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Oversized vehicles have the potential to collide with walls or ceilings when passing through tunnels and bridges, posing a serious
threat to the health of transportation infrastructure and public safety. Hence, it is crucial to accurately and immediately detect
vehicle dimensions, including length, width, and height, to avoid such accidents. Using computer vision and view geometry, this
study presents a framework for automatically detecting and quantifying the outer contours of vehicles through monocular vision.
First, trafc scene images are captured which are then used to create a transformation matrix of the ground surface. Second,
a modifed Mask region-based convolutional neural network (Mask R-CNN) is constructed to detect and segment the vehicle
instances from the video frames. Finally, a view geometry-based algorithm was developed to detect the outer contours of passing
vehicles and quantify their dimensions. In the feld test, the accuracy of the vehicle segmentation and the identifed vehicle
dimensions was validated. In addition, the proposed method’s superiority was confrmed by comparing it with two other existing
approaches. Te comparison results show that the proposed method has better accuracy and is more convenient to use since it
does not require a premeasured reference. In addition, the developed method can accurately identify not only the dimensions of
vehicles parallel to the road but also vehicles that are changing lanes or making a U-turn.

1. Introduction

Over the past decades, the increasing number of vehicles on
the road has caused a rising global concern regarding trafc
accidents caused by unregulated transportation [1]. In an
attempt to increase their profts, some transporters un-
lawfully modify their vehicles to signifcantly expand their
carrying capacity. Nonetheless, the modifed vehicles usually
pose hidden dangers, such as excessive length, width, and
height, which are the primary causes of most trafc crashes
[2]. With the development of large-scale engineering pro-
jects in power construction, metallurgy, petrochemicals, and
other felds, there is an increasing demand for the trans-
portation of ultralarge pieces of equipment [3]. When
maneuvering through curves, tunnels, and bridges, these
oversized vehicles have a signifcantly higher probability of
colliding with walls or ceilings [4]. Te rising number of
oversized vehicles on the road is signifcantly endangering

the structural integrity of bridges, tunnels, and other in-
frastructure. In Beijing, for instance, 50% of bridges have
sufered collisions with oversized vehicles, causing over 20%
of total damage to bridges [5]. Furthermore, these collisions
can result in catastrophic casualties, thereby underscoring
the seriousness of the issue. For example, four passengers
died as a result of a collision between a double-decker bus
and a railroad bridge in Onondaga, New York [6]. In 2014,
there were over 34 serious collisions between vehicles and
bridges in Texas, and it is estimated that repairing a damaged
bridge will cost between $200,000 and $300,000 [6]. In 2012,
28 passengers died in a tour bus collision with a tunnel wall
on Swiss Route 9 [7]. Direct collisions between large vehicles
and tunnel walls constitute 42.3% of all tunnel trafc ac-
cidents, according to statistical evidence [8]. Hence, averting
collisions between vehicles and trafc infrastructure on road
sections with restricted passing dimensions is of utmost
importance for ensuring trafc safety.
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In real trafc conditions, collisions between oversized
vehicles and transportation infrastructure are typically
prevented in the following three ways:

(1) Passive Warning. Te most common and cost-
efcient method of reducing the risk of trafc acci-
dents is to provide drivers with warning signs [9].
Traditional trafc signs are typically placed along
roads to alert drivers of upcoming turns, vertical
clearances, and horizontal clearances for bridges or
tunnels. However, drivers often tend to underestimate
the dimensions of their vehicles, which leads to the
inefectiveness of warning signs in preventing vehicle
collisions (only 10–20% efectiveness) [10].

(2) Sacrifcial Protection. Height limit beams and width
limit piles are common sacrifcial protection facilities
used to limit the size of passing vehicles [11, 12].
Indeed, the height limit beams and width limit piles
can efectively halt oversized vehicles and protect
important trafc structures such as bridges and
tunnels. However, there is a potential risk of injury or
death to the driver and passengers of the stopped
vehicle and subsequent vehicles.

(3) Proactive Monitoring. In addition to manual mea-
surements, common commercial proactive moni-
toring methods include infrared measurements and
laser measurements. Manual measurement is accu-
rate but can interrupt trafc. Infrared and laser
measurements can accurately capture the outer
contour of the vehicle without interrupting trafc
[13]. Once a vehicle is detected to be oversized, it will
be warned and directed of the road.

Of the three methods mentioned above, proactive
monitoring is deemed the most efcient measure to prevent
collisions by detecting the dimensions of vehicles in
a noncontact manner and alerting the driver of an oversized
vehicle in advance [14]. Nevertheless, laser and infrared-
based devices come with a hefty cost for installation and
maintenance, which hinders their widespread use. In a study
conducted by Cawley [10], it was observed that installation
costs for a single laser or infrared-based vehicle dimension
inspection system can be as high as $135,000 and possibly
more when postinstallation maintenance is taken into ac-
count. Tus, there is a pressing need to propose a real-time
vehicle dimension measuring method that is more eco-
nomical and precise.

In the past decade, image measurement techniques have
become popular as a newmethod for obtaining vehicle shape
information [15–18]. Using this technology, the entire
system for detecting oversized vehicles can be implemented
with less hardware and at a reduced cost, with simpler in-
stallation and better real-time performance. Rezaei et al. [15]
and Lu et al. [16] accurately identifed vehicles from videos
and obtained their true dimensions. However, in these
studies, the camera had to be calibrated using satellite images
and feature point matching, which signifcantly increased
the complexity of the method. Furthermore, the identif-
cation accuracy of the vehicle’s dimensions can be greatly

impacted when the satellite images are blurred. To eliminate
the reliance on satellite imagery, Zhang et al. [17] developed
a multitarget tracking and image calibration method that
uses two cameras on bridge pylons to measure vehicle length
and position. Even without the need for satellite imaging, the
camera should still undergo precalibration using a standard
vehicle. Likewise, Lu et al. [18] established a vision-based
algorithm for defning the 3D bounding box of a vehicle and
determining whether the vehicle is overheight, and Liu et al.
[19] proposed an algorithm to detect the wheelbase of
a vehicle using a monocular camera. Similarly, the camera
must be calibrated by fnding a reference with a known
height.

In the current study, based on computer vision and view
geometry, a framework is developed for detecting and
quantifying vehicle outer contours automatically using
monocular vision. Te frst step involves proposing an
automatic camera calibration algorithm, which does not
depend on satellite images or references, to achieve a partial
transformation relationship between 2D images and 3D
environments. Ten, a modifed target detection network
based on Mask R-CNN [20] is developed to accurately
segment road vehicles at the pixel level. Finally, a novel 3D
vehicle bounding box identifcation algorithm is proposed to
determine whether the length, width, and height of a vehicle
exceed the threshold values. Te proposed method can
identify and segment vehicles automatically, without the
need for manual point selection and without the assumption
that the vehicle must be parallel to the road direction (as
assumed in the studies of Zhang et al. [17] and Lu et al. [18]).
Tus, the proposed method is applicable to vehicles
changing lanes or making a U-turn. Te study presents
a comparative analysis of the proposed method against other
established techniques and investigates the impact of vehicle
driving angle, camera position, and camera resolution
separately. Te positive results of the study underscore the
accuracy and efciency of the proposed method, showcasing
its potential in detecting oversized vehicles and preventing
infrastructure collisions.

