been
achieved or if the objective function has not been improved
above a certain tolerance in three consecutive iterations. As
a tolerance for improvement, we used ϵ � 10− 4 .

6.2. Case Studies Description. We have chosen to test the
QAOA proposed methodology on the same system at dif-
ferent scales to better compare how does the algorithm
performs as the size of the structure increases. Consequently,
the approach proposed in Section 5 will be experimentally
tested on Warren truss bridges of fve (WT5) and 11 nodes
(WT11), depicted in Figures 10(a) and 10(b), respectively.Te
nonsupported degrees of freedom are noted in each fgure. All
truss elements in both structures have the following prop-
erties: cross-sectional area of A � 1.43 × 10− 2 m2, Young’s
modulus E � 200GPa, density ρ � 7850 kg/m3, and length
L � 2m. Te stifness matrix and mass matrices for both
structures are computed using a fnite element approach,

employing truss elements and equivalent lump masses at the
nodes. After the supported degrees of freedom are released
from the structures, the candidate locations to place sensors
(corresponding to the nonsupported degrees of freedom) are
reduced to six for WT5 and 18 for WT11. Additionally, the
modal mass participation factors assuming a uniform exci-
tation vector in the horizontal and vertical directions were
computed to select a set of target modes for both structures.
For the results used in this paper, we selected a set of the most
signifcant modes such that they contributed 95% of the total
efective mass. Following this approach, the target modes
selected for WT5 are mode 1, mode 2, and mode 5, while for
WT11 mode 1 through mode 4.

As mentioned before, these structures are small enough
that their optimal sensor confguration can be computed
using an exhaustive search approach. Table 4 lists the total
number of possible sensor confgurations for both structures.

Table 5 lists the 5 feasible candidate sensor confgura-
tions with the highest normalized performance for each
structure, following equation (56).

6.3. Experimental Results. As mentioned in Section 4, the
QAOA approach can be understood as a black-box function
that changes the original discrete optimization problem into
a continuous optimization problem dependent on the pa-
rameter set mc, mβ􏽮 􏽯 through equations (47) and (48). We
start this section by exploring what are the characteristics of
the normalized performance function produced by the
QAOA algorithm. For this, fgures 11(a) and 11(b) show the
normalized performance landscape obtained in both case
studies, respectively. To produce these plots, we have varied
the number of circuit repetitions (rows) and the Hamiltonian
used as a mixer (columns). Te color bar range indicates
normalized performances, which varies from 0 to 1. In the
title of each plot, we have noted the maximum normalized
performance achieved in each particular case. It is important
to note that these are not optimization results, but the
landscapes of the normalized performance function obtained
by just varying the parameters mβ and mc from 0 to 2π.

In Figure 11(a), which corresponds to the WT5 case
study, several notable observations emerge. Firstly, it is
evident that higher values of parameter P, corresponding to
the number of QAOA circuit repetitions, strongly correlate
with the highest normalized performance achieved. Sec-
ondly, when considering an equivalent number of circuit
repetitions, the XY mixer Hamiltonian consistently out-
performs the Traditional Hamiltonian in terms of normal-
ized performance. Tis outcome aligns with our initial
expectations, as the XY mixer Hamiltonian inherently in-
corporates the equality constrain related to the number of
sensors to be placed in the structure, thereby constraining
the search space accessible to the QAOA. On the other hand,
the Traditional mixer Hamiltonian uses a penalization ap-
proach to enforce this constraint, which while efective, it
does not reduce the search space available to QAOA.

Additionally, while for the most part, the Traditional
Hamiltonian landscapes lack a discernible structure, the XY
Hamiltonian exhibits a distinctive horizontal “stripped”
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pattern. Tis behavior suggests that the concentration of
higher performance levels occurs at specifc values of mβ with
a relatively lower infuence of the parameter mc. Tis ob-
servation provides valuable insights into the functionality of
the XY Hamiltonian. It is important to recall that mβ is as-
sociated with the mixer Hamiltonian, dictating the states
explored during the quantum optimization process. Con-
versely, mc is linked to the cost Hamiltonian, determining the
states which will be assigned a higher probability based on
their superior normalized performance. Considering these
roles, it is logical that for a smaller structure—where there are
only 15 feasible candidate locations that the XY Hamiltonian
will explore—the selection of which states to explore domain
the overall normalized performance evaluation.

