
Review Article
Magnetorheological Fluid Dampers: A Close Look at Efficient
Parametric Models

Arash Bahar ,1 Francesc Pozo ,2,3 Mehdi Rashidi Meybodi ,1 and Saeed Karami 1

1Faculty of Engineering, Department of Civil Engineering, University of Guilan, Rasht, Iran
2Control, Data and Artifcial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE),
Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 16, Barcelona 08019, Spain
3Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
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Te reasonable efciency, high reliability, and minimal maintenance requirements of the semiactive control algorithms make this
form of structural control the most successful method from a practical point of view. In addition, signifcant progress has been
made in structural control devices. Magnetorheological (MR) dampers have been the subject of extensive research. In order to
develop and implement a successful structural control algorithm, a deep understanding of their operation is required. Terefore,
many eforts have been made to classify MR dampers as efcient tools; however, their complicated behavior has also been noted.
Various relations have been proposed to describe the highly nonlinear behavior of MR dampers. To develop an efcient control
algorithm, one must frst properly understand the seismic behavior of the structure and the control device as well as its handling.
Te handling of the device will be efcient if there is a description for its control, a so-called inverse model.Tismodel is an answer
to the question of whether the proposed device model can be written in a form that practically brings the generated damping force
as close as possible to the desired force. In the identifcation process, the selection of a basic mathematical model is critical. In this
review article, we have compiled successful parametric models that accurately replicate the behavior of MR dampers. Since the
primary functionality of the device is crucial for the development of a competent control algorithm, we have endeavored to
investigate and present the reversibility of the proposed models. We also delved at the characteristics of the parameters that enable
precise communication between the central control unit and the device. Tese parameters, which enable the dialog between the
processing unit and the control devices, will play an important role in the development of the inverse model in its simplicity and
efciency.

1. Introduction

One of the ongoing challenges in civil engineering is the
protection of facilities from destructive forces caused by
wind and earthquakes. Te traditional seismic design as-
sumes that an earthquake acts on a building through a solid
base. To ensure partial dissipation of the induced energy,
plastic deformation occurs in certain building components
and structural damage occurs to some extent. Tis drawback
can be avoided using structural control strategies. Te
concept of control applications for improving the seismic
performance of structures has been considered for several
years. Passive supplemental damping strategies are well

known and widely accepted by engineers for mitigating the
efects of dynamic loading on structures [1–4]. However,
preliminary studies indicate that appropriately implemented
semiactive systems perform signifcantly better than passive
devices and have the potential to achieve most of the per-
formance outcomes of fully active systems. Tis enables an
efective reduction in responses under a wide range of dy-
namic loading conditions. Te reasonable efciency, high
reliability, and minimal maintenance requirements of
semiactive control algorithms render this form of structural
control, the most successful method in terms of theoretical
and practical considerations. Additionally, signifcant ad-
vances have been made in structural control devices. Among
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these, dampers, particularly magnetorheological (MR)
dampers, appear to have signifcant potential to advance the
acceptance of structural control as a viable means of miti-
gating dynamic hazards and have accounted for a large
portion of studies in this area.

Jacob Rainbow [5] developed anMR fuid smart material
in the 1940s. An MR damper comprises this solution, which
can reversibly transform from a free-fowing linear viscous
fuid to a semisolid with a controllable yield point in the
presence of a magnetic feld [6].Tis feature provides simple,
quiet, and responsive interfaces between the electronic
controls and mechanical systems. Typically, MR fuids fow
freely with a consistency similar to that of a motor oil [7].
However, in the presence of an applied magnetic feld, iron
particles (carbonyl iron) acquire a dipole moment aligned
with the external magnetic feld, causing them to form linear
chains parallel to the feld. Tis phenomenon solidifes
suspended iron particles and restricts the motion of the
liquid. Consequently, the yield strength develops within the
fuid. Tis change is refected in the change in the damping
force whenMR fuids are used.Te magnitude of the change
depends on the strength of the applied magnetic feld and
can occur within a few milliseconds.

Unlike their electrical counterparts’ electrorheological
(ER) fuids, MR fuids are not extremely sensitive to
moisture or other contaminants that may arise during their
manufacture and use [8, 9]. Because the mechanism of
magnetic polarization is not afected by temperature, the
performance of devices based on MR is relatively insensitive
to temperature over a wide range of temperatures (including
automotive use) [7]. Magnetorheological fuids can be used
in three ways, all of which can be applied to MR devices
depending on the intended use of the damper. Tese modes
of operation are referred to as pinch, valve (pressure-
controlled fow), and shear modes. Te last mode of oper-
ation of the MR steamer, the valve mode, is the most
commonly used among the three modes [10]. An MR device
operates in the valve mode when the MR fuid is used to
impede its fow from one reservoir to another. Most devices
that use controllable fuids can be classifed as either fxed-
pole devices (which often operate in pressure-controlled
fow mode) or relatively movable-pole devices (which
operate in direct shear mode) [10].

Te commercialization of MR technology began in 1995,
with the use of rotational brakes in aerobic equipment. Since
then, the application of MR material technology to actual
systems has steadily increased [11]. Magnetorheological
fuids operating in the valve mode with fxed magnetic poles
are suitable for hydraulic controls, servo valves, shock ab-
sorbers, and dampers (including models referred to as tu-
bular/linear MR dampers). Te direct shear mode with
a moving pole is suitable for clutches and brakes, clamping/
locking devices, dampers (including models referred to as
the shear mode or rotating MR dampers), breakaway de-
vices, and structural composites [9].

In recent years, several commercially available products
have been developed or are close to commercialization
[12, 13]:

(i) MR dampers for real-time active control systems in
heavy duty trucks

(ii) Linear and rotary brakes for low-cost, accurate,
positional, and velocity control of pneumatic ac-
tuator systems

(iii) Rotary brakes to provide tactile force-feedback in
steer-by wire systems

(iv) Linear dampers for real-time gait control in ad-
vanced prosthetic devices

(v) Adjustable real-time controlled shock absorbers
for automobiles

(vi) MR sponge dampers for washing machines
(vii) Magnetorheological fuid polishing tools
(viii) Large MR fuid dampers to control wind-induced

vibrations in cable-stayed bridges
(ix) Very large MR fuid dampers for seismic damage

mitigation in civil engineering structures

Magnetorheological dampers provide an attractive so-
lution for energy absorption in structures and considered
fail-safe devices and are inexpensive [6], have few moving
parts, and are reliable. Tese characteristics render MR
dampers promising voltage- or current-controlled actuators
that can be used in various engineering applications [7, 14].
In civil engineering applications, the expected damping
forces are considerably high. For MR dampers, a memory-
dependent multivalued relationship between force, de-
formation, and hysteresis is observed. Many mathematical
models have been developed to efciently describe this
behavior and use them for time history and random vi-
bration analysis. High-precision models for MR dampers
can be developed using two families of models: semiphysical
[15, 16] and black-box models [17, 18]. Semiphysical models
use a simplifed model of the physical device and thereafter
use some type of measurement to identify its free param-
eters. Te black-box model, on the other hand, is a strategy
for studying a complex object or device without any
knowledge or assumptions about its internal structure, parts,
or model. Although some quasistatic models have been
proposed and shown to describe the force-displacement
relationship of the MR damper reasonably well, they have
not been able to model its nonlinear force-velocity behavior.

More accurate dynamicmodels have been developed and
can be divided into two categories: nonparametric and
parametric. Nonparametric models are based solely on the
performance of the device and typically require a large
amount of experimental data to show the response of the
fuid to various loads under diferent operating conditions.
Tese proposed models are based on Chebyshev poly-
nomials [19–21], neural networks [22–24], and neuro-fuzzy
systems [25–27]. Neural networks can accurately reproduce
the nonlinear behavior of MR fuids. However, since there is
no specifc mathematical expression for nonparametric
models, the information obtained from the laboratory re-
sults must be examined in the form of complex cognitive
methods to achieve acceptable accuracy with the neural
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network method. In order to obtain appropriate results, the
data set must be subjected to strict conditions. In addition,
part of the data is always used to learn the model. On the
other hand, the sensitivity of nonparametric models to in-
terference from laboratory methods and sensors is low and
one can work with diferent data sources, including real-
world data collection under less controlled conditions.
Multilayer perceptron (MLP) networks are one of the most
commonly used neural network types and have the dis-
tinction of using only a single nonlinear function. Tey have
also been shown to model both simple and complex systems
accurately. Neuro-fuzzy models are another example of
nonparametric models that have been proposed to emulate
the behavior of MR dampers. Because these devices are
highly nonlinear, fuzzy logic has been proposed as an al-
ternative to the computationally intensive models that are
currently in use. Neural networks were subsequently used to
ft the fuzzy logic parameters. Fuzzy logic incorporates
human knowledge about the system into the controller using
membership functions, which are quantities that defne
imprecise or vague concepts, such as large, weak, hard, and
moderate. Te desired output is determined based on fuzzy
information of the inputs, similar to how the human brain
makes decisions. Although several nonparametric models
can efectively reproduce the behavior of MR dampers, their
application is often hindered by their complexity and the
large amount of experimental data required for training and
model validation. Terefore, parametric models are more
commonly employed in simulations and in the development
of control algorithms.

Te objective of this study is to compile and present the
most successful parametric models for this type of damper.
In this study, we delve into models that are typically the most
ftting parametric types, having undergone revisions
throughout various research and testing phases. Grasping
the evolution process, the interrelated combinations, and the
role of each component in delivering the damping force
ofers a valuable guide. Tis insight can help propel research
forward, culminating in more comprehensive relationships
that align with the intricate and highly nonlinear behavior of
this damper series.

Our research primarily concentrates on the potential and
competence of the fnal model, especially its capability to
yield an invertedmodel.Te signifcance of indicator models
is underscored. While developing some of these models, the
dependency of the model on a governing parameter, namely,
its interaction with the device, was also taken into account
and discussed. From this vantage point, this research proves
invaluable for researchers aiming to choose an apt model for
their control structure design. Notably, each model can be
rationally associated with one of the standard variables
(either current or voltage) used in the damper during the
tool’s identifcation process. Te precision and the re-
searchers’ emphasis on this aspect are accentuated in
our study.

On the other hand, there are only a handful of models
that rely on the frequency of stimulation during the iden-
tifcation phase.Te dependence of the dampermodel on the
frequency of the external stimuli is an aspect that is

complicated in practical application. Te vibrational prop-
erties of earthquakes themselves are very complex and ex-
tensive in terms of their variety and frequency content.
Moreover, from a practical point of view, it is unsuitable to
determine this content during an earthquake. So, there is no
simple practical method to fnd out how much this fre-
quency content infuences the results. Terefore, this de-
pendence model is limited to a small number in this
overview and there is no separate section for them.

To streamline access to these models, reference is made
to Table 1. Tis table lists the model name, the relation
number mentioned in the text, its reversibility, and the kind
of governing parameters. As observed, there are select
models that, in addition to meeting reversibility criteria, can
replicate precise numerical results pivotal for devising
a suitable control algorithm for structural applications.

2. Dynamic Models Based on the
Bingham Model

Tis group of modelers used the stress-strain diagram of the
Bingham viscoplastic model [28] to describe the behavior of
MR fuids. Based on the viscoplastic model, when the stress
is greater than the feld-dependent yield stress, the damper
fuid can be represented by the Bingham equation as follows:

τ � τy + η _c, (1)

where η is the viscosity of the fuid and _c is the shear strain
rate. Te material behaved viscoelastically when the stress
was lower than the yield stress. Many researchers based their
modifed version of the damper on this model.

2.1. Bingham Standard Model. Spencer et al. [16] proposed
an idealized mechanical model used by Stanway et al. [29] to
express the behavior of an ER damper based on the model
described in (1). Tis model consists of a Coulomb friction
element parallel to the viscous segment, as shown in
Figure 1.

In this rigid viscoplastic model, the force generated by
the damper is given by the following equation:

F � fcsgn( _x) + c0 _x + f0, (2)

where _x, c0, and fc denote the piston velocity, damping
coefcient, and frictional force, respectively. f0 is the ofset
in the resulting damping force owing to the accumulator.
Tis model describes only the force-displacement behavior
of the MR damper; however, it cannot accurately represent
the force-velocity behavior, particularly in the roll-of
region.