2. Architecture of the Proposed Method

In this study, a monocular vision-based method for auto-
matic detection and quantifcation of vehicle exterior con-
tour is proposed. Figure 1 illustrates the specifc fowchart of
this method, which consists of four primary steps:

(1) Calibration of the Camera. First, a novel algorithm is
proposed to automatically calibrate the camera by
capturing an image of the road surface and de-
termining the vanishing point in the camera’s feld
of view.

(2) Segmentation of the Vehicle in Pixel Level. Second,
the vehicle instances are segmented from each frame
of the video using the modifed Mask R-CNN.

(3) Construction of Vehicle’s 3D Bounding Box. Sub-
sequently, the vehicle’s 3D bounding box is precisely
constructed at varying angles in each video frame.
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(4) Identifcation of Vehicle’s Outer Contour Dimensions.
Finally, the dimensions of the vehicle, i.e., length,
width, height, and driving angle, can be determined
using the proposed method.

In the above steps, calibration with standard references
and manual selection of key points in the video is un-
necessary. Terefore, the proposed method ofers enhanced
convenience in identifying vehicle dimensions and de-
termining if it exceeds the threshold. In Section 2.1–2.3, each
step will be elaborated in detail.

2.1. Automatic Calibration of the Road Surface in the Image.
In order to ascertain the precise dimensions of an object
from 2D image, it is frst necessary to establish an accurate
transformation relationship between the 2D image and the
3D world [21], i.e., camera calibration. Traditional methods
typically involve premeasuring the precise dimensions of
a reference object [18, 22]. However, these approaches have
limited applicability in road sections where fnding a refer-
ence object or measuring its dimensions is challenging.
Moreover, the methods require repeated manual measure-
ments in case of any changes in camera position or referential
object dimensions, thereby proving to be time-consuming and
labor-intensive. Terefore, this study presents a reference-free
algorithm to determine the measurements of the vehicle based
on the camera’s height and angle. As there are no reference
objects, it is only possible to establish a transformation re-
lationship between the image’s road surface and the actual
road surface, which constitutes an incomplete calibration.
Based on this incomplete calibration, the dimensions of the
vehicle can still be determined, and the detailed methodology
is presented in the following subsections.

Te fowchart of the incomplete calibration is illustrated
in Figure 2. In the fgure, O-xyz is the world coordinate
system, O is the origin, and x, y, and z are the three axes.
Oc-xcyczc is the camera coordinate system, Oc is the origin,
and xc, yc, and zc are the three axes. α refers to the conversion
factor between the image coordinate system and the spatial
coordinate system, with α≠ 0. Camera parameters f, h, φ,
and θ represent the focal length, height, pitch, and defection

angle of the camera, respectively. Te projection formula
from world coordinates onto camera coordinates can be
obtained by a simple derivation [23]:

u �
αu

α
�

fx

ycos(φ) − zsin(φ) + hsin(φ)
,

v �
αv

α
�

fhcos(φ) − fysin(φ) − fzcos(φ)

ycos(φ) − zsin(φ) + hsin(φ)
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

In order to identify the vehicle’s dimensions in the world
coordinate system, it is recommended to frst rotate the
y-axis of the world coordinate system in the same direction
as the road direction. Next, the roadside camera coordinate
system is converted to the world coordinate system by ro-
tation and translation. Te rotation matrix R contains two
components: the rotation angle φ+ π/2 around the x-axis
and the rotation angle θ around the z-axis, which can be
expressed as follows:

R � Rx φ +
π
2

􏼒 􏼓Rz(θ)

�

cos(θ) −sin(θ) 0

−sin(φ)sin(θ) −sin(φ)cos(θ) −cos(φ)

cos(φ)sin(θ) cos(φ)cos(θ) −sin(φ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2)

and the translation matrix T is as follows:

T �

1 0 0 0

0 1 0 0

0 0 1 −h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

Terefore, the homogeneous coordinate form of (1) can
be expressed as follows:

(u, v, 1)
T

� KRT(x, y, z, 1)
T

� H(x, y, z, 1)
T
,

(4)
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Figure 1: Flowchart of the proposed method.
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where K is the intrinsic matrix of the camera and H is the
transformation matrix,H= [hij], where i= 1, 2, 3 and j= 1, 2,
3, 4. After expanding the formula, equation (4) can be re-
written as follows:

u �
h11x + h12y + h13z + h14

h31x + h32y + h33z + h34
,

v �
h21x + h22y + h23z + h24

h31x + h32y + h33z + h34
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

It can be seen from (5) that when the z value of a spatial
point is known, the 3D coordinates of that point can be
uniquely determined. Tis incomplete calibration is one of
the foundations for determining the dimensions of the
vehicle. In addition, it is also necessary to determine the
locations of the vanishing points, i.e., the intersection of
parallel lines in the 2D image. In the present study, an al-
gorithm to automatically identify three major, mutually
orthogonal vanishing points in an image is proposed. Te
three vanishing points are as follows: the frst vanishing
point υ1 located in the direction of the road, the second
vanishing point υ2 located in the direction perpendicular to
υ1 and parallel to the road surface, and the third vanishing
point υ3 located in the direction perpendicular to the road
surface. In the general camera view, the position of the third
vanishing point υ3 tends to be at infnity [24].Terefore, only
υ1 and υ2 need to be derived in the present study.

Te method for determining the vanishing point is
shown in Figure 3, and the specifc processes are as follows:

(i) Step 1:
Take photos of the road and segment the road surface
as a region of interest (ROI) using a well-trained
model [25], as shown in Figures 3(b) and 3(c). Seg-
mentation of the raw photos can exclude the efect of
background and reduce the computational cost [26].
Note that one is actually free to choose other well-
developed semantic segmentation models and embed
them in the method to achieve the same purpose.

(ii) Step 2:
Te Canny operator [27] then fnds the obvious
edgelets in the ROI, as shown in Figure 3(d). In
general trafc scenarios, the edgelets pointing to

vanishing points υ1 and υ2 are mainly distributed on
the road surface, such as lane edges and trafc index
lines [28]. Each edgelet has three characteristic pa-
rameters, i.e., position xi, direction di (perpendicular to
the edge gradient), and intensity si (gradient magni-
tude). Te line passing through each edgelet and
parallel to its direction is represented as a vector li.