In the context of the case study concerning WT11, as
depicted in Figure 11(b), several key observations emerge.
First and foremost, unlike the WT5 case study, there is no
evident improvement in performance with an increase in the
number of circuit repetitions, P. Tis diference in behavior
hints at a possible shortcoming with the linearized approach
to defne the parameter set βj, cj􏽮 􏽯

P

j�1 from the set mβ, mc􏽮 􏽯,
where for larger structures, it may be necessary to explore
nonlinear dependences. On a diferent note, the XY Ham-
iltonian continues to be the preferable approach in terms of
normalized performance when compared against Tradi-
tional Hamiltonian. Te observed diference in normalized
performance between both Hamiltonians enforces our in-
tuition that reducing the available solution space by
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Figure 10: Structures considered in the case studies. (a)Warren truss bridge with fve nodes (WT5). (b)Warren truss bridge with 11 nodes (WT11).

Table 4: Total number of sensor confgurations and number of feasible sensor confgurations for both case studies presented in this paper.

WT5 WT11
Total number of sensor confgurations 2NDOF � 26 � 64 2NDOF � 218 � 262,144

Number of feasible sensor confgurations NDOF
ns

􏼠 􏼡 �
6
2􏼠 􏼡 � 15 NDOF

ns

􏼠 􏼡 �
18
4􏼠 􏼡 � 3060

Table 5: Top 5 optimal solutions obtained by performing an exhaustive search approach for both case studies.

Solution ranking
WT5 WT11

Normalized performance Sensor locations (DOFs) Normalized performance Sensor locations (DOFs)
1 1.0 1, 5 1.0 4, 6, 14, 16
2 0.994 2, 3 0.968 10, 12, 14, 16
3 0.994 3, 6 0.968 4, 6, 8, 10
4 0.793 3, 5 0.963 2, 4, 6, 8
5 0.793 1, 3 0.963 12, 14, 16, 18
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structurally integrating the existing constraints into the
QAOA circuit is conducive to better overall performance.

In general terms, the landscapes produced by the QAOA
in the WT11 can be classifed as “barren plateaus” [40] given
the lack of clear maxima or minima locations. Tis uni-
formity hints at an increased level of difculty in pinpointing
global optimal points, probably due to the use of a linear
approach to compute the parameter set βj, cj􏽮 􏽯

P

j�1 in a larger
and more complex case study. Despite this difculty, a subtle
stripped pattern can still be observed for the HXY mixer
Hamiltonian, reinforcing our intuition with respect to the
diferent roles that mβ and mc play in the optimization of the
QAOA circuit. In stark contrast, the Traditional Hamilto-
nian loses all identifable patterns, explaining the poorer
results obtained.

Now we turn our attention to the results obtained when
the parameters mβ, mc􏽮 􏽯 are optimized. For this, we ini-
tialized the ADAM optimizer with the best points identifed
in the respective heatmap plots. Tese favorable initial
conditions are employed to evaluate the potential efec-
tiveness of the QAOA approach.Te optimization cycle uses
the considerations outlined in Section 6.1.3. Trough our
experimentation with the ADAM optimizer, we have ob-
served that an increase in the number of optimization cycles
typically does not correspond to a subsequent increase in
fnal performance. Tis behavior can be attributed to the
optimization process often converging to a local optimum
point within approximately 100 iterations. Subsequent it-
erations tend to refne the parameters towards points that
provide only marginal improvements to the solution.
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Figure 11: Optimization landscape for the (a) WT5 case study and (b) WT11 case study. In each case, the left column presents results
obtained using a Traditional Hamiltonian mixer (HA), while the second column presents results obtained using a XY Hamiltonian mixer
HXY. Rows indicates diferent values for the number of circuit repetitions, P. Finally, the title of each subplot reveals the maximum
normalized performance achieved in each case.
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To ensure robustness, each optimization run was re-
peated fve times, and the standard deviation was repre-
sented as error bars to provide insights into the stability of
the outcomes. Figure 12 illustrates the normalized perfor-
mance attained after this optimization process for both case
studies. Tis approach not only allows for a detailed ex-
amination of the optimized results but also provides
a measure of the variability in performance achieved
through repeated optimization runs.