2.2. Gamota and Filisko Model. Gamota and Filisko [30]
proposed an extension to the Bingham model for ER fuids
(Figure 2). Spencer et al. [16] used the viscoelastic-plastic
model for MR dampers. Tis model consists of a classical
Bingham model connected to the Kelvin–Voigt represen-
tation of a standard linear solid model, also known as the
Zener model (with two springs and a dashpot). In the Zener
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model, the Kelvin representation is preferred over the
Maxwell representation to demonstrate linear viscoelastic
behavior in the preyield region. Te following equations are
associated with this model:

F �
k1 x2 − x1( 􏼁 + c1 _x2 − _x1( 􏼁 + f0 � c0 _x1 + fcsgn _x1( 􏼁 + f0 � k2 x3 − x2( 􏼁 + f0,   |F|>fc,

k1 x2 − x1( 􏼁 + c1 _x2( 􏼁 + f0 � k2 x3 − x2( 􏼁 + f0, |F|≤fc,
􏼨 (3)

where c0 denotes the damping coefcient of the Bingham
model. Parameters k1, k2, and c1 are the stifness and
damping coefcients of the Zener model, respectively. Al-
though this model is suitable for predicting the behavior of
a damper, its use in numerical problems is difcult.

2.3. BinghamPlasticModel. By adding a yielding force Fy to
the linear damping model, Werely et al. [31–33] introduced
the Bingham plastic model, as shown in Figure 3, which is
similar to the Bingham standard model (equation (2)). Te
equations describing the model are as follows:

F �

Cpostv + Fy, v> 0,

− Fy <F<Fy, v � 0,

Cpostv − Fy, v< 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Te Bingham plastic model is expressed as follows:

F � fysgn( _x) + Cpost _x. (5)

Tis model assumes that, in the preyield state, the
materials are rigid and do not fow. Te shaft velocity is zero
if F is lower than Fy. Te fuid fowed when the applied force
exceeded Fy. Subsequently, the materials became Newtonian
fuids with a nonzero yield stress. Although this model can
accurately predict the force-displacement diagram and
dissipated energy owing to the presence of the yield force,
which is reminiscent of Coulomb friction, the force-velocity

diagram of the MR damper is not correctly modeled. Te
behavior of the damper is displayed rigidly in the preyield
area, which is termed the roll-of area.

2.4. Modifed Bingham Model. Zhou [34] proposed the
modifed Bingham plastic model shown in Figure 4. Tis
model consists of a standard Binghammodel with a stifened
k1. Te equation of the model is as follows:

F � c0 _x1 + fcsgn _x1( 􏼁 + f0 � k1 x − x1( 􏼁. (6)

2.5. Improved Bingham Model. Based on an experiment
performed by Occhiuzzi et al. [35], they found that the
standard Bingham model overestimates the viscous com-
ponent of the force-displacement cycle for i � 0A and
underestimates it for i � 2.5 A, where i is the current of the
MR coil. Tey ofered a relation between the damping co-
efcient and the magnetic feld of the damper, which fnally
led to a dependency on the current. Te resulting modifed
Bingham model is as follows:

F � c(i) _x + Fymin
+ Fymax

− Fymin
􏼐 􏼑

i

imax
􏼢 􏼣sgn( _x), (7)

Fymax
and Fymin

are the maximum andminimum values of the
plastic surfaces respectively, owing to the frictional force.
Subsequently, Occhiuzzi et al. suggested a nonlinear relation

F − f0

x

c0

fc

Figure 1: Bingham model (Section 2.1).

F − f0

fc

c0

k1 k2

x1 x2 x3

c0

Figure 2: Gamota and Filisko model (Section 2.2).
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between the viscous damping coefcient and the piston
velocity of the damper, according to the following equation:

Fη � c(i)| _x|
α(i)sgn( _x), (8)

where c(i) and α(i) are current-dependent parameters. Te
fnal improved Bingham model can be obtained by in-
tegrating equations (7) and (8):

F � c(i)| _x|
α(i)sgn( _x) + Fymin

+ Fymax
− Fymin

􏼐 􏼑
i

imax
􏼢 􏼣sgn( _x).

(9)

Because their experimental data did not show any trace
of roll-of behavior, this model could not handle such an
infuence.

2.6.Nonlinear BinghamHystereticModel. Zhang and Huang
[36] proposed a nonlinear hysteretic model for the Bingham
model. At low velocities, this model can describe the hys-
teresis characteristics of the force-velocity diagram and the
nonlinear behavior of the MR damper. Te nonlinear
Bingham hysteretic model (Figure 5) is given by

F �
kx1 + c1 _x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + c2 _x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑 _x2 + f0, kx1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Fy,

Fysgn _x2( 􏼁 + c0 + c1 _x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2 _x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑 _x2 + f0, kx1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥Fy,

⎧⎪⎨

⎪⎩
(10)

where Fy denotes the yield force of the MR fuid; c0, c1, and c2
are constant coefcients of the nonlinear damping term of the
model; k denotes the equivalent stifness of the model spring
element; f0 is the deviation force owing to the accumulator;
and x1 is the elongation of the spring, which is given by (11).

x1 �

x2 − x2max
−

Fy

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, _x2 ≤ 0, x2max

− x2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
2Fy

k
,

x2 + x2max
+

Fy

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, _x2 ≥ 0, x2max

− x2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
2Fy

k
,

Fy

k
sgn _x2( 􏼁, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Te model variables are dependent on the applied
current.

2.7. Hysteresis-Regularized Bingham Model. Using the
standard Bingham model, Soltane et al. [37] proposed the
hysteresis regularized Bingham model (HRB). Tey applied
a regularization technique [38] to the discontinuous Bing-
ham equation and converted it into a continuous relation as
shown in Figure 6. Equation (12) shows the generated force
of the MR damper, based on the following model:

F
RB
d − F0 � cv _xd + Fy 1 − exp − sgn _xd( 􏼁

_xd

_x0
􏼠 􏼡􏼢 􏼣sgn _xd( 􏼁,

(12)

where _x0, and together with the velocity dimension, is
a regularization parameter that exponentially controls the
growth of the damping force. Equation (12) is converted into
(13) to consider the nonlinear hysteresis behavior of the MR
damper.

fc

c0

x1 x

k1 F − f0

Figure 4: Modifed Bingham model (Section 2.4).

F

ẋ

Fy

Fy

Cpost

Cpost

Figure 3: Bingham plastic model (Section 2.3).
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F
RB
d − F0 �

cv _xd − _xh( 􏼁 + Fy 1 − exp − sgn _xd − _xh( 􏼁
_xd − _xh

_x0
􏼠 􏼡􏼢 􏼣sgn _xd − _xh( 􏼁 _xd < 0,

cv _xd + _xh( 􏼁 + Fy 1 − exp − sgn _xd + _xh( 􏼁
_xd + _xh

_x0
􏼠 􏼡􏼢 􏼣sgn _xd + _xh( 􏼁 _xd > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where _xh is the scale factor, which has a velocity dimension
and defnes the width of the hysteresis loop. Dynamic
Bingham models have been used to simulate the behavior of
MR dampers in several studies. It is simple, efective, and
numerically easy to handle. However, there is another group
of models for these devices that is even more signifcant,
which are described in the following sections.

3. Dynamic Models Based on the Bouc–Wen
Hysteresis Operator

TeBouc–Wenmodel is widely used for modeling hysteretic
systems. Tis model was frst proposed by Bouc [39], which
was subsequently generalized byWen [18, 40]. It is extremely
versatile and can represent a wide range of hysteresis be-
haviors in devices and materials. Terefore, they have been
used to model MR dampers. Te force generated by this
model for a nonlinear hysteretic system is

F(x, _x) � g(x, _x) + αz(x). (14)

Function g(x, _x) is a nonhysteretic component that can
include the elastic property and/or viscous behavior of the
damper. x and _x denote the displacement and velocity of the

system, respectively. α is the scaling parameter for the
hysteretic term of the model. z, the hysteretic component of
the model that depends on the time-history of the dis-
placement, is the core of the model and assumes the shape of
the hysteresis loop. Te evolutionary variable was obtained
using the following equation:

_z � − c| _x|z|z|
n− 1

− β _x|z|
n

+ A _x, (15)

where c, β, A, and n are key parameters that defne the shape
of the hysteresis loop.

3.1. Standard Bouc–Wen Model. Based on the Bouc–Wen
model, Spencer et al. [16] proposed a new model consisting
of three components, as shown in Figure 7. Equation (16)
describes the force generated by the model.

F � c0 _x + k0x + αz(x), (16)

where c0 is a constant parameter for the viscosity term; k0 is
the stifness of the damper, which refects the elastic phe-
nomenon of the MR fuid; and z is the hysteretic parameter
of the model, given by (15). Tis parameter represents the
dynamic behavior of the device. x0 is the initial displacement

x2
x1

k
Fy F

c = c0 + c1|x2| + c2|x2|2˙ ˙

Figure 5: Nonlinear Bingham hysteretic model (Section 2.6).

F − f0

ẋẋ0˙−x0

Fy

−Fy

cυ

( + )ẋ0

Fycυ

Figure 6: Hysteresis regularized Bingham model (Section 2.7).
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of the piston, which was added to consider the efect of the
accumulator. Dominguez et al. [41–43], Ambhore et al. [44],
and Cézar and Baros [45] studied the efects of model pa-
rameters on the resulting hysteresis loop. Tis model has
been widely used as an MR-damper model in several studies
[46–48].

3.2. Modifed Bouc–Wen (Phenomenological) Model. Te
standard Bouc–Wen model provides a good prediction of
the force-displacement behavior of the damper; however, it
does not perform well in describing the roll-of region of the
force-velocity loop. To better predict the damper response in
this region, a modifed version of the model was proposed by
Spencer et al. [16] as shown in Figure 8. Te following
equation describes the force generated by the model.

F � c1 _y + k1x,

_y �
1

c0 + c1
αz + c0 _x + k0(x − y)􏼂 􏼃,

_z � − c| _x − _y|z|z|
n− 1

− β( _x − _y)|z|
n

+ A( _x − _y).

(17)

In (17), k1 is the accumulator stifness; c0 is the viscous
damping parameter at high velocity; c1 is the damping
parameter of the dashpot added to the model to produce
a roll-of efect at the low velocities; k0 controls the overall
stifness of the device in a high-velocity situation; and x0
denotes the initial displacement of the damper and produces
an ofset force when multiplied by k1. Tis model has been
used as an MR-damper model in extensive articles (for
example, [49–53]). It must be mentioned that this model is
referred to as the phenomenological model in many studies.
For the proposed model to correctly predict the alternating
behavior of the MR fuid under magnetic feld changes,
Spencer et al. [16] proposed a voltage-dependent linear
relation for some of the parameters in the models as follows:

α � α(u) � αa + αbu; c0 � c0(u)

� c0a + c0bu; c1 � c1(u) � c1a + c1bu.
(18)

In this relation, u is an intrinsic variable that relates the
dependence of the parameters on the applied voltage and is
calculated using the frst-order flter as

_u � − η(u − v), (19)

where v is the voltage applied to the current driver and η
refects the response time of the MR damper [16]. Assuming
that the parameters of (18) are polynomials of the third
degree, Yang et al. [54] performed a process of parameter
identifcation and proposed a model for a large-scale MR
damper. Te suggested relations for the parameters are as
follows:

α(i) � αai
3

+ αbi
2

+ αci + αd;

c0(i) � c0ai
3

+ c0bi
2

+ c0ci + c0d;

c1(i) � c1ai
3

+ c1bi
2

+ c1ci + c1d.

(20)

Spaggiari and Dragoni [55] studied the behavior of the
damper at low frequencies. Tey modifed the model by
interpolating the parameters α, c0, and c1 based on the
results of laboratory tests. Te proposed quadratic poly-
nomial functions for these parameters are as follows:

α(i) � αai
2

+ αbi + αc;

c0(i) � c0ai
2

+ c0bi + c0c;

c1(i) � c1ai
2

+ c1bi + c1c.

(21)

3.3. Bouc–Wen Model in the Shear-Mode MR Damper. Yi
et al. [56] proposed a model for shear mode MR dampers
established on the Bouc–Wen base model by Spencer et al.
[16]. Spencer team damper was tubular in which MR fuid
was sealed in a cylinder with a movable piston (see Figure 9).

In shear-mode dampers, the MR fuid is confned to the
parallel plates. Figure 10(a) shows the schematic of this type
of damper. Te common models for these dampers consist
of a viscous friction element and hysteretic component (see
Figure 10(b)).

Equation (22) presents the force generated in this type of
damper using the model [57–59].

F � c0 _x + αz(x), (22)

where z is the evolutionary variable given by (15).