(iii) Step 3:
All edge pixel points xi are collected into the edgelet
set E. Take any two edgelets xj and xk from E and
calculate the intersection of lj and lk as a candidate
vanishing point υjk� lj× lk, as shown in Figure 3(e).
Ten, all other edgelets xi in E are traversed, and it is
determined separately whether the angle β between li
and the line xiυjk is less than the specifed threshold
βth. When β<βth, xi votes one score to the candidate
vanishing point υjk, which can be expressed as follows:

score υjk, xi􏼐 􏼑 �

si

1 − e
− cosβi

1 − e
−1􏼠 􏼡, βi < βth(i ∈ E),

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where si is the intensity value of each edgelet. Te
reason for using si as the weighting factor is that
edgelets with larger gradients are more likely to be
real edges rather than noise. From (6), it can be seen
that the score of the candidate vanishing point υjk
depends on its consistency with the direction of the
remaining edgelets. Te directional consistency
reaches a maximum value of si when li passes
through the candidate vanishing point υjk, while it
drops to 0 when the deviation angle β exceeds βth.
When traversing all edgelets, the candidate van-
ishing point with the highest score is selected as the
frst vanishing point υ1, and the edgelets supporting
υ1 will be removed from E. Ten, the above pro-
cedure is repeated to fnd the second vanishing
point υ2. Te two vanishing points identifed in the
case are plotted in Figure 3(f ), and the red crosses in
the fgure indicate the unselected candidate van-
ishing points.
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Figure 2: Diagram of the real world and camera coordinate systems.
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It can be seen that a higher value of βth will result in
a higher number of false vanishing points being misidentifed
as real vanishing points in each iteration, thus requiring
repeated computations and reducing computational ef-
ciency. Conversely, a lower βth value will cause candidate
vanishing points located in close proximity to the same
vanishing point to be falsely classifed as two primary van-
ishing points. Terefore, this study determined a suitable βth
of 10° after conducting trial calculations. Tis ensures both
sufcient computational efciency and accurate identifcation
of the vanishing point.

2.2. Pixel-Level Vehicle Segmentation with Modifed Mask
R-CNN. Te Mask R-CNN model is an instance segmen-
tation framework that was proposed by He et al. [24] in 2017.
It is simple, fexible, and versatile, providing precise mask and
bounding box coordinates for multiple objects simulta-
neously. Given that the present study involves the detection
and segmentation of numerous vehicles inmonocular images,
this feature is particularly important. Furthermore, it is worth
noting that the implementation of Mask R-CNN has yielded
outstanding outcomes in multiple benchmarks like COCO
and Pascal VOC [24]. Terefore, it guarantees both robust-
ness and accuracy when employed in this research.

Based on the Faster R-CNN model [29], the Mask
R-CNN can perform object detection and segmentation by
adding binary mask branches to each ROI, as shown in
Figure 4. In the previous subsection, a well-trained Mask
R-CNN model is used to efectively detect the ground
surface. Given that the accuracy of the ROI boundaries will
not afect the detection of small edges in the ROIs, it is
sufcient to use the original Mask R-CNN alone. However,
when segmenting vehicle instances from trafc scene im-
ages, the accuracy of the original Mask R-CNN will become

unsatisfactory. Tis is because there are three problems in
this process: frst, the complex background in real trafc
scenes signifcantly disrupts the segmentation of foreground
vehicles; second, the computational efciency is crucial for
the real-time detection of passing vehicles; and third, there is
a large amount of unfavorable training data in the vehicle
segmentation dataset, which is extremely difcult to dis-
criminate and extremely easy to discriminate, which con-
sumes a large amount of training resources. In this study, the
following adjustments to enhance the training performance
were implemented: (1) adding a Squeeze and Excitation
module to improve the model’s attention to foreground
vehicles and reduce the interference of complex background;
(2) adding a Tree module to improve the backbone of the
network to reduce the complexity of information transfer
and improve the overall efciency; and (3) adding a gradient
harmonizing mechanism to improve the gradient density
and focal loss-based loss function. By suppressing both easy
and challenging samples, the samples are harmonized across
the gradient to improve training performance.

2.2.1. Add Squeeze and Excitation Attention Gate. Te ac-
curate segmentation of the vehicle directly determines the
accuracy of vehicle outer contour dimension identifcation.
However, the original Mask R-CNN network can hardly
fully extract vehicle features, so it is often a challenge to
distinguish vehicles from other moving objects. When ve-
hicle shadows and complex backgrounds are considered, the
fnal identifed dimensions may have signifcant errors.
Terefore, the feature extraction capability of Mask R-CNN
needs to be further enhanced. In this study, a Squeeze and
Excitation (SE) attention mechanism [30] is used in the
feature extraction module, as shown in Figure 5. Te SE
attention mechanism consists of three main procedures:
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Figure 3: Automatic determination of vanishing points: (a) photographing the road surface; (b) segmenting the road surface with well-
trained Mask R-CNN; (c) region of interest; (d) identifying edge pixels in the range of ROI with the Canny operator; (e) illustration of
candidate vanishing point estimation; (f ) identifying vanishing points υ1 and υ2.
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(i) Step 1:
Squeezing the original H×W×C feature map into
1× 1×C dimensions by global average pooling:

zc � Fsq uc( 􏼁

�
1

H × W
􏽘

H

i�1
􏽘

W

j�1uc(i, j).

(7)

uc in the equation can be expressed as follows:

uc � vc ⊗X � 􏽘
C′

s�1
vs

c ⊗ x
s
, (8)

where uc represents the convolution result for the
convolution kernel of group c with channel

number s and the feature map with channel
number s, v denotes the learned set of flter
kernels, vc refers to the parameters of the cth
flter, and ⊗ denotes the convolution operation.
Te purpose of the frst step is to improve the
correlation between the individual channels
rather than merely summarizing them.

(ii) Step 2:
Te 1 × 1 ×C feature map obtained by squeezing
is passed through the fully connected layer, and
the importance of each channel is predicted.
Ten, the predicted values are normalized to
a range of 0-1 using the Sigmoid activation
function to obtain the weights of diferent
channels. Finally, the weights are applied to the
original feature map:
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s � Fex(z,W)

� σ(g(z,W))

� σ W2δ W1z( 􏼁( 􏼁,

(9)

where δ is the Rectifed Linear Unit (ReLU),W1 is the
frst fully connected operation for dimensionality
reduction, and W2 is the second fully connected
operation that can restore dimension to the input
dimension. After two fully connected layers, the
weights of each feature map are normalized with the
sigmoid activation function (σ).

(iii) Step 3:
Multiply the initial feature map element-wise with
the weight matrix:

􏽥xc � Fscale uc, sc( 􏼁

� scuc.
(10)

Te convolution operation in Step 1 amplifes both the
useful and useless feature information. However, the key
aspect to consider is that the excitation is not solely de-
pendent on the convolutional output. Instead, it combines
the squeezed feature map with the output of the convolu-
tional layers using a weighted sum. Te weights are learned
during the training process and adaptively adjust the im-
portance of each spatial location in the input feature map.
Te sigmoid activation function is applied to the output of
the excitation, which serves as a gate mechanism to control
the amount of information fowing through the channel.Te
sigmoid function calculates the probability of each spatial
location being selected, and the weighted sum of the input
feature maps is computed. Tis process results in a new
feature representation that emphasizes the most relevant
spatial locations and suppresses the less important ones.
Tus, the SE attention module can efectively amplify the
useful feature information and reduce the useless feature
information.

2.2.2. Modifcation of the Backbone. Te backbone of the
original Mask R-CNN is ResNet [31], which can convert
information from the previous layer to the next layer
through skep connections. Generally, adding too many
layers to a residual block may impede the fow of in-
formation in the network and reduce computational ef-
ciency [32]. However, computational efciency is crucial to
the real-time detection of passing vehicles. Terefore, in this
study, a more lightweight Tree module is employed [33], as
shown in Figure 6. As can be seen from the fgure, the 1× 1
layer in the Tree module can increase the dimensionality,
while the 3× 3 layer is further processed by subsequent
convolutional layers. Finally, the outputs of all 1× 1 layers
and 3× 3 layers are connected and converted through
a transition layer. Compared to ResNet, the Tree module has
a deeper network structure, while the model is less complex
and more efcient.