In the context of the WT5 case study, as depicted in
Figure 12(a), the normalized performance exhibits a clear
increase with a higher number of circuit repetitions. Tis
outcome aligns with expectations stemming from the uti-
lization of the Quantum Adiabatic theorem in the QAOA
derivation, where the parameter P represents the granularity
for the discretization of the total adiabatic time. Analyzing
the choice of Hamiltonian for the mixing operation, it is
evident that the XY mixer consistently outperforms the
Traditional Hamiltonian across all cases. Tis result is in
accordance with our expectations, as the XY Hamiltonian’s
capacity to constrain the search space to feasible solutions
should inherently result in signifcant advantages in terms of
performance. Notably, for the highest number of circuit
repetitions tested (P � 64), mixer Hamiltonian achieve
a very high normalized performance, indicating that the
QAOA is capable of identifying optimal sensor confgura-
tions for the WT5 case study structure.

Examining the results for the WT11 case study, illus-
trated in Figure 12(b), we can observe that the Traditional
mixer Hamiltonian exhibits an irregular performance as the
value of P increases. Te XY mixer Hamiltonian exhibits
a similar, though more consistent trend. Te normalized
performance remains largely constant, with a notable in-
crease observed only in the most extreme case of P � 64. Te
fact that performance does not clearly improve as the values
of P increases for the WT11 case study can be interpreted as
evidence that, for larger structures, the linear process used to
defne the parameter set βj, cj􏽮 􏽯

P

j�1 from mβ, mc􏽮 􏽯 may not
be sufciently fexible. It is essential to consider that, despite
the lower fnal overall performances in comparison to the
smaller case study WT5, the larger structure of WT11 in-
troduces a signifcantly expanded search space. As a matter
of fact, as shown in Table 4, the size of the feasible space of
WT11 is roughly 200 times larger than the space of WT5.
Consequently, normalized performances ranging between
40% and 50% still imply a noteworthy capacity of the al-
gorithm to produce high-quality solutions.

A signifcant drawback of the proposed quantum-based
approach is highlighted by the capability of QAOA, par-
ticularly when utilizing the Traditional Hamiltonian (HA),
to yield infeasible solutions with a non-null probability.
However, as the number of circuit repetitions P increases
and the algorithm refnes its performance, we should expect,
at least in theory, a diminish in the probability of sampling
a nonfeasible solution. Ideally, the probability of sampling an
infeasible solution should tend towards zero.

Figure 13 provides a visual representation of the
probability of sampling an infeasible solution for both case
studies, exclusively focusing on the Traditional mixer
Hamiltonian case, since when the XY mixer Hamiltonian is
used, this probability is by defnition zero, as nonfeasible
states are not explored.

Te analysis of Figure 13 shows that, for the WT5 case
study, the probability of sampling an infeasible solution
efectively tends toward zero as the number of circuit rep-
etitions increases. As a matter of fact, for the case P � 64,
case study WT5 reaches a probability of sampling infeasible
solutions of less than 1%. However, for theWT11 case study,
while there is an overall decreasing trend, this is irregular,
with a peak in P � 4. Tis result holds considerable sig-
nifcance, since it underscores the fact that for larger case
studies, a linear approach for defning the QAOA parameter
set may not be a conducive to improved performance.