3.4. Modifed Bouc–Wen Model with Mass Element. Tis
model, proposed by Yang et al. [60] for a large-scale MR
damper, incorporates the MR fuid stiction phenomenon, as
well as the efect of shear-thinning and fuid inertia. A

F

x
Bouc-Wen

k0

c0

Figure 7: Standard Bouc–Wen model (Section 3.1).
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schematic representation of the model is shown in Figure 11.
Te force generated by the damper is

F � m€x + c0( _x) _x + kx + αz(x) + f0, (23)

where m is equivalent mass which represents the MR fuid
stiction phenomenon and inertial efect; k is accumulator
stifness and MR fuid compressibility; f0 is the damper
friction force due to seals and measurement bias; and c0( _x)

is the postyield plastic damping coefcient, which is defned
as a monodecreasing function with respect to absolute ve-
locity _x, to describe theMR fuid shear-thinning efect which
results in the force roll-of of the damper resisting force in
the low-velocity region. Te postyield damping coefcient is
given by the following equation:

c0( _x) � a1e
− a2| _x|( )

p

, (24)

where a1, a2, and p are positive constants. Lau and
Liao [61, 62] and Tsampardoukas et al. [63] used this
model in train and truck suspensions, respectively. Ad-
ditionally, Yang et al. [60] presented two more dynamic
models based on the standard Bouc–Wen form and the
modifed version updated with a mass element
(Figure 12) [60].

According to Figure 7, the force generated by the damper
in the standard Bouc–Wen model with the mass element is
according to (25) and that for the modifed Bouc–Wen
model with the mass element is according to the following
equations [60]:

F

xy Bouc-Wen

k0

k1

c0

c1

Figure 8: Modifed Bouc–Wen model (Section 3.2).

Accumulator

Diaphragm

Bearing & Seal
MR fluid

Wires to
Electromagnet

Coil

Figure 9: Common MR damper (Section 3.3).

Direction of Motion

MR fluid
Saturated

Foam

Coil

Front View Side View

(a)

F

c0

Bouc-Wen

(b)

Figure 10: (a) Shear mode MR damper; (b) schematic of the device (Section 3.3).
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F � m€x + c0 _x + k0x + αz, (25)

F � m€x + c1 _y + k1x. (26)

Te variables are defned in equations (15) and (17).

3.5. Amplitude-Dependent Bouc–Wen Model. Ali and
Ramaswamy [64] proposed the amplitude-dependent
Bouc–Wen model. In this model, the parameters c0, k0,
and α expressed in (16) depend on the amplitude of exci-
tation and the input current to the MR damper. Te re-
lationship between these parameters and the input current,
ic, changes linearly, and the efects of the motion amplitude
are considered as a quadratic function of the stroke am-
plitude (xa), as shown in the following equation:

c0 � c1 + c2xa + c3x
2
a􏼐 􏼑 + c4 + c5xa + c6x

2
a􏼐 􏼑ic,

k0 � k1 + k2xa + k3x
2
a􏼐 􏼑 + k4 + k5xa + k6x

2
a􏼐 􏼑ic,

α0 � α1 + α2xa + α3x
2
a􏼐 􏼑 + α4 + α5xa + α6x

2
a􏼐 􏼑ic,

(27)

where the parameters c1, c2, . . ., α5, and α6 are constants
obtained from the identifcation process.

3.6. Current-Dependent Bouc–WenModel. Dominguez et al.
[41] proposed a new Bouc–Wen model, in which the current
is considered as a variable. In the standard Bouc–Wen
model, the current is not considered a variable; therefore, the
model parameters must be estimated for each current ex-
citation. However, this can be computationally expensive.
Upon entering the fow, (16) can be rewritten as follows:

F(x(τ), _x(τ), 0≤ τ ≤ t, t) � c0(I) _x + k0(I)x + α(I)z.

(28)

Te evolutionary variable (z) is described by the fol-
lowing frst-order diferential equation:

_z(I) � c(I)| _x|z|z|
n− 1

− β(I) _x|z|
n

+ A(I) _x. (29)

If A(I) and β(I) are assumed to be unity and zero,
respectively, z(I) is obtained as follows:

z(I) �
1

����
c(I)

􏽰 tanh
����

c(I)

􏽱
_x +

1
����
c(I)

􏽰 arctanh
Fz0(I)

����

c(I)

􏽱

α(I)
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
when (z< 0, x< 0) or (z≥ 0, x< 0),

z(I) �
1

����
c(I)

􏽰 tanh
����

c(I)

􏽱

_x +
1

����
c(I)

􏽰 arctanh −
Fz0(I)

����

c(I)

􏽱

α(I)
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
when (z≥ 0, x≥ 0) or (z< 0, x≥ 0).

(30)

F − f0

x

m

Bouc-Wen

k0

˙c0 (x)

Figure 11: Modifed Bouc–Wen model with mass element (Section 3.4).

F−f0
F−f0k0

c0

k0

k1

c0

c1

x y x

m m

Bouc-Wen Bouc-Wen

Figure 12: Additional models by Yang et al. [60] (Section 3.4).
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In addition, owing to the experimental results, the re-
lationship between the current and the parameters c and k0
is linear, and the parameters c0, α, and Fz0 change expo-
nentially with the current.

c(I) � − c1 + c2I; k0(I) � k1 + k2I; c0(I) � c1 + c2 1 − e
− c3I

􏼐 􏼑,

α(I) � α1 + α2 1 − e
− α3I

􏼐 􏼑; Fz0(I) � Fz01 + Fz02 1 − e
− Fz03I

􏼐 􏼑.
(31)

3.7. Current-Frequency-Amplitude-Dependent Bouc–Wen
Model. Te model introduced in [41] for lower currents
(I� 0.25A) could not describe the damper behavior cor-
rectly; therefore, Dominguez et al. [42] proposed another
model based on the Bouc–Wen model. In this model, the
current, frequency, and excitation amplitude are in-
corporated as variables to determine the MR damper hys-
teresis behavior more accurately and efectively. Terefore,
the Bouc–Wen model is modifed as shown in the following
equation:

F(x(τ), _x(τ), I,ω, x, 0≤ τ ≤ t; t)

� d1ω
d2􏼐 􏼑 d3x

d4
max􏼐 􏼑 c0(I) _x + k0(I)x + α(I)z􏼂 􏼃,

(32)

where ω is the excitation frequency; xmax is the excitation
displacement amplitude; and d1,. . ., d4 are constants. z is an
evolutionary variable defned by the diferential equation in
(30). A linear relationship exists between the current and
parameters c and k0. For the parameters c0, α, and Fz0, this
dependency is related to the values of the driven current.
When the device current was low, these parameters changed
linearly, and at the point of high current, an exponential
relationship was chosen. A border value, Ic, was defned to
separate the low and high current values. Dominguez et al.
[65, 66] used this model in their study.

c(I) � c1 − c2I; k0(I) � k1 + k2I; c0(I) �

c1 + c2 1 − e
− c3 I− Ic( )􏼒 􏼓, for I> Ic,

c4 +
c4 − c1( 􏼁

Ic

I, for I≤ Ic,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(I) �

α1 + α2 1 − e
− α3 I− Ic( )􏼒 􏼓, for I> Ic,

α4 +
α4 − α1( 􏼁

Ic

I, for I≤ Ic,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

; Fz0(I) �

Fz01 + Fz02 1 − e
− Fz03 I− Ic( )􏼒 􏼓, for I> Ic,

Fz04 +
Fz04 − Fz01􏼐 􏼑

Ic

I, for I≤ Ic.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(33)

3.8. Asymmetric Sigmoid Modifed Bouc–Wen Model. Ma
et al. [67] found that the Bouc–Wen model equation modifed
in [16] can be further modifed. Spencer et al. [16] described the
behavior of an MR damper linearly using current-dependent
functions according to (20), whereas in the proposed model
[67], the damper force can be described in a general form with
two independent functions, as shown in the following equation:

fd � fi(i)fh(x, _x, €x), (34)

where fi(i) represents the current function and fh(x, _x, €x)

is a hysteresis function that can be the same as the modifed
Bouc–Wen model introduced by Spencer et al. [16]
according to (17). Te current function fi(i) is derived from
the following equation

fi(i) � 1 +
k2

1 + e
− a2 i+I0( )

−
k2

1 + e
− a2I0

, i> 0, (35)

where k2 and a2 are positive constants and I0 is an arbitrary
constant that represents a bias and is identifed from ex-
perimental or benchmark data.

3.9. Nonsymmetrical Bouc–Wen Model. Because of non-
symmetrical hysteresis behavior that can be seen in the
force-velocity response of some MR dampers, Kwok et al.
[68] proposed a nonsymmetrical model based on the
standard Bouc–Wen model. Te evolutionary variable
expressed in (15) can be rewritten as follows:

_z � δ − β + c sgn(x)(z _x)|z|
n

(􏼂 􏼃 _x. (36)
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Te nonsymmetrical Bouc–Wen model proposed by
Kwok et al. [68] is obtained as (37) by adjusting the velocity
value

( _x − μ sgn(x))⟶ _x,

_z � − c sgn [ _x − μ sgn(x)]z􏼈 􏼉)|z|
n

− β|z|
n

+ δ􏼂 􏼃[ _x − μ sgn(x)],
(37)

where μ is a scale factor for the adjustment and sgn(.) is
a signum function. Te force generated by the MR damper
according to Figure 13 is obtained from the following
equation:

F � c0 _x + k0(x) + αz, (38)

where z is the asymmetric Bouc–Wen hysteresis operator
expressed in (37). Note that the overall efect of the shift in
the hysteresis switching is in the vicinity of zero velocity,
whereas the form of hysteresis is maintained for the rest of
the loop.

3.10. Normalized Bouc–Wen Model I. In the structural
control literature, equations (37) and (38) are common
forms of the general Bouc–Wen relations (equations (14),
(15)).

ΦBW(x, t) � αkx(t) +(1 − α)Dkz(t), (39)

_z � D
− 1

A _x − B| _x||z|
n− 1

z − c _x|z|
n

􏼐 􏼑.

(40)

In this general form of the Bouc–Wen model, some
parameters are redundant. To eliminate this redundancy,
a normalized form of the Bouc–Wen model was proposed in
[69–73] using a transition parameter w(t):

w(t) �
z(t)

z0
; z0 �

�����
A

β + c

n

􏽳

. (41)

Terefore, the Bouc–Wen model can be rewritten as

ΦBW(x, t) � kxx(t) + κww(t), (42)

_w � ρ _x − σ| _x(t)||w(t)|
n− 1

w(t) +(σ − 1) _x(t)|w(t)|
n

􏼐 􏼑, (43)

where

ρ �
A

Dz0
> 0; σ �

β
β + c
≥ 0; κx � αk> 0; κw � (1 − α)Dkz0 > 0.

(44)

Te normalized form of the Bouc–Wen model is an
equivalent representation of the original Bouc–Wen model.
Tis model has fewer parameters; therefore, the over-
parameterization in the original Bouc–Wen model was
removed. In this representation, the evolutionary variable is
in the range [− 1, 1] [59].

Tsouroukdissian et al. [74] proposed a normalized
Bouc–Wen model for small-scale MR dampers. Teir pro-
posed model have the same form as (42), with one major
diference: they replace x with _x. Terefore, the force
generated by the MR damper is obtained from the following
equation:

F(t) � kx _x(t) − kww(t). (45)

Parameter w(t) is calculated using (43). Equation (45) is
more compatible with the force-velocity behavior of MR
dampers. Parameters kx, σ, and n are constant values, and kw

is considered a linear variable with voltage. In their research,
two diferent forms were considered for ρ: a linear voltage-
dependent relation or a constant value. Te results showed
that the accuracy of the frst model (voltage-dependent) was
higher than that of the second. In 2009, Rodriguez et al. [75]
used the same normalized Bouc–Wenmodel [47] for a large-
scale MR damper.

Bahar et al. [76]modifed the normalized Bouc–Wenmodel
for a large-scale MR damper. To improve the model accuracy
for large-scale dampers, they developed normalized Bouc–Wen
model parameters, as shown in the following equation:

F(t) � kxx(t) + k _x _x(t) − kww(t). (46)

Te frst term in this formula, kxx(t), represents the
linear-elastic force added to (45). According to the pa-
rameter identifcation results, kx is constant and k _x changes
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linearly with voltage. Te parameters n, ρ, and σ change
exponentially. Te identifed kw has a more complicated
relationship with the voltage.

k _x(υ) � k _xa + k _xbυ; n(υ) � na + nb exp(− 13υ);

ρ(υ) � ρa + ρb exp(− 14υ); σ(υ) � σa + σb exp(− 14υ),

(47)

kw(υ) �

kw1 + kw2υ
1.13

, υ≤ 0.3,

kw3 + kw4 sin
π(υ − 0.3)

0.8
􏼠 􏼡 + kw5 sin

3π(υ − 0.3)

0.8
􏼠 􏼡, 0.3≤ υ≤ 0.7,

kw6 + kw7υ + kw8υ
3

+ kw9υ
5
, 0.7≤ υ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(48)

In 2010, the same group [77] used their model as an MR
damper in a benchmark structure and proposed a new
successful hierarchical control algorithm.