2.2.3. Focal Loss Function with Gradient Harmonizing
Mechanism. Te loss function of the original Mask R-CNN
consists of three components: the loss of Fast R-CNN, the
loss of Region Proposal Network (RPN), and the loss of
Mask. Furthermore, the loss of Fast R-CNN is composed of
the loss of classifcation and the loss of prediction box re-
gression. Te loss function for classifcation is the cross-
entropy (CE) loss function:

CE(p, y) �
− log(p), if y � 1,

− log(1 − p), otherwise.
􏼨 (11)

In equation (11), y takes the value 1 or −1, representing
the foreground or background, respectively. p denotes the
probability that the model classifes a pixel as a foreground,
and its value ranges from 0 to 1. Here, a function of p is
defned as follows:

pt �
p, if y � 1,

1 − p, otherwise.
􏼨 (12)

Combining with equation (12), equation (11) can be
simplifed as follows:

CE(p, y) � CE pt( 􏼁

� −log pt( 􏼁.
(13)

It can be seen that CE represents the diference between
the real probability distribution and the predicted proba-
bility distribution. Te smaller the value of CE, the better the
model prediction. However, under complex trafc condi-
tions, the positive and negative samples in the vehicle
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Figure 6: Architecture of the Tree module.
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detection dataset are extremely unbalanced. In addition,
most of the vehicles to be detected are irregular in shape and
belong to the difcult samples. Terefore, directly using the
CE loss function for object classifcation can result in sig-
nifcant errors. Terefore, the Focal Loss [34] (FL) function,
which can automatically assign weights based on the dif-
culty of the sample, is employed in this study:

FL pt( 􏼁 � −α 1 − pt( 􏼁
clog pt( 􏼁, (14)

where α is the weighting factor for regulating the positive and
negative sample imbalance, (1 − pt) is used to adjust the
weights of difcult and easy samples, a small pt indicates a poor
classifcation and a difcult sample, a large pt indicates a good
classifcation and an easy sample, and c is a moderator; that is,
by increasing or decreasing c, easy or difcult samples can be
better trained. In order to determine the distribution of easy or
difcult samples in the dataset, a gradient norm g is defned:

g � p − pgt

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�
1 − p, pgt � 1,

p, pgt � 0,

⎧⎨

⎩

(15)

where p is the probability of model prediction and pgt is the
label of ground truth. It can be found that g is proportional to
the difculty of the sample, and the larger g is, the harder it is
to detect. In this study, the distribution between the gradient
norms and the fraction of samples is plotted in Figure 7.

As can be seen from Figure 7, the fraction of samples
with a gradient norm close to 0 is the largest. Te proportion
of samples decreases rapidly as the gradient norm increases
but is also large as the gradient norm approaches 1, which
means that the number of both easy and particularly difcult
samples is large. During the training process, easy samples
and extremely difcult samples may present additional
challenges. Tis is because the network is unable to learn
new features from very easy samples and adjust the weights
efectively. Furthermore, the gradient norm “g” for these
extremely difcult samples is signifcantly larger than the
norm for an average sample. As a result, the accuracy of the
model may be reduced.Terefore, both easy and particularly
difcult samples should be suppressed in training. In this
study, the gradient density (GD) is defned to measure the
fraction of samples within a certain gradient range and is
used to balance the easy and particularly difcult samples,
which can be expressed as follows:

GD(g) �
1
lε

􏽘

N

k�1
δε gk, g( 􏼁, (16)

where

δε(x, y)

1, y �
ε
2
≤y +

ε
2
,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

lε � min g +
ε
2
, 1􏼒 􏼓 − max g −

ε
2
, 0􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

In this study, a gradient harmonizing mechanism
(GHM) is proposed to modify the FL function based on GD.
Specifcally, by dividing FL by GD, the loss of large GD is also
suppressed. Tis way, both easy and particularly difcult
samples are suppressed simultaneously so that the samples
are harmonized in gradients:

LGHM−C � 􏽘
N

i�1

FL pt( 􏼁

GD gi( 􏼁
. (18)

2.3. Detection and Quantifcation of the Vehicle’s Outer
Contour. In the preceding section, the incomplete calibra-
tion of the camera, the determination of the vanishing point,
and the segmentation of vehicle pixels were presented.
Subsequently, based on the view geometry, a vehicle’s outer
contour dimension detection and quantifcation method is
developed. Te algorithm has two major steps: (1) detect the
3D bounding box of the vehicle in the image and (2) de-
termine the actual length, width, height, and driving angle of
the vehicle based on the pixel coordinates of the 3D
bounding box. Compared with some existing approaches,
the proposed algorithm can accurately identify the 3D
bounding box of the vehicle at any driving angle. To
demonstrate this superiority, a detailed comparison will be
presented in Section 4. After detecting the 3D bounding box
of the vehicle in the image, it is easy to directly obtain the
dimensions of the vehicle in pixels. Next, based on the
incomplete calibration introduced in Section 2.1, the real
dimensions of the vehicle can be identifed.Te details of the
proposed method will be presented separately in the fol-
lowing sections.

2.3.1. Detection of the Vehicle’s 3D Bounding Box. In Section
2.1, a method for vanishing point determination is presented.
By connecting these two vanishing points, the vanishing line,
which is a line consisting of vanishing points in the horizontal
direction, can be obtained. Based on vanishing points and
vanishing lines, the vehicle’s 3D bounding box can then be
detected in each image frame. In some existing studies [18],
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Figure 7: Gradient norm and fraction of examples.
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the 3D bounding box of a vehicle can be determined by two
fxed vanishing points. However, there must be a strict as-
sumption that the vehicle must be perfectly parallel to the
direction of the road. When the vehicle travels at an angle to
the direction of the road, the results will have signifcant
errors. To demonstrate this, two top-down views of the vehicle
with diferent driving angles are compared in Figures 8(a) and
8(b). As can be seen from Figures 8(a) and 8(b), when using
two fxed vanishing points to construct the vehicle’s 3D
bounding box, the results change signifcantly with the change
of the vehicle’s driving angle. Terefore, for each vehicle, it is
necessary to determine the vanishing point only from the
edgelets corresponding to each vehicle (referred to as the
vehicle’s vanishing point). In addition, when detecting the
edgelets of each vehicle, the area of the vehicle in the image
needs to be selected as the ROI using the network introduced
in Section 2.2, as shown in Figure 8(c). After obtaining two
vehicle’s vanishing points, the 3D bounding box of the vehicle
at any driving angle can then be constructed using the
proposed method, as shown in Figure 8(d).