Finally, we are interested in the probability of sampling
the optimal solution for each particular case study. But
before delving into the results, it is crucial to emphasize
that a low probability of sampling the optimal solution does
not necessarily imply poor model performance. To illus-
trate this point, consider a hypothetical scenario where
a QAOA circuit can sample the optimal solution with only
a 2% probability. While this might initially seem in-
adequate for certain optimization purposes, a closer ex-
amination reveals its practical efcacy. In a real-world
scenario, this quantum circuit could retrieve the optimal
solution, on average, after just 50 executions. Given the
computational efciency of individual circuit executions
and the rapid evaluation of the MSE objective function, we
can envision a situation where we execute the quantum
circuit 500 times, retrieving 500 candidate vectors, and
retain the highest-performing solution. In this context, we
would have a high degree of confdence that the highest-
performing solution is in fact, the optimal solution.
Consequently, it is not imperative for a model to provide an
extremely high probability of sampling the optimal solu-
tion to be deemed suitable. What matters more is the
model’s ability to sample the optimal solution with a non-
negligible probability, which is not trivial when the size of
the feasible space may contain an enormous number of
elements.

Examining Figure 14 for the WT5 case study, we can
observe that the probability of sampling the optimal solution
increases with the number of circuit repetitions, peaking at
42.7% for the XY Hamiltonian for the case P � 16. However,
for P � 64, an unexpected decrease in performance occurs
for both mixing Hamiltonians, deviating from the antici-
pated improvement predicted by the QAOA theory. One
potential explanation for this unexpected trend lies again in
the linear dependence of QAOA parameters βj, cj􏽮 􏽯

P

j�1 on

the optimization parameter set mβ, mc􏽮 􏽯. It is possible that at
higher numbers of circuit repetitions, more fexible de-
pendencies are required to continue improving the results,
even for relatively small case studies.
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Nevertheless, despite the fuctuations, it is noteworthy
that for all cases except P � 1, the probability of sampling the
optimal solution remains non-negligible. Tis clearly in-
dicates the potential of QAOA as an algorithm for fnding
optimal solutions, especially when multiple circuit repeti-
tions are employed.

Te bar plot corresponding to the second case study,
WT11, was excluded from the previous analysis due to a null
probability of sampling the optimal solution for all numbers
of circuit repetitions and both mixing Hamiltonians.
However, achieving exactly the optimal solution is an

extremely uncommon property among heuristic and met-
aheuristic algorithms. Most of them are designed to return
a solution that is close enough to the optimum. To explore
the efectiveness of the solutions found by the QAOA ap-
proach in the more complex case study, WT11, we relax the
condition from requiring the algorithm to sample the op-
timal solution to only requiring it to sample one of the top
10% best feasible solutions. Te results regarding this re-
laxation are presented in Figure 15. Tis adjusted analysis
provides a more nuanced understanding of the algorithm’s
performance, allowing for an exploration of its ability to
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Figure 12: Normalized performance achieved for both case studies using the traditional mixer Hamiltonian (HA, in blue) and the XYmixer
Hamiltonian (HXY, in orange) for varied number of circuit repetitions, P. (a) Normalized performance for WT5. (b) Normalized per-
formance for WT11.
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Figure 13: Probability of obtaining infeasible solutions for both case studies using the traditional mixer Hamiltonian HA. As a reminder,
infeasible confgurations are those that contain a number of sensors diferent than two for WT5, or diferent than 4 for WT11.
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generate solutions that, while not necessarily optimal, rank
among the top-performing solutions within the feasible
solution space.

Te results from Figure 15 reveal that the probability of
sampling one of the top 10% feasible solutions is consistently
higher for the XY mixer Hamiltonian, an anticipated result,
given its ability to reduce the search space to only solutions
that are feasible. Te maximum probability achieved in this
relaxed condition is 37.2% (for the case P � 64 with the XY
mixing Hamiltonian). Tis result demonstrates the QAOA’s
capability to discover top-performing solutions, even for
a relatively complex structure like the WT11 case study.