3.11. Normalized Bouc–Wen Model II. Te model proposed
by Dominguez et al. [42] has several parameters. Tis re-
dundancy makes the identifcation and modeling procedure
of the MR damper complex. Dominguez et al. [43], based on
the same models [41, 42], presented a new model with fewer

parameters and higher accuracy. If in (29), β is zero, then n is
assumed to be equal to z and A � c. Te evolutionary
variable (z) becomes normalized and has the simple form of
the following equation:

_z � − c| _x|| _x|
z− 1

z + c _x � c( _x − | _x||z|z). (49)

Parameter z was obtained from the solution of the above
equation.

z � tanh c x + λi( 􏼁( 􏼁; i � 1.2
z≥ 0, _x≥ 0,

z< 0, _x< 0,
􏼨 i � 3.4

z≥ 0, _x< 0,

z< 0, _x≥ 0.
􏼨 (50)

In the above equation, λi is a constant originating from
integration. As the MR damper hysteresis force is velocity-
dependent in practice, in (49), the velocity is replaced by the

displacement (i.e., _x is replaced by x), as shown in the
following equation:

z � tanh c x + λ0( 􏼁( 􏼁
z≥ 0, _x≥ 0,

z< 0, _x< 0,
􏼨 z � tanh c x + λ1( 􏼁( 􏼁

z≥ 0, _x< 0,

z< 0, _x≥ 0.
􏼨 (51)

F

xNon-Symmetrical
Bouc-Wen

k0

c0

Figure 13: Nonsymmetrical Bouc–Wen model (Section 3.9).
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Te frst part of (51) shows the upper curve of the
hysteresis loop and the second part shows the lower curve.
Te force generated by a damper in such a model is
expressed as follows:

F(x(τ), _x(τ), 0≤ τ ≤ t; t) � k0x + c0 _x + ρz. (52)

Te parameter ρ is a new evolutionary parameter. It is
used instead of the parameter α in the previous form of the
Bouc–Wen model presented in (22). Te parameters ρ, c0,
and k0 can be approximated by the root-squared function
weighted by the proper constants. Parameter λ did not
change signifcantly with respect to the current variation.
Terefore, it can be considered a constant parameter.

c0(I) � c1 + c2

��
|I|

􏽰
; k0(I) � k1 + k2

��
|I|

􏽰
; ρ(I, _x)

� ρ1 + ρ2
��
|I|

􏽰
+ ρ3

���
| _x|.

􏽰 (53)

Another efectual decrease is that Dominguez et al. [65]
assumed that the integration constant parameter λ could be
approximated by − €x. With this change, (49) is written as the
following equation:

z � tanh(c( _x − €x)). (54)

While the Bouc–Wen model is widely used, it exhibits
two primary shortcomings when characterizing the hys-
teresis phenomenon. First, there is a signifcant dis-
crepancy between the hysteresis curves derived from
experimental data and the model when assessing constant
characteristic parameters. Optimizing these parameters
demands substantial computational efort. Second, the
model’s performance hinges on specifc excitation con-
ditions. Typically, the hysteresis loop is formulated for
a harmonic excitation characterized by a defned ampli-
tude, frequency, and current excitation. Altering these
conditions necessitates recalibrating the Bouc–Wen pa-
rameters. Recognizing these challenges, Dominguez et al.
[43] introduced a normalized Bouc–Wen model that
streamlines the number of constant characteristic pa-
rameters.Tey elucidated the impact of each parameter on
the hysteresis loop and proposed an innovative method to
extract these parameters from experimental data. Con-
clusively, they presented a model rooted in the normalized
Bouc–Wen framework, wherein displacement, velocity,
acceleration, and current excitation serve as inputs, with
the hysteresis force as the output.

3.12. Normalized Phenomenological Model. Bai et al. [78]
introduced a normalized phenomenological model by in-
corporating the concept of normalization into the modifed
Bouc–Wen model. In the modifed Bouc–Wen model or
phenomenological models shown in Figure 8, a dashpot
denoted by c1 is connected in series with the Bouc–Wen
model to generate the roll-of force at low velocities. Such
combinations increase the capacity of the model to describe
the hysteresis behavior of the MR damper. However, the
complexity of the model also increases because of the dif-
ferential equation required to represent the dashpot. Te
concept of normalizing the Bouc–Wen model was

introduced by Ikhouane and Rodellar [70–72], as discussed
in the previous section. By incorporating the normalized
Bouc–Wen model into the phenomenological model, (17)
can be written as

_z � ρ − σ| _x − _y|z|z|
n− 1

− (1 − σ)( _x − _y)|z|
n

+( _x − _y)􏼐 􏼑.

(55)

Te above equation, when replaced with a similar re-
lation as in (17), initiates the normalized phenomenological
model.

Te intricacy of the phenomenological model somewhat
restricts its applicability in real-time control systems. To
address this, researchers simplifed the model, focusing on
both its structural and expressive facets. One particular
challenge is the inclusion of the dashpot in the phenome-
nological model. Its presence augments the complexity of
the mathematical model, primarily due to the diferential
equation that describes the dashpot, complicating the pa-
rameter identifcation process. However, by incorporating
the concept of normalization within the phenomenological
model, it is possible to decrease the number of parameters
by one.

3.13.RestructuredModel. Figure 14 shows a schematic of the
restructured model proposed by Bai et al. [78]. Te
restructured model was inspired by the phenomenological
or modifed Bouc–Wenmodel [16].Tey removed the elastic
element, k0, of the phenomenological model. Te position of
segment c0 moves and is located parallel to the springy
component, k0. By incorporating the normalization concept,
the restructured model can be written as follows:

F � k1x + c0 _x + αz + f0,

_y �
αz

c1
; _z � ρ − | _x − _y|z|z|

n− 1
− (1 − σ)( _x − _y)|z|

n
+( _x − _y)􏼐 􏼑.

(56)

Te use of the restructured model is more straight-
forward than the modifed Bouc–Wen model [16] because
of the lower dependency between the parameters.
Trough the modifcation of the phenomenological
model’s structure and the integration of the normalization
concept, a restructured model was introduced. Tis new
model boasts a more streamlined and lucid structure,
facilitating computer simulations and the parameter
identifcation process. As a result, the foundational
structure of the restructured model is an evolution from
the original phenomenological model, with the added
beneft of a reduced parameter count.

4. LuGre Models

Canudas et al. [79] proposed a dynamic model for friction
that captures most of the experimentally observed friction
behavior.Tis includes the Stribeck efect, hysteresis, spring-
like characteristics for stiction, and varying breakaway
forces. Te model has the following form and is charac-
terized by parameters a0, σ0, σ1, and σ2.
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F � σ0z + σ1 _z + σ2 _x, _z � _x − σ0a0| _x|z. (57)

Traditional models fall short in capturing the hysteretic
behavior observed during the study of friction at transient
velocities. Additionally, they fail to account for variations in the
breakaway force based on experimental conditions and the
minor displacements in the contact region during stiction.
Addressing these gaps, Canudas et al. [79] introduced a dy-
namic friction model that melds the Dahl efect, representing
stiction behavior, with arbitrary steady-state friction properties,
potentially encompassing the Stribeck efect.

In 2002, Alvarez and Jiménez [80] modifed this model
by considering the efect of the magnetic feld and assumed
that the current that determines the intensity of the feld is
proportional to the applied voltage. Te modifed model is

F � σ0zυ + σ1 _z + σ2 _x, _z � _x − σ0a0| _x|z 1 + a1υ( 􏼁. (58)

Te novel modeling approach, grounded in the frst-
order dynamic friction model of LuGre for MR dampers,
boasts a more streamlined analytical structure. Impressively,
it retains the capability to replicate force responses across
various excitation signal types. A salient characteristic of this
modeling framework is its facilitation of real-time para-
metric identifcation for the MR damper model parameters.
Tis is possible because, with suitable parameter manipu-
lation, the model can be linearized [80].

Sakai et al. [81] proposed a modifed model to produce
a simple model which can create an inverse model and
express the dynamic friction characteristics, as well as the
hysteresis efect. Te modifed model is described as

F � σ0zυ + σ1 _z + σ2 _x + σaz + σb _xυ, _z � _x − σ0a0| _x|z 1 + a1υ( 􏼁.

(59)

Sakai et al. [81] aimed to introduce a model capable of
predicting the damping force using the MR damper’s ve-
locity, internal state, and input voltage. Beyond this primary
capability, their proposedmodel can also generate an inverse
dynamic model, thereby determining the necessary input
voltage from a given desired damping force. Tis

advancement was motivated by the limitations of the model
presented by Canudas et al. [79], which, despite its fewer
parameters and capacity to articulate the hysteresis function,
fell short in efciently computing the optimal input voltage.

To manage the MR damper during the control process,
Palka et al. [82] proposed an inversion of the LuGre model
with thirteen parameters.

5. Biviscous Models

Biviscous models are another group of relations used to
describe the nonlinear behavior of magnetorheological
dampers. Generally, they are presented as piecewise lines or
curves in a force-velocity diagram to illustrate the hysteresis
behavior of MR dampers.

5.1. Nonlinear BiviscousModel. Instead of assuming that the
materials are rigid in preyield circumstances, Stanway et al.
[83] assumed that the materials in both the preyield and
postyield states behave plastically. Based on this assumption,
Wereley et al. [31], Pang et al. [32], and Snyder et al. [33]
have proposed nonlinear biviscous models. Tey assumed
that the preyield damping Cpre was much larger than the
postyield damping Cpost(Cpre >Cpost). Terefore, the yield
force can be determined by an extension of the postyield
force line on the force-velocity curve and its intersection
with the force axis, as shown in Figure 15. Te force gen-
erated by this model is expressed as follows:

F(t) �

Cpost + Fy _x≥ _xy,

Cpre _x − _xy ≤ _x≤ _xy,

Cpost − Fy − _xy ≥ _x,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

_xy �
Fy

Cpre − Cpost
, (60)

where _xy denotes the yield velocity.

5.2. Nonlinear Hysteretic Biviscous Model. Tis model was
proposed by Wereley et al. [31] in 1998, based on obser-
vations during experiments. As shown in Figure 16, the
nonlinear hysteretic biviscous model [31–33, 84, 85] com-
prises four main parts.Te resultant force-velocity diagram of
the damper shows a distinct preyield hysteresis phenomenon.
Te nonlinear hysteresis biviscous model is an extension of
the nonlinear biviscous model described in the previous
section. Extension in the preyield region was achieved by
adding a new parameter. Tis new parameter is at the in-
tersection of the zero-force line with the force-velocity curve,
which is termed _x0. Equation (61) generates the damping
force of this model. In this equation, _xy1 is the decelerating
yield velocity and _xy2 is the accelerating yield velocity.

F

xy
Bouc-Wen

k0

c0

c1

Figure 14: Restructured model (Section 3.13).
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F(t) �

Cpost _x − Fy, _x≤ _xy1; €x> 0,

Cpre _x − _x0( 􏼁, − _xy1 ≤ _x≤ − _xy2; €x> 0,

Cpost _x + Fy, _xy2 ≤ _x; €x> 0,

Cpost _x + Fy, _xy1 ≤ _x; €x< 0,

Cpre _x + _x0( 􏼁, − _xy2 ≤ _x≤ − _xy1; €x< 0,

Cpost _x − Fy, _x≤ − _xy2; €x< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

_xy1 �
Fy − Cpre _x0

Cpre − Cpost
; _xy2 �

Fy + Cpre _x0

Cpre − Cpost
. (61)

Wereley et al. [31] suggested some current-dependent
relations for the four main parameters of their model:
Cpre, Cpost, _x0, and Fy. Based on the results obtained from
the experimental data, second-order polynomials are
needed for Cpre, Cpost, and Fy, whereas fourth-order
polynomials are required for _x0 as functions of the ap-
plied current.

5.3. Nonlinear Hysteretic Arctangent Model. Wang and Liao
[86] introduced a model from Ang et al. [87] that describes
the force-velocity relation of the hysteresis loop according to
the following equation:

F(t) �

Cpost _x − Fy, _x≤ _xy1; €x> 0,

α arctan β _x − _x0( 􏼁􏼂 􏼃, − _xy1 ≤ _x≤ − _xy2; €x> 0,

Cpost _x + Fy, _xy2 ≤ _x; €x> 0,

Cpost _x + Fy, _xy1 ≤ _x; €x< 0,

α arctan β _x + _x0( 􏼁􏼂 􏼃, − _xy2 ≤ _x≤ − _xy1; €x< 0,

Cpost _x − Fy, _x≤ − _xy2; €x< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

In (62), α is the magnifcation factor and β is the rotation
factor. Tese parameters must be detected from the shape of
the resulting force-velocity curve. Te proposed model

Cpost

Cpost

Cpre

Cpre

F

Fy

−Fy

−xẏ xẏ
ẋ

Figure 15: Nonlinear biviscous model (Section 5.1).
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−xy2˙ −x0̇ x0̇−xy1˙ xy1˙ xy2˙

−Fy

Fy

Figure 16: Nonlinear hysteretic biviscous model (Section 5.2).
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produces a symmetric hysteresis loop around the zero point
of the coordinate system.