Te central task of constructing a 3D bounding box for
a vehicle is to determine the pixel coordinates of the 8 vertices of
this box. Te procedure to determine the pixel coordinates of
these 8 vertices is illustrated in Figure 9. Figure 9(a)–9(c)
represent the three calculation steps, and Figure 9(d) shows the
fnal results. In Figure 9, the red line indicates the new boundary
line added at each step, the blue line indicates the boundary line
of the fnal constructed 3D bounding box, and the yellow points
indicate the vertices of the 3D bounding box. Te details of the
three steps illustrated in Figure 9 are as follows:

(i) Step 1. Trough the two vanishing points of the
vehicle, three lines tangent to the vehicle instance are
frst determined (L1∼3 in Figure 9(a)). Since the third
vanishing point is at infnity, it is also possible to
determine two vertical lines tangent to the head and
tail of the vehicle (L4-5 in Figure 9(a)). Depending on
the intersection of the fve lines, four vertices can be
determined (P1-4 in Figure 9(a)).

(ii) Step 2. Next, L6, L7, and L8 can be determined by
connecting the two vehicle vanishing points and the
vertices P3, P1, and P6, respectively. L9 can then be
determined by making a vertical line through the
vertex P2. L6 and L7 intersect at the vertex P5, L8
and L9 intersect at the vertex P6, and L4 and L8
intersect at the vertex P7.

(iii) Step 3. L10 and L11 can be determined by con-
necting the two vehicle vanishing points and the
vertices P4, P7, respectively. L10 and L11 intersect at
the vertex P8. L12 can be determined by connecting
the vertices P5 and P8.

After these three steps, the pixel coordinates of the eight
vertices (P1-8) can be determined. In order to determine the
real length, width, height, and driving angle of the vehicle, it
is necessary to further convert these pixel dimensions to real
dimensions, the details of which will be presented in the next
subsection.

2.3.2. Identifcation of the Vehicle’s Dimensions. After
constructing the 3D bounding box, the dimensions of the
vehicle can be constructed based on the view geometry.
According to the previous section, the pixel coordinates of
the vanishing points m and n, the pixel coordinates of the
vehicle’s vanishing points mv and nv, and the pixel co-
ordinates Pi (ui, vi)

􏼌􏼌􏼌􏼌i � 1, 2, . . . , 8􏽮 􏽯 of the eight vertices can
be obtained from the image. Te real spatial shape and top-
down view of the vehicle are plotted in Figure 10. Note that
the numbering order of the vertices in Figure 10 is diferent
from that in Figure 9. In Figure 10, Lv, Wv, and Hv represent
the true dimensions of the vehicle, respectively. Pi (xi, yi, zi)􏼈􏼌􏼌􏼌􏼌i � 1, 2, . . . , 8} are the coordinates of the vehicle’s 3D
bounding box vertices in the world coordinate system. P1, P2,
P3, and P4 are located at the road surface, and therefore the
corresponding zi � 0 (i� 1, 2, 3, 4).Te distances of P5, P6, P7,
and P8 from the ground are the vehicle height and the
corresponding zi � Hv(i � 5, 6, 7, 8). Te dimensions of
the vehicle include the length, width, height, and driving
angle of the vehicle, which are determined as follows:

(i) Determine the vehicle’s length and width:
As shown in Figure 10, the vertices P1, P2, P3, and P4
are located at the surface of the road.Terefore, they
have zi � 0 (i� 1, 2, 3, 4). Ten, substituting their
pixel coordinates into (5) yields

u �
h11x + h12y + h14

h31x + h32y + h34
,

v �
h21x + h22y + h24

h31x + h32y + h34
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

By solving the above equation set, the real co-
ordinates (x1∼4, y1∼4) of P1∼4 can be obtained from
their pixel coordinates (u1∼4, v1∼4). Based on
a simple geometric relationship, the length Lv and
width Wv of the vehicle can be obtained as follows:

Lv �

�������������������

x2 − x3( 􏼁
2

+ y2 − y3( 􏼁
2

􏽱

,

Wv �

�������������������

x1 − x2( 􏼁
2

+ y1 − y2( 􏼁
2

􏽱

.

(20)

(ii) Determine the vehicle height:
When there is no reference with a known height, Hv

cannot be determined directly from the 2D image.
In this study, Hv is determined with the help of
geometric constraints. Because of the large number
of geometric constraints available, it is necessary to
establish optimization equations to obtain the op-
timum result. Specifcally, the coordinates of P5∼6
are as follows:

Pj � xj, yj, Hv􏼐 􏼑,

j � 5, 6, 7, 8,
(21)
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where (x5∼6, y5∼6)� (x1∼4, y1∼4). Ten, the corre-
sponding pixel coordinates are obtained by
substituting (21) into (5):

􏽥pj � 􏽥uj, 􏽥vj􏼒 􏼓,

j � 5, 6, 7, 8.

(22)

Te pixel coordinates Pj � (uj, vj)
􏼌􏼌􏼌􏼌􏼌j � 5, 6, 7, 8􏼚 􏼛

read from the image are subtracted from the above
equation to form a nonlinear system of equations:

F Hv( 􏼁 � u5 − 􏽥u5, v5 − 􏽥v5, · · · , u8 − 􏽥u8, v8 − 􏽥v8􏼒 􏼓. (23)

Tus, a least squares problem can be constructed:

argHv
min

1
2
F Hv( 􏼁

����
����
2
,

s.tHmin ≤Hv ≤Hmax.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)
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whereHmin andHmax are the lower and upper limits
of Hv, which can be determined empirically based
on the upper and lower limits of local trafc sta-
tistics. Te initial vehicle height Hv is the average of
Hmin and Hmax.

(iii) Determine the vehicle angle:
First, according to Section 2.1, two vanishing points
m and n in the road scene can be identifed. Ten,
the two points m՛ and n՛ can be selected arbitrarily
from the segments Om and On. Te pixel co-
ordinates of m՛ and n՛ can be converted to world
coordinates using (5). Note that the z-coordinates of
m՛ and n՛ are zero. Finally, the vehicle angle αv can be
determined as follows:

αv � arctan
y3 − y2

����
����

x3 − x2
����

����
− arctan

ym′

xm′
. (25)

After the above steps, the length, width, height, and
driving angle of the on-road vehicle can be de-
termined. When applied to monitor the dimensions
of passing vehicles in diferent trafc conditions, the
thresholds for these four parameters can be set
according to specifc requirements. When a vehicle
with dimensions exceeding the thresholds is de-
tected, it can be immediately warned and directed
of the road. Te accuracy and efectiveness of the
proposed method will be analyzed in the following
section.

3. Experiments and Discussion

In this section, the performance of the proposed method is
experimentally analyzed. First, the dataset establishment,
model construction, and implementation details are pre-
sented. Ten, the accuracy of the proposed method is ver-
ifed in a feld test. Subsequently, in real trafc conditions,
the accuracy of the vehicle segmentation is validated. In
addition, to demonstrate the superiority of the constructed
model, two other advanced deep learning algorithms,

namely, You Only Look at CoefcienTs ++ (YOLACT++)
[35] and DeepLabv3+ [36], are compared. Finally, the
proposed method is compared in detail with two other
typical vision-based methods to identify the dimensions of
vehicle.