To conclude this analysis, we would like to draw attention
to the results obtained with the traditional Hamiltonian, HA.

For the best-performing case, P � 16, the probability of
sampling a top 10% performing solution is approximately
15%. Tis raises concerns about whether this Hamiltonian is
indeed fnding high-performing solutions or merely getting
trapped in a local minimum that assign an almost uniform
probability to all feasible solutions, with just a modest higher
probability weight to near-optimal solutions. In other words,
whether the optimization cycle is primarily employed to avoid
sampling nonfeasible solutions rather than to identify truly
superior solutions. To explore this assumption further,
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Figure 14: Probability of sampling the optimal solution for the frst case study, WT5.
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Figure 15: Probability of sampling the top 10% best feasible solutions for the second case study, WT11.
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Figures 16(a) and 16(b) show the results corresponding to the
cases in which we want to sample the top 20% and top 50%
feasible solutions, respectively.

As suspected, the observed pattern for the Traditional
mixer (HA) persists: the best results achieved are relatively
close to the thresholds of 25% and 50% in each case. In
contrast, for the XY mixer, the probability of sampling the
top 25% or top 50% consistently surpasses these thresholds,
for all values of P. Tis pattern suggests that the model
utilizing the XY mixer is profcient at assigning a higher
probability to solutions that are closer to the optimum,
rather than generating a rather uniform probability distri-
bution over the feasible solution space. Tis discovery holds
signifcant implications, indicating the incapability, at least
within the tested levels of circuit repetitions, of the tradi-
tional mixer to consistently fnd optimal solutions. It un-
derscores the importance of incorporating the optimization
constraints in a structured manner through the mixer
Hamiltonian, as exemplifed by the XY mixer.

7. Concluding Remarks, Challenges, and
Future Opportunities

Tis paper presented a comprehensive introduction to gate-
based quantum computing and quantum-based combina-
torial optimization within a structural health monitoring
context. For this, a novel framework that uses the Quantum
Approximate Optimization Algorithm (QAOA) to solve the
optimal sensor placement (OSP) task was proposed to the
reader. Te framework tackles the OSP task by converting
the mean strain energy (MSE) metric into a Quadratic
Unconstrained Binary Optimization (QUBO) problem that

can be easily encoded into the Hamiltonian of a quantum
system and then minimized using the quantum adiabatic
theorem. Te proposed methodology was applied to nu-
merical models of Warren truss bridges of varying size. Te
optimization landscape produced by the QAOA was ana-
lyzed by performing a search process over the parameter
space. Te landscape results indicated that the proposed
approach is able to generate high-quality solutions to the
OSP combinatorial problem, especially when the accuracy of
the QAOA technique is increased by augmenting the size of
the associated quantum circuit. Results related to the op-
timization procedure reveal a similar trend: near-optimal
solutions can be discovered by the proposed approach,
especially when the optimization constraints relationships
are included into the quantum circuit via the mixer Ham-
iltonian. Tis is evidenced by the generalized higher results
obtained by this approach when compared against the
Traditional Hamiltonian that relies on a penalization ap-
proach for constraint incorporation.

Te results shown in this paper mark a frst step towards
the study and exploration of current state of the art
quantum-based optimization techniques in structural en-
gineering applications. Additionally, the results obtained in
this paper highlight challenges that quantum optimization
approaches need to overcome to become a suitable alter-
native to current classical techniques for the OSP problem.
In what follows, we describe these challenges and outline
possible paths of research to address them.

First, the results show that the QAOA obtains high
performant solutions when using a high number of circuit
repetitions, especially for the smallest case study. However,
more circuit repetitions also imply an increase in the
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Figure 16: Probability of sampling (a) the top 25% and (b) top 50% best feasible solutions for the second case study, WT11.
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number of gates required to execute the quantum circuit,
which imposes limitations in the practical realization of the
QAOA approach. For this paper, we avoid any in-
conveniences related to measurement noise by using
a quantum computer simulator. Nevertheless, when using
real quantum hardware, experimental results report
a maximum of P ∼ 5 before the quantum state is completely
overcome by noise. While an algorithmic solution to noise
measurement seems like a less promising path to follow, this
issue could be minimized by exploring diferent optimiza-
tion strategies that require a smaller number of circuit
repetitions to achieve high-performing results.