5.4. Lumped-Parameter Model of Fluid Flow. Sims et al. [88]
introduced a lumped-parameter model for fuid fow within
MR dampers. Teir design conceptualizes fuid motion
through a lumped-parameter model intrinsically tied to the
device’s geometry, as depicted in Figure 17. Tey contended
that such models should not only predict the damper’s
performance in isolation but also its behavior within a more
intricate vibrating structure. Tis perspective diverged from
earlier modeling priorities, which predominantly

emphasized the damper’s standalone performance, often
characterized under sinusoidal excitation and open-loop
scenarios. In response to these evolving needs, the au-
thors advanced a modeling technique that balances these
distinct prerequisites while retaining the paramount physical
relevance of core parameters. Additionally, their approach
facilitates system identifcation or model revision, ensuring
that the model faithfully mirrors observed behaviors. Fig-
ure 18 shows a schematic representation of the model with
lumped parameters. Te equations of motion for this object
are as follows:

(a) k x2 − x1( 􏼁 − ψ x1
.

.H( 􏼁 � m1x1
..

; (b) F − k x2 − x1( 􏼁 � m2x2
..

. (63)

Here, the quasisteady valve fow is represented by
a nonlinear ψ function, which is a function of the quasis-
teady velocity x1 and management signal H. For an MR
damper, this signal is typically an electrical current (I) that
generates a magnetic feld in the valve. Fluid compressibility
is indicated by a spring with stifness k. Fluid inertia is
denoted by m1. F is the force applied to the damper, which
causes piston movement (x2). An additional mass (m2) is
used to consider the mass of the piston parts and accessories.
Te physical signifcance of the model is its ability to defne
its parameters based on constitutive relationships using fuid
properties and device. It is not necessary to observe the
behavior of the actual appliance. Tis implies that the model
can be developed before the device is built; thus, it is
a suitable tool for the prototype design of a damper.

Te quasisteady behavior described by ψ can be de-
scribed in a biviscous function format that follows:

ψ x1
.

, I( 􏼁 �

Cpre _x, _x≤
Fy

Cpre
,

Cpost _x + Fy sgn( _x), _x>
Fy

Cpre
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(64)

Te relationship between Cpre, Cpost, and Fy with the
current applied to the damper (I) can be expressed as (65)
using the hyperbolic tangent function.

Cpre(I) � Cprea
+ Cpreb

tanh Cprec
I􏼐 􏼑; Cpost(I) � Cposta + Cpostb tanh CpostcI􏼐 􏼑; Fy(I) � FYa

+ FYb
tanh FYc

I􏼐 􏼑. (65)

6. Viscoelastic-Plastic Models

Weiss et al. [89] and Jolly et al. [90] indicated that MR fuid
behaves as a viscoelastic fuid in the preyield region and as
a viscoplastic fuid in the postyield region. Based on this
knowledge and perception, some viscoelastic-plastic models
have been developed.

6.1. Nonlinear Viscoelastic-Plastic Model. Kammat and
Wereley [91, 92] pioneered the introduction of a non-
linear viscoelastic-plastic model tailored for electro-
rheological (ER) dampers, bridging the input of shear
strain with the resultant shear stress response. Tis model
ingeniously amalgamates linear shear fow mechanisms
in a nonlinear manner to characterize the ER fuid be-
havior across a spectrum of electric feld strengths. By
utilizing a minimal set of parameters coupled with
straightforward linear mechanisms, the model adeptly
captures the intricate dynamics of ER fuids. Further-
more, it obviates the need to grapple with

computationally challenging nonlinear mechanisms,
such as those represented by the Coulomb friction model.
Subsequently, it extended it to the MR dampers [32, 33].
Based on the force-velocity hysteresis loop of the MR
dampers, there are two distinct rheological regions: the
preyield and postyield regions. Te preyield area dem-
onstrates strong hysteresis, which is regular for the vis-
coelastic behavior of such materials. Te postyield region
changes with a nonzero yield force, in which the yield
force is a function of the applied current (e.g., changes in
the magnetic feld). Te structure of the nonlinear
viscoelastic-plastic model introduced by Pang et al. [32] is
based on the block diagram in Figure 19.

6.1.1. Preyield Mechanism. Te Kelvin element in
Figure 20(a) represents the mechanical analogy of the vis-
coelastic damper’s behavior in the preyield region. Equation
(66) expresses this mechanism in the time domain.

Fυe � cυe _x(t) + kυex(t), (66)
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where Fυe is the viscoelastic element of the damper force.Te
nonlinear shape function Sυe is a preyield switching function.
Tis is parallel to the postyield switching function. Sυi un-
dergoes a smooth transition from the preyield to postyield
phase. Te Sυe function depends on the yield velocity (υg)

and is established during the identifcation process. Sυe is
obtained from the following equation:

Sυe �
1
2

1 − tanh
|υ| − υy

4εy

􏼠 􏼡􏼢 􏼣. (67)

In the above equation, υ(t) is the instantaneous velocity,
υy is the yield velocity, and εy is a smoothing parameter. Te
force component is obtained as a derivative of the preyield
mechanism.

Fpre(t) � Sυe(υ)Fυe(t). (68)

6.1.2. Postyield Mechanism. In the postyield stage, the
damper behavior is similar to a viscous damping device with
a nonzero yield force. Te postyield mechanical simulation,
Fυi, is shown in Figure 20(b) as a viscous element. Te force
is expressed as follows:

Fυi(t) � cυiυ(t), (69)

where Sυi is a shape function similar to Sυe. Tis func-
tion fulflls as a switching operation to trigger a post-
yield viscous mechanism when the damping force exceeds
the yield force. Tis is obtained using the following
equation:

Sυi �
1
2

1 + tanh
|υ| − υy

4εy

􏼠 􏼡􏼢 􏼣. (70)

Terefore, the force component of the postyield
mechanism is as follows:

Fpost(t) � Sυi(υ)Fυi(t). (71)

6.1.3. Yield Force. Te yield force Fc is a function of the
applied domain and is a domain-dependent parameter that
provides the damper with its semiactive capabilities. Te
damper behavior shows some forms of the Coulomb force
efect at low velocity. Tis efect is included in the force
parameter Fc and the shape function Sc. Te shape function
is given by the following equation:

Figure 17: Schematic lumped-parameter representation of fuid fow (Section 5.4).
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Figure 18: Lumped model of fuid fow (Section 5.4).

x, υ f

Pre-yield Function
Sυe Lυe

Post-yield Function
Sυi Lυi

Yield Force
Sc Fc

+

Figure 19: Overall structure of the nonlinear viscoelastic-plastic model (Section 6.1).
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Figure 20: Overall structure of the model (Section 6.1).
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Sυ �
1
2

1 + tanh
υ
4εy

􏼠 􏼡􏼢 􏼣. (72)

In the above equation, v(t) is the velocity magnitude and
vc is a smoothing factor that ensures a smooth transition
from a negative velocity to a positive value and vice versa.

Fc(t) � Sc(υ)Fc. (73)

6.1.4. Final Form of the Viscoelastic-Plastic Model.
Equation (74) shows the fnal form of the damping force of
the viscoelastic-plastic model.

F(t) � Fpre(t) + Fpost(t) + Fc(t)

� Sυe(υ)Fυe + Sυi(υ)Fυi + Sc(υ)Fc.
(74)

Te assumption behind this equation is that the damping
force is a combination of functions, each of which is a linear
mechanism with nonlinear shape functions.

6.2. Viscoelastic-Plastic Model Proposed byWereley. In 1980,
Wereley et al. [93, 94] used the previously described preyield
and postyield mechanisms and proposed a viscoelastic-
plastic model by changing the transition function from
the preyield to the postyield regions. Te researchers ob-
served that prevailing dynamic models heavily lean on ex-
perimental data. While this reliance is somewhat inescapable
given the intricate material behaviors at play, the absence of
a phenomenological approach in modeling ER fuid often
amplifes the volume of experimental data needed for pa-
rameter estimation. Notably, models of this nature typically
encompass a limited set of parameters. As a solution, they
introduced a nonlinear viscoelastic-plastic model, em-
bodying a novel approach to characterize ER fuid. A
schematic representation of this model can be seen in
Figure 21.

As shown in Figure 21, in this viscoelastic-plastic model
and unlike in Figure 19, there is no yield force, and its
descriptive relation is given by the following equation:

􏽢FMReffective
� SυeFυe + SυiFυi, (75)

where Sυe and Sυi are the nonlinear preyield and postyield
shape functions, respectively, obtained from equations (69)
and (65). Fυe and Fυi are the pre and postyield damping force
components obtained from equations (61) and (64),
respectively.

6.3. Viscoelastic-Plastic Model Proposed by Li. Li et al. [20]
started using a mechanism similar to that of the viscoelastic-
plastic modeling introduced by Wereley et al. [93, 94] to
model the behavior of the MR damper, whereafter they
modifed the preyield and postyield mechanisms of the
viscoelastic-plastic model. As shown in Figure 22, they
developed a new model for the MR damper by integrating
a rigid three-parameter model, similar to the mechanism
used for viscoelastic behavior in the preyield region

(Figure 22(a)). Tis model consists of a spring (k2) con-
nected in series with a rigid Kelvin–Voigt model, repre-
sented by k1 and c1.

In addition to the viscoelastic force Fυe, the stiction efect
(Fs) resulting from the piston seal enters the damping force.
Terefore, the damping force in the preyield region is given
by the following equation:

F � Fυe + FS. (76)

When the damper force F is higher than the yield
force of the damper Fc, the MR damper operates in the
postyield phase. Both the inertial components and the
fuid viscous residence contributed to the yield force.
Terefore, the damper’s postyield force (Fp) can be
expressed as follows:

Fp � Fc sgn( _x) + cυ _x + R€x. (77)

In (77), cv is the viscous coefcient and R is the
equivalent inertial mass. By combining these two phases, the
resulting equation for the model proposed by Li et al. [20]
was obtained as follows:

F � Fυe + FS, |F|≤Fc, (78)

Fp � Fc sgn( _x) + cυ _x + R€x, |F|>Fc. (79)

6.4. Viscoelastic-Plastic Continuous Physical Model (VEP).
To design an intelligent suspension system for high-speed
trains, Li et al. [95] sought an accurate model of the MR
damper. Te optimal model was envisaged to fulfll three
core criteria: (1) accurately capture the intrinsic nonlinear
behavior of the damper; (2) ensure that the model pa-
rameters carry tangible physical interpretations; and (3)
establish a direct linkage between model parameters and
the MR damper’s performance. However, the model
proposed by Wereley et al. [93, 94] demonstrated con-
straints in representing the dynamic hysteresis loop during
variable frequency excitations. Addressing this, Li et al.
proposed a viscoelastic-plastic model, determining its
operational boundaries by assessing whether the prey-
ielding force surpasses the yielding threshold. Tis model,
termed the continuous viscoelastic-plastic physical model,
is anchored in a comprehensive exploration of a damper’s
functional mechanisms and an analysis of its dynamic
behavior. Tis article delves into the development journey
of this model. Notably, the Maxwell model serves as
a common mechanical counterpart for understanding
viscoelastic phenomena in the prestrain phase, as depicted
in Figure 23. Equation (80) shows the resulting equations
for this model.

Fpre � cpre _y � kx − y, (80)

where k is the stifness and Cpre is the viscous damping
coefcient of the preyield phase. Te viscous-plastic be-
havior in the postyield phase was described using the
Bingham model (Figure 24). Te damping force in the
postyield region is expressed as follows:
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Fpost � Cpost _y + A sgn( _y), (81)

where A is the yield force and Cpost is the viscous damping
coefcient in the postyield region. Li et al. [95] used a new
hyperbolic function to describe the transition path from the
preyield to the postyield regions, as shown in Figure 25. A
smooth curve of the yielding process can be obtained by
merging Cpre _y and A sgn( _y) as a new function. Tus, both
the Maxwell and Bingham models were merged into the

viscoelastic-plastic model, as shown in Figure 26. Te fnal
equation can be rewritten as follows:

F � kx − y � c _y + A tanh(α _y), (82)

where F denotes the damping force of the damper, k denotes
the stifness of the damper in the preyield region, c denotes
the viscous damping coefcient in the postyield region, A

denotes the yield force, and α denotes the restoring factor.