3.1. Dataset Establishment and Implementation Details

3.1.1. Datasets Establishment. Te training and validation
datasets used in this study are from the public dataset de-
veloped by Sochor et al. [37], while the test images are self-
collected actual road trafc images [36].Te dataset contains
images of vehicles with diferent environments, camera
shooting angles, and weather conditions, and the details of
the dataset assignment are shown in Table 1. As the network
input size is 512 pixels× 512 pixels, to prevent image dis-
tortion, the raw images are all scaled equally, and the excess
is flled with gray pixels. Te comprehensive dataset ensures
the performance of the vehicle instance segmentation model
and thus contributes to the accurate identifcation of the
vehicle’s dimensions. It is worth noting that the image is
annotated with the VGG image annotator, i.e., a manual
annotation software developed by the Visual Geometry
Group (VGG) [38].

3.1.2. Training Confguration. In this study, the Ubuntu
20.04 operating system with Pytorch 1.9.1, CUDA 11.0, and
the CUDNN 8.04 deep learning framework is used to im-
plement the vehicle instance segmentation. Te hardware
confguration is a SuperCloud R8428 G11 and an Nvidia
GeForce RTX 3060. Te dataset is divided into training and
validation sets in the ratio of 9 :1, and the Adam optimizer is
used during the training process. Te hyperparameters
considered include batch size, learning rate, and weight
decay. Te optimal hyperparameters are obtained by vali-
dation, and the specifc values are listed in Table 2.

3.1.3. Evaluation Metrics. To evaluate the modifed Mask
R-CNN and the proposed vehicle’s dimension identifcation
method, the following four metrics are considered:

mmv
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P7
P8
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(m)(n)

α 
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P2
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ń

ḿ

Figure 10: Vehicle’s 3D bounding box diagram.
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(i) Mean average precision (mAP):
mAP is a performance metric that can indicate the
accuracy of the vehicle localization and category
prediction tasks, which can be expressed as follows:

mAP �
AP
N

�
􏽐

N
1 􏽒

1
0 P(R)dR

N
,

(26)

where R is the precision, P is the recall, and N is the
number of vehicle categories. Te closer the mAP is
to 1, the better the model is.

(ii) Intersection over union (IoU):
IoU represents the similarity between the predicted
and real regions of the vehicle in the image, defned
by the following equation:

IoU �
area Ta ∩Tb( 􏼁

area Ta ∪Tb( 􏼁
, (27)

in which Ta and Tb refer to the real vehicle pixels and
the predicted vehicle pixels, respectively.

(iii) Vehicle’s dimension evaluation index:
Te identifed and real vehicle’s dimensions are Sv �

(Wv, Lv, Hv, αv) and Sr � (Wr, Lr, Hr, αr), re-
spectively. Ten, the relative error (RE) of the iden-
tifed vehicle’s dimensions can be obtained as follows:

REL �
Lv − Lr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Lr

× 100%,

REW �
Wv − Wr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Wr

× 100%,

REH �
Hv − Hr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Hr

× 100%,

REα �
αv − αr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

αr

× 100%.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

3.2. Accuracy Verifcation on Experimental Road. To verify
the accuracy of the proposed method, the dimensions of the
test vehicles were identifed and compared with their true
values. During the test, a fxed-focus camera with a fxed
pitch angle was employed. As the test vehicle passes through

the camera’s FOV at diferent driving angles, images are
taken from diferent distances to determine the vehicle’s
dimensions.

Te test vehicle and the test road are shown in Figure 11.
For safety, the test was conducted on a closed experimental
road. Te test vehicle was a Tiguan L, with the measured
dimensions of 4194mm× 1760mm× 1560mm (length-
×width× height). Te rationale for employing a small car as
a test vehicle, rather than a large one, is as follows: (1) Te
essence of the algorithm proposed in this study for iden-
tifying vehicles with dimensions exceeding the limit is
precise identifcation of the vehicle’s dimensions. Te di-
mensions of the vehicle determine whether or not the vehicle
is deemed oversized, based on a human-defned threshold.
During the evaluation of the approach, it is critical to focus
on the conformity between the dimensions identifed and
the actual dimensions of the vehicle. Te size of the vehicle,
whether it is “small” or “large,” has no impact on the
method’s function or on the fnal results’ precision. In case
the threshold is set artifcially smaller than the dimensions of
a “normal” small car, the dimensions of the small car can still
be precisely determined and classifed as a vehicle whose
dimensions surpass the threshold, namely, an “oversized”
vehicle. (2) In this study, feld tests were conducted on the
experimental road and real roads, respectively. In the ex-
perimental road, due to the restriction of the closed test site,
only small vehicles are allowed to enter, while large engi-
neering vehicles are prohibited. In addition, the scheduling
of the large vehicles would be very difcult to match the
diferent photographing needs under diferent parameters.
Terefore, only “normal” small cars were used in the ex-
perimental road. And in the next section on real roads, all
types of vehicles passing through the measurement points
will be considered, both “large” and “normal” vehicles.

In order to verify the efectiveness of the proposed
method for vehicles under diferent driving conditions, three
cases of straight ahead, U-turn, and lane change were
considered. Te real driving angles of the vehicles in the
three cases were obtained based on the top-down photos
taken by the unmanned aircraft. In addition, when the
vehicle passes the FOV of the camera, the vehicle is pho-
tographed at 5m, 20m, and 35m from the camera, re-
spectively. Te focal length of the camera is 8mm, the pitch
angle φ� 12.9°, the shooting angle θ� 37.5°, and the camera
height h� 3.2m. Te specifc models of the camera and lens
are listed in Table 3. Based on the internal and external
parameters of the camera, the transformation matrix H of
the camera can be described as follows:

Table 1: Image dataset for vehicle detection and segmentation.

Training Validation Testing
Modifed Number of images 6858 762 120
Mask R-CNN Resolution (pixel) 512 × 512 512 × 512 1920 × 1080

Table 2: Te well-tuned hyperparameters for modifed Mask R-CNN.

Batch size Learning rate Weight decay Training epoch Optimizer
Modifed Mask R-CNN 64 0.0004 0.0005 100 Adam
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H � KRT

�

f 0 0

0 f 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

cosθ −sinθ 0

−sinφsinθ −sinφcosθ −cosφ

cosφsinθ cosφcosθ −sinφ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 0 0

0 1 0 0

0 0 1 −h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(29)

After obtaining the images of the test vehicle, the
identifed dimensions of the test vehicle in each case are
obtained with the proposed method, and the results are
summarized in Table 4. As can be seen from Table 4, when
the test vehicle is at a distance of 20m, the vehicle di-
mensions can be accurately identifed under all three con-
ditions (error <4%), which validates the accuracy and
feasibility of the proposed method. However, there are
signifcant errors when the vehicle is straight ahead (35m
and 5m) or making a U-turn (5m). Specifcally, it can be
seen from the table that

(1) When the vehicle is turned around at 5m, there is an
obvious distortion in the 3D bounding box con-
structed with the proposed method (error� 57.39%,
19.20%, 29.35%, and 45.56%).Tis is because the side
face or front face of the vehicle cannot be fully
photographed at these camera angles, so the van-
ishing point corresponding to the edgelets on the
front face cannot be accurately determined.