In a similar context as the frst challenge, a high number of
circuit repetitions also implies the use of a higher number of
parameters βi􏼈 􏼉

P
i�1 and ci􏼈 􏼉

P
i�1, which make the optimization

processmore challenging in practice. For this, the exploitation
of physical restrains of the transition function s(t), partic-
ularly its monotonically increasing nature, presents a poten-
tial pathway to increase the number of circuit repetitions
while simultaneously maintaining the optimization problem
tractable with a relatively low number of parameters. A linear
parameterization strategy was explored in this paper to this
very end. However, we observed a clear shortcoming to this
technique, especially in the results regarding the largest case
study, denoted asWT11. For this, the results are crucial for the
implementation of the QAOA approach in structures of
practical relevance to the exploration of diferent transition
functions, ideally nonlinear ones, in order to increase the
fexibility of the algorithm.

As a third challenge, we can identify the incorporation of
constraints from the original optimization problem into the
quantum circuit. Te fndings shown in this paper clearly
indicate that improved results are obtained by incorporating
the equality constrains using a XY Hamiltonian versus using
a penalization approach.Tis is likely due to the reduction in
the search space introduced to the model by the former, as
compared to the latter. While the incorporation of equality
constrains are already successfully incorporated using this
framework, it is still unknown how to incorporate alter-
native constraints, such as inequality constrains or logic
relationships between decision variables that commonly
appear in similar contexts. Particularly important are con-
straints that prevent a phenomenon known as “sensor
clustering” in the structure, where optimal confgurations
tend to group the sensors in certain parts of the structure.
From a practical point of view, this is not desired as it
prevents practitioners from analyzing all locations in the
structural system, and therefore suitable constraints should
be incorporated to prevent this clustering phenomena. To
tackle these challenges, further research into alternative
mixer Hamiltonians should take place, as this option avoids
the incorporation of additional penalization hyper-
parameters into the model.

Finally, while the use of the ADAM optimizer in this
paper shows promising results, enhanced results could be
obtained using optimization routines specifcally designed
for the QAOA algorithm, that possibly exploit the physical
constraints imposed by the Quantum Adiabatic Algorithm.

In this case, a constrained optimization forming a particular
ordering in the sets βi􏼈 􏼉

P
i�1 and ci􏼈 􏼉

P
i�1 seems like an attractive

area for future development in the area.
It is worth noting that the aforementioned research paths

share a common attribute—they can be explored using
a quantum simulator environment, without requiring the
availability of a quantum computer. Terefore, they can be
tackled in parallel to the development of quantum-capable
hardware. As a fnal comment, we want to remark that the
aforementioned challenges are independent to the fact that
a quantum computer simulator was used to produce the
results presented in this paper. Prior literature in the area
commonly suggests that the performance of quantum al-
gorithm will be improved once quantum-capable hardware
becomes available at a large scale. We disagree with this
notion. Improved results should not be expected by simply
exchanging the quantum simulator environment for an
execution process on quantum hardware. Indeed, a quantum
computing simulation framework assumes an ideal, noise-
free quantum computer and, therefore, measurement noise
is not considered. Tis represents ideal execution conditions
that are not likely to be achieved in the immediate future. As
such, the challenges encountered in quantum computing
algorithms nowadays should not be thought of as challenges
produced by the lack of quantum hardware, but challenges
related to the algorithms themselves. Consequently, we
frmly believe that addressing these “algorithmic” challenges
by early testing of quantum approaches in diferent disci-
plines, including Structural Health Monitoring, is just as
critical as the development of large-scale, noise-free quan-
tum hardware for the wide-spread adoption of quantum
computing algorithms in practical engineering settings.
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