Pre-yield
Shape Function

Post-yield
Shape Function

Pre-yield Viscoelastic Element

Post-yield Viscoelastic Element

0

0

1

1

Fx, υ

υy

υy

Sυi

Sυe

kυe

cυe

cυi

Figure 21: Overall structure of the viscoelastic-plastic model by Wereley et al. [93, 94] (Section 6.2).
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Figure 22: Overall structure of the model proposed by Li et al. [20] (Section 6.3).
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Figure 23: Mechanical analogy of the viscoelastic phenomena in the preyield phase (Section 6.4).
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Figure 24: Viscous plastic model in preyield phase (Section 6.4).

Structural Control and Health Monitoring 21



6.5. Nonlinear Stifness Viscoelastic-Plastic Model (nkVEP).
Li et al. [95] observed a sudden decline in the slope of the
force-displacement and force-velocity curves derived from
MR damper behavior, particularly within the preyield re-
gion. Tis abrupt deviation is largely attributable to the
damper’s inadequate internal pressure. While bolstering the
pressure in the reservoir can mitigate this efect, it cannot be
entirely eradicated. Earlier viscoelastic-plastic models fell
short in capturing this distinct decline in force-velocity and
force-displacement relationships. Consequently, there was
a palpable need to formulate a model that aptly represents
this phenomenon. Based on this fnding, they proposed
a viscoelastic-plastic model with nonlinear stifness
(nkVEP), as shown in Figure 27.Te equation for this model
is in the form of the following equation:

F � k(x, y)(x − y) � c _y + A tanh(α _y). (83)

By ftting the nonlinear stifness data, the function
k(x, y) can be rewritten as

k(x, y) � q(x − y) − tanh ρ( _x − _y)dopf􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
n

+ k0, (84)

where ρ is the amplifcation coefcient, dopf is the position of
the sudden change point in the stifness, and k0 is the
reference value of the stifness. In addition, the main pa-
rameters of the nkVEP model were presented for the gen-
eralized fuctuating current (i) according to the following
equations:

A � Aai + Ab; c � cai + cb; k � ka tanh(bi) + kb; α � αai + αb. (85)

6.6. Stifness-Viscosity-Elasto-Slide (SVES) Models. Te
nonlinear SVES model includes a linear combination of
nonlinear mechanisms. Figure 28 shows a schematic of the
SVES model proposed by Wereley et al. [93] to describe the
hysteresis behavior of the MR dampers. Teir model has
three parallel amplitude-dependent elements: linear stif-
ness, linear viscous dashpot, and a nonlinear elasto-slide
element consisting of a stifness and Coulomb element in
series. Figure 29 shows the efects of each of these mecha-
nisms on the hysteresis loop of the damper. Te linear
stifness and dashpot parameters provide the necessary slope
and damping characteristics for the hysteresis loop. Te

elasto-slide element conveys stifness in the region where the
velocity of the damper changes its sign, and the displacement
from the extreme position is less than a specifc value (2xs).
Te elasto-slide element is equivalent to a Coulomb element
for the memory phenomenon of the hysteresis loop.

Te force predicted by this model is
F(t) � Fs(t) + Fd(t) + Fes(t), (86)

where Fs(t) is the stifness element force, Fc(t) is the viscous
dashpot element force, and Fes(t) is the elasto-slide element
force (four legs as a parallelogram), as shown in the fol-
lowing equation:

F

ẏ

cprey
A sgn (ẏ)

A sgn (ẏ)

A tanh (ẏ)

Figure 25: Transition function from preyield to postyield region (Section 6.4).

F

x

y

c

A

k

Figure 26: Viscoelastic-plastic continuous physical model (Section 6.4).
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Fs(t) � k1x; Fd(t) � c _x; Fes(t) �

− N, x � _x _x � 0,

− N + k2(x + x), x< − x + 2xs _x> 0,

N, x> − x + 2xs _x> 0,

N, x � _x _x � 0,

− N + k2(x − x), x> − x − 2xs _x< 0,

− N, x< x − 2xs _x< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(87)

In (87), the sliding force (N) is given by the yielding
displacement (xs) multiplied by k2 and x is the amplitude
over the cycle.

7. Algebraic Models

Given that the models raised for MR dampers are complex
and computationally heavy, researchers have sought to
provide simpler models. Earlier models predominantly
stemmed from theoretical examinations of the device’s
behavior or that of its specifc fuid. While these studies

provided valuable insights, they often proved time-intensive
and necessitated specialized expertise. In contrast, certain
research groups prioritize operational and practical appli-
cations, striving to construct models that are as streamlined
as possible, yet retain the fundamental and efective prop-
erties. Tese models serve a dual purpose: they facilitate the
numerical simulation of devices in structural control and
guide the management of the devices. However, MR
dampers have high hysteresis and nonlinear behavior;
therefore, the introduced models should show this phe-
nomenon clearly and have sufcient accuracy. Algebraic

F

x

y
c

A k (x, y)

Figure 27: Nonlinear stifness viscoelastic-plastic model (Section 6.5).
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Figure 28: SVES models (Section 6.6).
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Figure 29: Elements of the hysteresis loop. (a) Linear stifness element, (b) linear viscous damping element, and (c) nonlinear elasto-slide
element (Section 6.6).
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models are another possibility proposed by researchers. In
this group of models, the hysteresis behavior of the damper
is mainly expressed by simple algebraic expressions. Te
accuracy of these models is desirable to a large extent.

7.1. Weng Model. Weng et al. [96] presented a model
employing an algebraic expression based on the arctangent
function to simulate the hysteresis behavior of an MR
damper. In this model, the employment of both the hy-
perbolic tangent function and the sign function successfully
replicates the damper’s behavior without resorting to dif-
ferential relations, such as those found in the Bouc–Wen
relation. Te model introduced by them is given by the
following equation:

Fd(t) � f0 + cb _x(t) +
2
π

fy arctan k _x(t) − _x0 sgn(€x(t))􏼂 􏼃􏼈 􏼉,

(88)

where Fd is the restoring force of the MR damper, f0 is the
preload value owing to the nitrogen accumulator, cb rep-
resents the viscous damping coefcients, and fy is the yield
force. Parameter k is a specifc shape coefcient, and _x0 is the
hysteretic velocity. _x and €x are the velocity and acceleration
of the damper piston, respectively.

7.2. Cesmeci and Engin Model. Cesmeci and Engin [97]
proposed a modifed version of the Weng et al. [96] model.
Tey found that Weng’s model was in good agreement with

the experimental data, except for the lower current inputs of
the highest excitation velocity. Tis was possibly due to the
fuid inertial force, which became more critical at lower
input currents than the induced yield stress because the
excitation acceleration increased. Terefore, to improve the
model, they added an inertial force term to the following
equation:

Fd(t) � f0 + cb _x(t)

+
2
π

fy arctan k _x(t) − _x0 sgn(€x(t))􏼂 􏼃􏼈 􏼉 + m€x(t).

(89)

Parameter m in (89) represents the virtual mass to be
determined based on experimental data.

7.3. Metered Model. To enhance Weng’s model, Metered
et al. [98] incorporated amplitude and excitation frequency
parameters. While these parameters increase the model’s
accuracy in predicting the damper’s response to external
excitation, they also constrain its application in structural
control. Tis limitation arises because buildings are exposed
to inherently random vibrations, making it challenging to
reliably predict the excitation’s amplitude and frequency.
Teir proposed model is given by the following equation:

Fd(t) � f0 + cb _x(t) +
2
π

fy arctan k _x(t) − _x0 sgn(€x(t))􏼂 􏼃􏼈 􏼉 A1a + A2( 􏼁 F1f + F2( 􏼁, (90)

where a is the amplitude and f is the excitation frequency.
Parameters A1, A2, F1, and F2 are constants obtained from
the identifcation and curve-ftting processes.

7.4.BalamurganModel. Based on their experimental results,
Balamurgan et al. [99] found that an MR damper exhibited
voltage-dependent nonlinear hysteresis behavior. However,
any change in the input voltage has a visual efect on the
postyield saturation peak force and magnitude of the hys-
teresis loop.Tey suggested that the resulting damping value
could be expressed in a general form consisting of two

independent functions: the control voltage of the device and
hysteretic force.

Fd � Fi(υ)Fh(x, _x, €x). (91)

In the above equation, Fi is a function of the voltage,
which is shown by the parameter υ, and Fh is a hysteretic
function. Function Fi is a monotonous nonlinear in-
cremental function of the voltage and can be used as a gain
function. Te nonlinear gradual behavior of Fi can be
represented by an asymmetric sigmoid function that has
a bias with the axis [100]. Equation (92) shows their pro-
posed damper force.

Fd(t) � f0 + cb _x(t) +
2
π

fy arctan k _x(t) − _x0 sgn(€x(t))􏼂 􏼃􏼈 􏼉􏼔 􏼕 1 +
k2

1 + e
− a2 σ/υ0+I0( )

−
k2

1 + e
− a2I0

􏼠 􏼡, (92)
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where k2 and a2 are positive constant values, I0 is an ar-
bitrary constant value signifying bias, and v0 is a constant.
Tese parameters must be derived from measured data.

8. Hyperbolic Tangent-Function Models

Researchers have used the hyperbolic tangent function to
express the hysteresis behavior of MR damper. However,
exact classifcation of these models is difcult. Some of these
models have been described in previous sections. In this
section, the most efective hyperbolic model is presented.

8.1. Bass Model. Te Bass hyperbolic tangent mode [102]
consists of two sets of spring-dashpot elements connected by
a mass element, as shown in Figure 30. Te inertial-mass
element resists motion through Coulomb friction. Te

displacement and velocity of the mass relative to the fxed
base are denoted by x0 and _x0, respectively. Te displace-
ment and velocity of the damping piston relative to the mass
are represented by x1 and _x1, respectively, and the general
movement parameters of the damper are represented by x

and _x, respectively, which are the result of adding these
parameters with the correct sign.

Moreover, the parameters k1 and c1 model the preyield
viscoelastic behavior model. Te postyield viscoelastic be-
havior is represented by a spring (k0) and a dashpot (c0). m0
denotes the inertial mass of both the fuid and piston, and f0
is the yield force. Vref is the reference velocity that afects the
overall shape of the transition curve from the elastic to the
plastic region of the function. Te damper output force and
dynamic characteristics of the system are presented as
equations (87) and (88) in the state-space form.

_x0

€x0

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0 1

− k0 − k1( 􏼁

m0

− c0 − c1( 􏼁

m0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x0

_x0

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0 0

k1

m0

c1

m0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

_x

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

1
m0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
f0 tanh

_x0

vref
􏼠 􏼡, (93)

F � − k1 − c1􏼂 􏼃
x0

_x0
􏼢 􏼣 + k1 c1􏼂 􏼃

x

_x
􏼢 􏼣. (94)

Temodel has unknown parameters in the form of frst-
and second-order polynomial functions. Tese parameters
are current-dependent input operations, which are obtained
from the identifcation of a specifc MR damper device.

8.2. Kwok Model. Kwok et al. [101] proposed a model in
which the hyperbolic tangent function was used to represent
the MR damper hysteresis loop. Linear functions were used
to show the conventional viscous damping and spring
stifness. Te Kwok model can be expressed as follows:

F � kx + c _x + αz + f0 where z � tanh(β _x + δ sgn(x)).

(95)

In these equations, c and k are the viscous and stifness
coefcients, respectively; α is the hysteresis scale factor; z is
the hysteresis variable given by the hyperbolic tangent
function; and f0 is the damper force ofset. Te components
constituting the hysteresis curve are shown in Figure 31,
[101]. Tese parameters describe the force-velocity response
of the damper.Te viscosity term (c _x) forms an inclined line
that depicts the relationship between the velocity and the
dissipating force of the damper in the postyield regions (at
both ends of the hysteresis loop). k is responsible for opening
the horizontal ellipse composed of kx, from the vicinity of
the zero velocity. Te parameter β forms the fundamental
form of the hysteresis curve. Tis coefcient is the damping-
velocity scale coefcient that defnes the slope of the hys-
teresis loop. δ is a scale coefcient, and the sign of the
displacement determines the width of the hysteresis loop

using the δ sgn(x) term. Te overall hysteresis loop was
scaled by the α coefcient, which determines the height of
the hysteresis loop. In the original study, the unknown
parameters of the model were identifed using the PSO
optimization algorithm [103].

Models employing the hyperbolic tangent function to
articulate the internal dynamic behavior of the damper
typically lack an intrinsic inverse model. Nevertheless,
certain models can be streamlined based on the integration
of the hyperbolic function within the model’s fnal equation.
In such cases, the hyperbolic tangent function is substituted
with the sign function, facilitating the formulation of inverse
function relationships. Te Kwok model is a notable ex-
ample within this category.