(2) When the vehicle is travelling straight ahead at
a distance of 5m (angle� 0.62), there is also an
obvious error for travelling angle identifcation

(error� 50%). Tis is due to the fact that the true
value is very small (e.g., 0.62°) and that an absolute
error of only 0.31° still leads to a larger relative error
(50%).

(3) When the vehicle is at 35m, the limited resolution of
the camera can also lead to a lack of clarity in the
images. Blurred vehicles in the image can directly
afect the accuracy of vehicle instance segmentation,
which will thus reduce the accuracy of identifying
vehicle dimensions (error� 14.43%, 22.10%, 17.95%,
and 1076.00%).

Indeed, the use of ultrahigh-resolution cameras can be
efective in increasing the measurement distance. However,
this tends to increase the cost of the device signifcantly. In
addition, it is possible to experimentally determine the
optimum camera distance with the highest accuracy.
However, in real-world trafc situations, the road may have
three or more lanes. Once the optimum camera distance has
been determined, this fxed value is hardly suitable for ve-
hicles travelling in all lanes. And to determine the vehicle
distance, other measuring devices such as laser rangefnders
and RGBD cameras are needed. Terefore, it was not and is

5 m

15 m

4194 mm

25 m

17
60

 m
m

1560 mm

Figure 11: When the test vehicle passes the FOV of the camera, photos are taken as it travels to diferent distances.

Table 3: Specifcations of the employed camera.

Equipment Model Specifcations

Camera

MindVision/MV-XG1205GC/M 

Maximum resolution: 4096× 3072
Maximum frame rate: 409 fps

Chroma: Bayer8
Lens mount: C-mount

Sensitivity: 4050mV 1/30 s

Lens

MindVision/MV-LD-8-5M-C 

Focal length: 8mm
Aperture: F1.6∼F22
Mount: C-mount
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not necessary to obtain the optimum camera distance in this
study. Considering that, on a normal road, the vehicle will
always approach the roadside camera from far to near. In
this study, a video of the passing vehicle is captured, and the
vehicle’s dimensions are identifed frame by frame. When
the identifcation result is stable, the mean value of the
identifcation result of the next video frame is taken as the
fnal result, and the detailed analysis will be presented in the
next subsection.

3.3. Field Experiment on Real Road. To further verify the
feasibility and accuracy of the proposed method in real
trafc scenarios, feld experiments were also conducted on
a section of real road.Te experimental site is at the Sanchaji
Bridge over the Xiangjiang River in Changsha, Hunan
Province, China. Videos of passing vehicles are captured by
an industrial camera (MindVision/MV-XG1205GC/M) with
a resolution of 1920×1080 pixels and a frame rate of 30 fps.
Te camera is located on the right side of the road, and the
captured trafc scene is shown in Figure 12. Te ground
truth of vehicle length, width, and height is obtained by
querying the vehicle types. Note that in the algorithm
proposed in this study, it is not necessary to measure any
reference object of known dimensions in advance. Te
camera height is 3m, and the camera angles θ� 49.2° and
φ� 19.3°.

It is obvious that the accuracy of the proposed method
relies on the accurate identifcation of edgelets on the ve-
hicle. However, edge detection from a single video frame
often turns out to be unreliable in practice. Tis is due to the
fact that the size of diferent vehicles varies greatly, and when
small vehicles are too far away from the camera, the edgelet
details in the image can be severely blurred. In addition, as
noted in the previous section, the front or side of the vehicle
may not be fully captured at certain camera angles. To
address these problems, a simple and feasible strategy is to
capture the entire video of a vehicle passing from far to near.
Tat is, the vehicle’s dimensions are identifed frame by
frame from the video, and the average values are determined
as the fnal result. Figure 13 shows an example of identifying
the vehicle’s dimensions from a sequence of video frames.
Te variation of the four identifed dimensions with in-
creasing number of video frames is plotted in Figure 13(b).
Te vertical coordinate in the fgure is the relative error of
the value identifed in each frame to the mean value after
convergence. It can be seen that the values of the four
identifed parameters gradually converge and remain stable
after 25 frames. Admittedly, the number of video frames
required to achieve stabilization should be diferent for
vehicles of diferent speeds. However, it has been found
experimentally that the identifed parameters of normal
vehicles can all reach stability after 30 frames under general
trafc conditions. Terefore, in this study, the video is
recorded starting from the 30th frame after the vehicle is
identifed and continues to be recorded until the vehicle
leaves the camera’s FOV. Te average value of the vehicle’s
dimensions determined in each frame of the recorded video
is taken as the fnal result.

Te accuracy of the proposed method for the fnal
identifcation of the vehicle’s dimensions also depends on
the quality of the vehicle instance segmentation. Terefore,
a comparison with the original Mask R-CNN is necessary to
validate the superiority of the modifed model. In addition,
two other instance segmentation networks based on dif-
ferent architectures (YOLACT++ and DeepLabv3+) are
tested in this subsection, and the test results are compared
with the proposed algorithm. Te same 120 images are used
in the test, and the test details and evaluation metrics are
listed in Table 5. As can be seen from the table, the average
2D IoU of the segmentation results of the modifed Res-
UNet reaches 93.35%, while the average IoU of the original
Mask R-CNN, YOLACT++, and DeepLabv3+ is only
77.91%, 68.21%, and 65.20%, respectively. Te result in-
dicates that the proposed method signifcantly outperforms
the original Mask R-CNN, DeepLabv3+, and YOLACT++
networks in vehicle detection and segmentation under real
trafc conditions. For a more visual comparison, part of the
vehicle segmentation results is also shown in Figure 14. As
can be seen from Figure 14, for the modifed Mask R-CNN,
the interference of complex backgrounds in the images, as
well as the interference of shadows, is efectively eliminated.
In addition, the segmented vehicles have more accurate
edges compared to the original Mask R-CNN. Tis is due to
the fact that meaningless information in the background is
more efectively suppressed by embedding attention blocks.
In addition, the focal loss function with a gradient har-
monizing mechanism can extract the vehicle features more
efciently. Overall, the modifed Mask R-CNN can segment
vehicle pixels from captured images more accurately than
other models, which is an important foundation for accurate
identifcation of a vehicle’s dimensions in this study.

In the feld experiment, a total of 10minutes of video
were collected to identify the dimensions of passing vehicles
and to determine separately whether the dimensions of each
vehicle exceeded the safety threshold. Since there is no actual
dimensional limit required for the experimental road, ar-
tifcial thresholds are set here for length, width, height, and
driving angle: 5m, 2m, 3m, and 5°, respectively. Note that
these thresholds are only used to evaluate the proposed
method and have no practical meaning. In practical ap-
plications, these thresholds need to be set according to the
specifc road condition requirements. After excluding the
completely obscured vehicles, a total of 172 vehicles were
counted in the video, and the results are plotted in Figure 15.
In Figure 15, the length, width, height, and driving angle of
the supervised vehicle are counted as bars. Te manually set
thresholds corresponding to these four parameters are
drawn as four pink planes in the fgure, i.e., vehicles ex-
ceeding the thresholds are considered oversized (highlighted
in purple in the fgure). As can be seen in Figure 15, the
proposed method can visually detect potentially endangered
vehicles when oversized vehicles are present. Road super-
visors can warn the vehicle in the frst instance and direct it
of the road to avoid a serious collision.

To verify the accuracy of the proposedmethod under real
trafc conditions, four vehicles are randomly selected from
the results. Te identifcation results of these vehicles are

16 Structural Control and Health Monitoring



illustrated in Figure 16. As can be seen from the fgure, the
determined vehicle’s dimensions can be approximated to
follow a normal distribution. Tis is because, in the process

of photographing each vehicle, it is driven to the camera
from far to near. When the vehicle is far from or very close to
the camera, it can lead to large errors due to unclear vehicle

Sanchaji Bridge

Figure 12: Te location of the camera on the Sanchaji highway bridge over the Xiangjiang River in Changsha, China.
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Figure 13: Frame-by-frame identifcation of the vehicle’s dimensions: (a) flming of passing vehicles; (b) variation of the identifed vehicle’s
dimensions with video frames.
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contours or lens distortion. Terefore, in this study, the
average value of the identifed vehicle’s dimensions in
a sequence of video images is obtained as the fnal result.
From the identifcation results, it can be seen that the sta-
bility of identifcation can be efectively improved by cal-
culating the average value of several consecutive frames of
images. And the identifcation errors of the four selected
vehicles are all within 4%.

3.4. Comparisons with Existing Vision-Based Vehicle’s Di-
mensions EstimationMethods. In addition to the traditional
methods mentioned in the introduction, a number of vision-
based methods have now been developed for vehicle’s di-
mensions identifcation. To further demonstrate the supe-
riority of the proposed method, the results of the proposed
method and other existing methods are compared in three
typical trafc scenarios. Te three typical scenarios include

vehicles making a U-turn or changing lanes, vehicles with
occlusion, and vehicles with a shadow. In some studies
[39–42], although the detection of vehicle length, width, or
height is proposed, the establishment of a 3D bounding box
is not involved and is not considered here. Terefore, the
studies of Lu et al. [18] and Zhu et al. [22] are reasonably
selected for comparison in this study.

Figure 17 compares the 3D bounding boxes of the ve-
hicles (middle column) and their dimensions (right column)
as determined using the three diferent methods for the three
typical trafc scenarios. Te fgure also presents the ground
truth of the vehicle dimensions and the vehicle type. For
comparison, the identifcation results and limitations of the
three methods are summarized in detail in Table 6. As can be
seen from Figure 17 and Table 6, in all three typical sce-
narios, the vehicle dimensions estimated by the existing
methods difer signifcantly from the ground truth. Partic-
ularly, the method proposed in the study by Lu et al. [18]

Table 5: Details and evaluation metrics for the four methods of training and testing.

Mask R-CNN YOLACT++ DeepLabv3+ Modifed Mask R-CNN
Label types Mask Mask Mask Mask
Training data Open-source Open-source Open-source Open-source
Testing data Self-collection Self-collection Self-collection Self-collection
Number of test images 120 120 120 120
Average 2D IoU (%) 77.91 68.21 65.20 93.35

Raw
Images

Mask
R-CNN

IoU 0.73 0.78 0.81 0.85

DeepLabv3+

0.78 0.75 0.74 0.81IoU

YOLACT++

0.82 0.75 0.64 0.78IoU

Modified
Mask R-CNN

IoU

0.62 0.81 0.85

0.55 0.64 0.58

0.65 0.84 0.78

0.92 0.95 0.94 0.93 0.95 0.89 0.88

Figure 14: Comparisons of the original Mask R-CNN, YOLACT++, DeepLabv3+, andmodifedMask R-CNN for segmenting vehicles from
images with complex trafc backgrounds.
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Figure 16: 3D bounding boxes of vehicles and histograms of dimensions identifed from consecutive image frame sequences.
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shows glaring faws in constructing the 3D bounding box of
the vehicle when it is making a U-turn or lane change.Tis is
because when the vehicle is not parallel to the road direction,
assuming the vanishing point of the vehicle as the vanishing
point of the road will cause a considerable error. Both
existing methods and the method proposed in this study can
identify the dimensions of a vehicle when the vehicle is
obscured or has vehicle shadows. However, the vehicle in-
stance segmentation algorithm used in this study adds an
attention mechanism and a gradient harmonizing mecha-
nism that can detect vehicle pixels more accurately in
complex backgrounds. As a result, the identifcation error of

the method proposed in this study is greatly reduced. In
particular, when vehicle shadows exist, the vehicle instance
segmentation algorithm used in the existing method may
not distinguish the vehicle from the vehicle shadow, which
will result in a large error in the identifcation of the di-
mensions of the vehicle. In addition, after obtaining the 3D
bounding box of the vehicle, the existing algorithms must
have a reference of known size to calibrate the camera when
determining the true size of the vehicle. However, such
a procedure not only increases the complexity of the method
but is also simply unusable in some road sections where it is
difcult to fnd a reference. Te existence of these situations
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Height: 1509 mm

Calibration board Calibration bar
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Figure 17:Te results of identifying vehicles’ dimensions in special trafc situations using three methods: (a) vehicles are changing lanes or
making a U-turn; (b) there is occlusion between vehicles; (c) there is shadow interference around vehicles.
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greatly hinders the widespread application of these two
existing methods in real trafc. On the contrary, in three
typical cases, the vehicle length, width, and height obtained
by the proposed algorithm agree well with the ground truth
(error <4%). Tis is mainly attributed to its accurate seg-
mentation of vehicle contours using the modifed Mask
R-CNN and the accurate recovery of the vehicle’s di-
mensions by the proposed algorithm. In addition, the
proposed algorithm for recovering the vehicle’s dimensions
does not require the camera to be calibrated by a reference in
the scene. Tis makes the proposed method more practical
in real-life trafc scenes.

4. Conclusions

Tis study proposed a computer vision-based vehicle size
detection method to detect and quantify the external con-
tour dimensions of a vehicle using a roadside camera. Te
research methodology consists of the following steps: ac-
quisition of trafc scenes to calibrate the camera, detection
of the target vehicle, segmentation of vehicle instances using
a modifed Mask R-CNN, construction of the 3D bounding
box of the vehicle based on the view geometry, and de-
termination of the vehicle’s length, width, height, and angle.
To assess the precision and efcacy of the method, feld
experiments were conducted and the results were compared
with other existing methods. Te study reveals that

(1) Te improved Mask R-CNN provides higher accu-
racy in vehicle pixel segmentation (average 2D IoU
>0.93%) compared to the original model and other
commonly available models.

(2) Te method proposed is capable of precisely de-
termining the dimensions, comprising length, width,
height, and driving angle, of a moving vehicle at
a reasonable shooting distance (error <5%).

(3) Te proposed technique can accurately detect vehicle
dimensions even when the vehicle is at a nonright
angle to the road, when the vehicle is obscured, when
there is shadow interference, etc. In addition, the
method eliminates the need to fully calibrate the
camera by measuring a known-sized reference object.

Overall, the proposed method exhibits excellent per-
formance and is expected to be a cost-efective alternative to
conventional vehicle size detection systems. In practical
applications, the method can be used to detect oversized
vehicles, thus leading to a considerable reduction in possible
trafc accidents.
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