8.3. YangModels. Yang et al. [104] worked on MR dampers
that have a friction lagging efect in their force-velocity
diagram. Figure 32 shows the force-velocity and force-
displacement diagrams of the damper. Tey proposed
a nonlinear algebraic hysteretic model for dampers, based on
a hyperbolic function.Te following equation represents this
relationship:

F � kx + c _x + αzwhere z � arctan(β _x) + δ sgn(x). (96)

In these formulas, F is the damping force; _x and x are the
velocity and displacement of the piston, respectively; c is the
viscous damping coefcient; k is the stifness coefcient; and
α is the hysteretic factor. Parameter z represents the internal
dynamic efect of the device from the Coulomb damping
force, which describes the hysteresis behavior of the force-
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velocity loop. β and δ are the essential coefcients of the
slope and the width of the hysteresis loop, respectively.Tese
unknown parameters of the model are obtained from the
identifcation process, which are linear or quadratic re-
lationships of the damper input current.

In another study on MR dampers, Yang et al. [105]
proposed a model in which a componentwise additive
strategy, including viscous damping, spring, and a hys-
teretic component, was used. Te damping force

produced by this new model is expressed in the following
equation:

F � kx + c0 _x +
fb

e
α _x+βsgn(x)

+ c
+ f0. (97)

Teparameters used in the above relation are known and
accepted symbols in this feld. Here, F is the damping force,
_x is the velocity, x is the displacement, c0 is the viscous
damping coefcient, and k is the stifness coefcient. fb, α, β,

F
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x0 x1

f0 (x0)˙

Figure 30: Te Bass hyperbolic tangent function model (Section 8.1).
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Figure 32: Variation of damping force with input current [104]: (a) force vs. displacement; (b) force vs. velocity (Section 8.3).

26 Structural Control and Health Monitoring



and c are the parameters describing the hysteresis charac-
teristics of the device. Operator sgn(.) is the sign function,
and f0 is the ofset of the damping force. Te model pa-
rameters are linear and quadratic equations relative to the
damper input-management current, which is derived from
the identifcation process.

8.4. Cheng Models. In 2020, Cheng et al. [106] proposed
a parametric model for MR dampers that considered the
amplitude and frequency of excitation. Te proposed model
was a modifed hyperbolic tangent model. Te results show
that the proposed model has higher ftting accuracy and can
be well adapted to changing conditions. According to the
type and size of the damper used and verifcation of pa-
rameters’ sensitivity, the proposed model is as follows:

Fm � c(I, A, f) _x + α(I)zm,

zm � tanh β(I, A, f) _x + δc sgn(x)( 􏼁,
(98)

where c(I, A, f) and β(I, A, f) are functions of the current I

and the excitation amplitude and frequency are denoted as A

and f, respectively. α(I) is a function of the current.
Furthermore, the proposed model is invertible, allowing

for tracking of the damping force.Te authors endeavored to
enhance result accuracy by elucidating the relationship
between the damping force and the frequency of external

excitation. Yet, as previously noted, the suitability of such
a model for structural control felds, characterized by their
randomness and nonharmonic nature, remains ambiguous.

9. Magic Formula

Te magic formula ofers an efective approximation for
nonlinear curves [107]. Comprising a combination of var-
ious trigonometric functions, it is extensively utilized to
estimate vehicle tire performance in mechanical simulations.
Indeed, this model represents a specifc application of the
hyperbolic tangent function in terms that delineate and
epitomize the internal dynamic performance of the damping
device. Te common magic formulation is

F � D sin C arctan[β(1 − E)α + E arctan(βα)]􏼈 􏼉, (99)

where β, C, D, and E are the parameters that control the
shape of the curve. α is an independent variable that can be
selected from the main movement parameters of the device,
such as displacement, velocity, and defection angle, based
on its actual responses. Pan et al. [107] showed that the
acquired tire force-defection angle curve is similar to the
plastic-fuid curve of the MR damper, with some diferences
in describing the hysteresis characteristics. Te magic for-
mula representing the MR damper is given by

Fmfm � D sin C arctan[β(1 − E)( _x + A|x|) + E arctan(β( _x + A|x|))]􏼈 􏼉 + kc _x + kx + f0. (100)

In this equation, x represents the displacement and _x

represents the velocity for both damper pistons. Te other
parameters of the model are defned as follows: A is the
hysteretic factor that determines the half-width of the MR
damper hysteresis curve and is generally positive; β is
generally a positive stifness factor; C is a shape factor that
determines the “S” curve shape and is approximately equal
to 1; D is used as the peak factor and determines the
damping-force saturation of the damper, which is generally
a positive value; E is the curvature factor that determines the
yield characteristics, which is typically less than 1; kc is the
viscous damping coefcient; k is the MR-damper stifness
coefcient; and f0 is the bias force.

Te parameters in this context can be chosen as constant,
linear, or quadratic polynomials, depending on their de-
pendency on the damper management current, a de-
pendency that becomes evident postidentifcation. For
parameters A and β, it is also possible to have a dependency
on the amplitude and excitation frequency. Tis model can
be inverted with the introduction of certain simplifcations.
Te precision of the resultant inverse model is contingent
upon the identifed parameters and their relation to either
the current or the amplitude and frequency of the external
excitation.

10. Dynamic Models Based on the Dahl
Hysteresis Operator

Te Dahl model [108, 109] belongs to the frst generation of
dynamic-friction models. In addition to MR dampers, this
model has been used in standard simulation models in the
aerospace industry [110, 111]. Te starting point of the
model is as follows:

dF(x)

dx
� σ0 sgn 1 − sgn( _x)

F

Fc

􏼠 􏼡 1 − sgn( _x)
F

Fc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

i

. (101)

Tis form of the Dahl model was further developed and
became a well-known equation, characterized by the fol-
lowing relations for better numerical implementation:

F(x) � σ0 �z; �z
.

� _x sgn 1 − sgn( _x)
σ0�z
Fc

􏼠 􏼡 1 − sgn( _x)
σ0�z
Fc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

i

.

(102)

Te parameter defnitions are defned as follows. F is the
friction force; ž is the state variable interpreted as the elastic
deformation of surface ruggedness of the adjacent bodies; _x

is the sliding velocity; x is the body displacement; σ0 is the
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rugged stifness; i is the hysteresis loop-shape coefcient; and
Fc is the Coulomb friction.

Te most explicit form of the Dahl model is

F(x) � Fcz; _z � ρ( _x − | _x|z). (103)

10.1.ModifedDahlModel. Figure 33 shows a modifed Dahl
model proposed by Zhou et al. [112] based on the experi-
ments of Zhou [34], and Zhou et al. [113] performed onMR-
damper devices. Tey found that the results could be rep-
resented in the form of a model based on the Dahl operator,
which simulates the Coulomb friction force observed in the
results.

F(x) � k0x + c0 _x + fdz − f0, (104)

where k0 is the stifness coefcient, c0 is the viscous damping
coefcient, fd is the Coulomb force regulated by the applied
magnetic feld, z is the dimensionless hysteresis variable
given by (103), and f0 is the force exerted by the seals to
measure the bias.

10.2. Viscous Dahl Model. Ikhouane et al. [59] proposed the
viscous Dahl model to represent the dynamic nature of
a shear-mode MR damper. Tis version of the Dahl model is
expressed by the following equation:

F(x) � kx(υ) _x(t) + kw(υ)w(t), (105)

where the constants kx and kw are voltage dependent and w

is obtained from (43). Figure 34 illustrates this model
schematically. Tis model was used in several studies
[74, 75, 114, 115].

10.3. Asymmetric Dahl Model. Garcia et al. [116] tested
a prototype of an MR damper whose force-displacement
response curves and the force-velocity obtained were
asymmetric. Hence, they proposedmodifcations to the Dahl
viscous model to consider the efects of asymmetry on the
behavior of the MR dampers. Te force produced by the
damper is as follows (105), and its viscosity and friction
parameters are obtained from the following relationships:

kw1w(t), whenw(t)≥ 0,

kw2w(t), whenw(t)≤ 0,
􏼨

kx1 _x(t), when _x(t)≥ 0,

kx2 _x(t), when _x(t)≤ 0.
􏼨

(106)

All the parameters (ki) were obtained from the identi-
fcation process.

11. General Dynamic Models

Tis section presents models that rely on the potential of
identifcation methods developed in recent years for faster
and more accurate identifcation of complex problems with
increased unknowns. Shortly, a signifcant increase in this
branch of research will occur to reproduce the numerical
version of MR dampers.

In 2018, Zhao et al. [117] presented a dynamic hysteretic
model to describe the force-velocity properties of MR
dampers with various current excitations. It can be used to
simulate the nonlinear properties of MR dampers more
accurately. Te model was presented using nonlinear state
equations.

_η � ki[U − Δ(η)]; Φ(U) � η − aU + b; Δ(η) �

k η − x0( 􏼁, when η> x0,

0, when |η|≤x0,

k η + x0( 􏼁, when η< − x0.

⎧⎪⎪⎨

⎪⎪⎩
(107)

where U is the model input, η is a state variable, Φ(U) is the
model output, a is the feedforward gain, ki is an integration
gain, and Δ(η) is the output of the dead-zone operator. b is
the bias. x0 and ki can afect the width and amplitude of the
hysteresis loop. Because of its dynamic nature, the model can
represent the hysteresis of MR dampers. It provides a simple
building block for developing various dynamic hysteretic
models for MR dampers and represents a general frame-
work. Te structure of the model is shown in Figure 35.

In 2018, Zhao and Xu [118] proposed a model based on
the sigmoid function that was based on a comparison of
experimental data. Te data used were predicted by the
original sigmoid model and considered the Stribeck efect
(Figure 36).

Te model was designed to overcome the shortcomings
of the original sigmoid model considering the properties of
the MR damper, including the viscosity, elasticity, force

hysteresis, and force mutation in the low-velocity region.
Tis is formulated as follows:

F
corr
sig � Fys

1 − e
− δ _x− _xh( )

1 + e
− δ _x− _xh( )

⎛⎝ ⎞⎠ + sgn( _x)Fsc 1 − e
− _x/ _xs| |􏼒 􏼓

+ k0(x) + c0( _x).

(108)

Te parameters were identifed using genetic algorithms.
Te results show that their model can well predict the
Stribeck efect in the low-velocity region of small-scale
dampers.

In 2018, Yuan et al. [119] proposed a model by com-
bining the hyperbolic tangent and exponential functions.
Tis model describes the nonlinear behavior of MR dampers
as a simple parametric mode. Te model typically consists of
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a hysteretic component, linear spring, viscous damper, and
a fxed force value. Te model is given by

F � VS1Cηe
− A| _x|

_x + T(i)S2 tanh(α _x + βx) + Kx + F0,

(109)

where the constants S1 and S2 depend on the geometric and
physical properties of the fuid MR, respectively. However,
the model still requires scale parameters to match the

numerical force-velocity curve with the corresponding curve
results from laboratory tests.

Yu et al. [120] proposed a new model based on the
hysteresis division method to describe the complex non-
linear behavior of an MR damper. Tis method divides the
force-velocity hysteresis loop into a branch and backbone
curve (Figure 37).

Fd �

Fup, when €x≥ 0,

Fdown, when €x< 0,

⎧⎪⎨

⎪⎩
�

Fba + Fbr, €x≥ 0,

Fba − Fbr, €x< 0,

⎧⎪⎨

⎪⎩

Fba � a
1 − e

b _x sgn( _x)

1 + e
c _x sgn( _x)

􏼠 􏼡sgn( _x); Fbr � d exp −
_x sgn( _x) − e

f
􏼢 􏼣

2⎧⎨

⎩

⎫⎬

⎭,

(110)

where _x denotes the damper velocity and a, b, c, d, e, and f

are the parameters that must be identifed in association with
the excitation. Tis model accurately describes the nonlinear
hysteresis characteristics of small MR dampers. Moreover, it
has a time-saving and efcient identifcation process and can
be integrated into semiactive-vibration-control strategy.
However, the performance of the model against non-
harmonic excitation and its efciency were not considered in
their study.

In 2019, He et al. [121] proposed a mechanism-based
unifed MR-damper model based on a neuro-fuzzy tech-
nique to represent the direct dynamics of MR dampers.
Based on kinetics and rheology, the damping force of an MR
damper consists of the friction, elasticity, viscosity, inertia,
and shear terms.Temodel parameters have unique physical
meanings, and the model can be conveniently used for
semiactive control in vehicle applications.

F � f + Fk + Fc + Fn + Fb,

f �

A €x> 0

− A €x≤ 0

⎧⎪⎨

⎪⎩
; Fk � k x − x0( 􏼁; Fc � c _x; Fn � n€x,

Fb � Db sin Cb arctanBb 1 − Eb( 􏼁 _x +
Eb

Bb

arctan Bb _x( 􏼁􏼢 􏼣􏼨 􏼩where: Cb � 1 ± 1 −
2
π
arcsin

Ym

Db

􏼠 􏼡.

(111)
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Figure 37: Details of the hysteresis division method: branch and backbone curve [120] (Section 11).
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Te authors used the “magic formula” to represent the
shear behavior of the MR damper, Fb, which is similar to the
slip behavior of tiers. Tey constructed an inverse model
based on the adaptive neuro-fuzzy inference system (ANFIS)
technique, and precise training data were obtained from the
proposed unifed hysteretic model. Te simulation results
demonstrate that the model can accurately and efciently
describe the direct dynamic characteristics of an MR
damper. A schematic representation of the model is shown
in Figure 38.

Bui et al. [122] proposed a novel parametric dynamic
model based on a quasistatic model (QS) and hysteresis
multiplier of the magic formula (Figure 39). Teir model
could efectively and accurately capture the strong nonlinear
hysteresis phenomenon of MR dampers. Te quasistatic-
magic-formula (QSMF) model formulates both the shear
and fow modes of MR dampers, and the asymmetric hys-
teresis responses of the damper are more accurate than those
of the Spencer and Pan models.

F � FQS sin C arctan[B(1 − E)z + E arctan(Bz)]{ },

z �
_x + Sax €x≥ 0

_x + Sbx €x< 0
􏼨 ; FQS � Fη + Fτ + Ff.

(112)

Additionally, the QSMF-model parameters are easier to
identify, and the model is feasible and applicable to semi-
active control systems based on small-scale MR dampers.

12. Concluding Remarks

A successful control algorithm is based on a good sense of
the seismic behavior of the structure and sufcient
knowledge of control device operation. Much efort has

been made to identify MR dampers as efcient but
complicated tool; however, their complicated operation
has also been noted. Various relationships have been
proposed to describe the highly nonlinear behavior of
these devices. An algorithm is more successful if the
control device has clear management rules (inverse
model) to act as a control and a regulative narrative.
Terefore, proper identifcation of these devices alongside
using the correct inverse model is essential. Te selection
of an appropriate mathematical model describing the
device is important during the identifcation process. It is
important to note that the frst step in selecting an ap-
propriate mathematical model always begins with labo-
ratory samples. Te response of a damper to changes in
kinetic parameters, such as displacement and velocity, and
changes in the damping force with changes in control
factors, such as voltage or current, are essential.

Te models discussed in this review are characterized
by parametric relations. Researchers have employed
various specifc functions to depict the damper’s be-
havior, resulting in a subset of models adept at accurately
simulating the device’s operation. Tese models can be
broadly categorized into two distinct groups. Te frst
encompasses models that depict the nonlinear internal
dynamics of the damper, where a parameter is expressed
through a diferential formulation, exemplifed by the
Dahl or Bouc–Wen models. Despite their efcacy in
simulating damper behavior, these models exhibit con-
straints in facilitating continuous damper control,
making them more suited for bang-bang or clipped-
control algorithms. Conversely, the second group le-
verages geometric and explicit functions, excelling in
crafting inverted models. Tis permits designers to im-
plement continuous control algorithms, achieving

F
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Figure 38: Mechanism-based unifed MR-damper model (Section 11).
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Figure 39: Quasistatic-magic-formula model (Section 11).
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a damping force closely aligned with the desired control
force. However, the damper’s response to variations in
the amplitude and frequency of external stimuli warrants
deeper investigation.

Te research showcased here represents only a fraction
of the extensive eforts made over the past decades to de-
cipher the nonlinear behavior of MR dampers. Tese
dampers stand out as one of the most efective and practical
tools to enhance the seismic performance of structures. Our
fndings highlight several vital considerations:

(i) Te model should be simple with a restrained
number of parameters.

(ii) It must be capable of replicating the force-velocity
cycle and the hysteresis behavior of the damper.

(iii) Te performance of the proposed model, particu-
larly in the transitional region around the yield
stress, should be both accurate and closely
approximated.

(iv) Ensuring the model’s invertibility is paramount.
(v) Te model parameters should be sufciently fexible

yet straightforward in illustrating the dependency of
results on control factors, such as current or voltage.

Undoubtedly, what has been done thus far has been
efective but not sufcient. Te strong dependence of device
segments on their physical properties prevents the provision
of empirical and simple mathematical formulas. Terefore,
continuous eforts are being made to identify the factors that
afect the damping behavior of the device and to provide the
most appropriate mathematical models that can express the
complexity of the device response, particularly in areas
where rheological fuid yields. At the frst glance, the use of
complex functions appears to be an efective way to identify
MR dampers. However, it should be noted that the nu-
merical reproduction of the damper response is only half
that is required by the designer to design a successful and
efcient control algorithm.Te second is the management of
the devices to increase the efciency of the control con-
fguration. Terefore, the proposed model should be simple,
accurate, and efcient. Tis simplicity plays a crucial role in
the implementation of the inverse model, which plays
a signifcant role in controlling the device and generating the
dissipating force closest to the required control force. Te
combination of these two parts is not simple in practice, and
this is an issue that requires further research.
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[43] A. Domı́nguez-González, I. Stiharu, and R. Sedaghati,
“Practical hysteresis model for magnetorheological
dampers,” Journal of Intelligent Material Systems and
Structures, vol. 25, no. 8, pp. 967–979, 2014.

[44] N. Ambhore, S. Hivarale, and D. Pangavhane, “A study of
Bouc-Wen model of magnetorheological fuid damper for
vibration control,” International Journal of Engineering
Research and Technology, vol. 2, no. 2, pp. 1–6, 2013.

[45] M. T. Braz César and R. Barros, “Experimental and nu-
merical analysis of MR dampers,” Chinese Journal of Engi-
neering, vol. 2014, Article ID 915694, 7 pages, 2014.

[46] M. A. Razman, G. Priyandoko, and A. R. Yusof, “Bouc-Wen
model parameter identifcation for a MR fuid damper using
particle swarm optimization,” Advanced Materials Research,
vol. 903, pp. 279–284, 2014.

[47] W. Liu, Y. Luo, B. Yang, andW. Lu, “Design and mechanical
model analysis of magnetorheological fuid damper,”
American Journal of Mechanics and Applications, vol. 4, no. 1,
pp. 15–19, 2016.

Structural Control and Health Monitoring 33



[48] G. Z. Yao, F. F. Yap, G. Chen, W. Li, and S. H. Yeo, “MR
damper and its application for semi-active control of vehicle
suspension system,” Mechatronics, vol. 12, no. 7, pp. 963–
973, 2002.

[49] S. J. Dyke, B. F. Spencer Jr, M. K. Sain, and J. D. Carlson, “An
experimental study of MR dampers for seismic protection,”
Smart Materials and Structures, vol. 7, no. 5, pp. 693–703,
1998.

[50] S. J. Dyke, B. F. Spencer Jr, M. K. Sain, and J. D. Carlson,
“Modeling and control of magnetorheological dampers for
seismic response reduction,” Smart Materials and Structures,
vol. 5, no. 5, pp. 565–575, 1996.

[51] M. Giuclea, T. Sireteanu, D. Stancioiu, and C. W. Stammers,
“Model parameter identifcation for vehicle vibration control
with magnetorheological dampers using computational in-
telligence methods,” Proceedings of the Institution of Me-
chanical Engineers Part I: Journal of Systems & Control
Engineering, vol. 218, no. 7, pp. 569–581, 2004.

[52] G. Kumar, A. Kumar, and R. S. Jakka, “Te particle swarm
modifed quasi bang-bang controller for seismic vibration
control,” Ocean Engineering, vol. 166, pp. 105–116, 2018.

[53] S. J. Dyke, B. F. Spencer Jr, M. K. Sain, and J. D. Carlson,
“Seismic response reduction using magnetorheological
dampers,” IFAC Proceedings, vol. 29, no. 1, pp. 5530–5535,
1996.

[54] G. Yang, B. F. Spencer Jr, J. D. Carlson, and M. K. Sain,
“Large-scale MR fuid dampers: modeling and dynamic
performance considerations,” Engineering Structures, vol. 24,
no. 3, pp. 309–323, 2002.

[55] A. Spaggiari and E. Dragoni, “Efcient dynamic modelling
and characterization of a magnetorheological damper,”
Meccanica, vol. 47, no. 8, pp. 2041–2054, 2012.

[56] F. Yi, S. J. Dyke, J. M. Caicedo, and J. D. Carlson, “Seismic
response control using smart dampers,” American Control
Conference, vol. 2, pp. 1022–1026, 1999.

[57] L. M. Jansen and S. J. Dyke, “Semiactive control strategies for
MR dampers: comparative study,” Journal of Engineering
Mechanics, vol. 126, no. 8, pp. 795–803, 2000.

[58] F. Yi, S. J. Dyke, J. M. Caicedo, and J. D. Carlson, “Exper-
imental verifcation of multiinput seismic control strategies
for smart dampers,” Journal of Engineering Mechanics,
vol. 127, no. 11, pp. 1152–1164, 2001.

[59] F. Ikhouane and S. J. Dyke, “Modeling and identifcation of
a shear mode magnetorheological damper,” Smart Materials
and Structures, vol. 16, no. 3, pp. 605–616, 2007.

[60] G. Yang, B. F. Spencer, H. J. Jung, and J. D. Carlson,
“Dynamic modeling of large-scale magnetorheological
damper systems for civil engineering applications,” Journal
of Engineering Mechanics, vol. 130, no. 9, pp. 1107–1114,
2004.

[61] Y. K. Lau and W. H. Liao, “Design and analysis of a mag-
netorheological damper for train suspension,” Smart
Structures and Materials 2004: Damping and Isolation,
vol. 5386, pp. 214–225, 2004.

[62] Y. K. Lau and W. H. Liao, “Design and analysis of mag-
netorheological dampers for train suspension,” Proceedings
of the Institution of Mechanical Engineers, Part F: Journal of
Rail and Rapid Transit, vol. 219, no. 4, pp. 261–276, 2005.

[63] G. Tsampardoukas, C. W. Stammers, and E. Guglielmino,
“Hybrid balance control of a magnetorheological truck
suspension,” Journal of Sound and Vibration, vol. 317, no. 3-
5, pp. 514–536, 2008.

[64] S. F. Ali and A. Ramaswamy, “Testing and modeling of MR
damper and its application to SDOF systems using integral

backstepping technique,” Journal of Dynamic Systems,
Measurement, and Control, vol. 131, no. 2, Article ID 021009,
2009.

[65] A. Dominguez, R. Sedaghati, and I. Stiharu, “Semi-active
vibration control of adaptive structures using magneto-
rheological dampers,” AIAA Journal, vol. 44, no. 7,
pp. 1563–1571, 2006.

[66] A. Dominguez, R. Sedaghati, and I. Stiharu, “Modeling and
application of MR dampers in semi-adaptive structures,”
Computers & Structures, vol. 86, no. 3-5, pp. 407–415, 2008.

[67] X. Q. Ma, S. Rakheja, and C. Y. Su, “Development and
relative assessments of models for characterizing the current
dependent hysteresis properties of magnetorheological fuid
dampers,” Journal of Intelligent Material Systems and
Structures, vol. 18, no. 5, pp. 487–502, 2007.

[68] N. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali,
“Bouc–Wen model parameter identifcation for a MR fuid
damper using computationally efcient GA,” ISA Trans-
actions, vol. 46, no. 2, pp. 167–179, 2007.

[69] M. Ismail, F. Ikhouane, and J. Rodellar, “Te hysteresis
Bouc–Wen model, a survey,” Archives of Computational
Methods in Engineering, vol. 16, no. 2, pp. 161–188, 2009.

[70] F. Ikhouane and J. Rodellar, “On the hysteretic bouc–wen
model, Part I: forced limit cycle characterization,” Nonlinear
Dynamics, vol. 42, no. 1, pp. 63–78, 2005.

[71] F. Ikhouane and J. Rodellar, “On the hysteretic bouc–wen
model, Part II: robust parametric identifcation,” Nonlinear
Dynamics, vol. 42, no. 1, pp. 79–95, 2005.

[72] F. Ikhouane and J. Rodellar, “On the hysteretic Bouc-Wen
model, Part II: robust parametric identifcation,” Te Shock
and Vibration Digest, vol. 38, no. 4, pp. 369-370, 2006.

[73] F. Ikhouane and O. Gomis-Bellmunt, “A limit cycle ap-
proach for the parametric identifcation of hysteretic sys-
tems,” Systems & Control Letters, vol. 57, no. 8, pp. 663–669,
2008.

[74] A. R. Tsouroukdissian, F. Ikhouane, J. Rodellar, and N. Luo,
“Modeling and identifcation of a small-scale magneto-
rheological damper,” Journal of Intelligent Material Systems
and Structures, vol. 20, no. 7, pp. 825–835, 2009.
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