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Tis paper deals with edgewise vibration mitigation of rotating wind turbine blades by means of inerter-based vibration absorber
(IDVA), which can be realized both mechanically and electromagnetically. Introducing the electromagnetically-realizable IDVA
to the blade forms a 3-degree-of-freedom (3-DOF) blade-IDVA system consisting of the rotating blade, an absorber, and a series
inerter-dashpot-spring subsystem. Analytical optimal design formulas of the rotating blade-installed IDVA are then derived using
a pole-placement method where the equal-modal-damping-ratio principle and the triple-root-bifurcation condition are applied.
Te analytical formulas show that the optimal parameters for the blade-IDVA systemmerely depend on the spinning speed of the
rotor given the IDVA location and the absorber mass. Numerical results of the NREL 5MW wind turbine with optimal IDVA
show that optimal IDVA leads to superior performance than optimal TMD inmitigating the blade edgewise vibration and behaves
nearly as same as optimal RIDTMD, along with slightly optimal damper parameters variation. Tis means that the inerter-
dashpot-spring system can be deployed fexibly for damping edgewise vibrations of rotating blades.

1. Introduction

Modern megawatts wind turbines are designed to be larger
and installed at deep-sea sites to capture more wind energy,
leading to higher capacity and lower cost. Large-scale wind
turbines with taller towers and fexible blades make the
structural dynamic response more susceptive to external
wind and wave loadings, which may reduce the fatigue life
and power production for wind turbine system [1], especially
for the lightly damped edgewise vibration of wind turbine
blades. Te main blade vibration modes are fapwise and
edgewise. Diferent control methods and damper devices
were studied for reducing blade fapwise vibrations [2–5]. In
fact, the blade fapwise vibration is mainly quasi-static due to
the high fapwise modal damping caused by the aerodynamic

damping. Out of the two, edgewise vibrations can be of
signifcant concern in wind turbines. Generally, the damping
in edgewise mode consists of the structural damping and the
aerodynamic damping, while the latter can be negligible
[6, 7] due to the aerodynamic shape of the blade [8].
Terefore, the total damping in edgewise mode will be low
and even become negative, which leads to the aerodynamic
instability [9–11] and even structural damages or failures
[12]. In the past fve years, there has been an extremely rapid
development in the increase of blade lengths, with reducing
the levelized cost of energy (LCOE) as almost the only goal.
As a consequence, currently, the wind industry is un-
fortunately facing severe challenges regarding the blade
edgewise vibrations of wind turbines with the rate ranging
from 5MW to 8MW, both onshore and ofshore.
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To mitigate the vibration of wind turbine blades in the
edgewise direction, the extra damping is required, which can
be achieved through aerodynamic control devices or
structural control devices. Aerodynamic control devices
such as the stall strips [13], the microtabs [14], and the vortex
generators [15] are used to tune lift coefcients of the airfoil
by modifying the blade geometric shape. Hence, they pre-
dominantly tune the fapwise blade loads, while hardly af-
fecting the lightly damped edgewise vibration, and may have
a negative infuence on the power output [13]. To the end,
diferent structural control devices are designed to efectively
increase the damping in the edgewise mode such as the roller
damper [16], the tuned liquid damper (TLD) [17, 18], the
circular liquid column damper (CLCD) [19], the tuned
liquid column damper (TLCD) [20, 21], magnetorheological
(MR) dampers [22], and shunt dampers [23, 24]. Teir
performance of edgewise vibration mitigation had been
demonstrated numerically or experimentally. Furthermore,
diferent control technologies are applied to structural
control devices to improve the vibration mitigation per-
formance, including active, semiactive, and passive methods.
Tis method has attracted much attention because of its
efcient vibration mitigation performance, which can be
achieved through simple and cost-efcient confgurations.
Diferent types of active, semiactive, and passive dampers
were designed to mitigate the edgewise vibration of rotating
blades. Staino et al. [25] designed active tendons to reduce
the blade edgewise vibrations. A linear control law was used
to determine the active tendon forces to respond to the
variation of aerodynamic loads. Fitzgerald et al. [26] ana-
lyzed the superior performance of active tuned mass
dampers (ATMDs) with LQR-based control strategy to
mitigate the edgewise vibration. Krenk et al. [27] proposed
an active strut to suppress the wind-induced blade edgewise
vibrations. An active controller for coupling the rotor was
developed using the resonance principle. Van-Nguyen et al.
[28] proposed semiactive tuned mass dampers (STMDs) to
control the blade edgewise vibrations for spar-type foating
wind turbines. A semiactive control strategy was performed
where the optimized STMD stifness was obtained via the
short-time Fourier transform (STFT) algorithm. Chen et al.
[22] introduced MR dampers to dissipate energy inside the
wind turbine blade to reduce the edgewise vibration under
extreme wind loads where semiactive fuzzy control is used to
produce the desired force. Biglari and Fakhari [23] proposed
a passive shunt damper to reduce the edgewise vibration of
the wind turbine blades, and a genetic algorithm was used
for damper design. Te result demonstrated the improved
efectiveness of the proposed damper compared with the
conventional TMD. Park and Lackner [29] investigated the
vibration mitigation for multimegawatt wind turbine blades
in the edgewise direction under passive TMDs, demon-
strating their potential benefts and impacts. In these studies,
diferent damper devices are introduced to wind turbine
blades, forming a coupling blade-damper system, and nu-
merical optimizations are applied to the coupling system for
damper design. In practice, the use of numerical optimi-
zation for damper design of the blade-damper system leads
to issues related to the computational burden. More

importantly, the optimal damper parameters change with
the varying rotor operational conditions, making it im-
possible for the numerical optimization technique to cover
all operational conditions (in theory, infnite numbers of
conditions).

To circumvent these issues, closed-form optimal turning
formulas were derived for some blade-installed dampers,
facilitating optimal design of the damper for any rotor speed.
Zhang [30] derived the explicit optimal tuning formulas for
the TMD to reduce the blade edgewise vibration. To derive
the optimal frequency-tuning formulas, two diferent opti-
mality criteria are introduced, the equal modal damping
ratio and the equal dynamic amplifcation, while the optimal
TMD damping ratio was derived via dynamic amplifcation
analysis and was proven to be related to the rotor rotational
speed. Subsequently, Zhang and Fitzgeral [31] introduced
the tuned mass-damper-inerter (TMDI) for improving the
blade edgewise vibration mitigation for wind turbine by
means of the mass-amplifcation efect of the inerter. Two
ends of the inerter were connected to the TMD and the blade
structure separately. Te explicit formulas for the optimal
damping ratio and frequency ratio were determined through
frequency response analysis. More recently, Zhang and
Larsen [32] utilized the characteristics of the inerter to come
up with a new type of damper, the RIDTMD (rotational
inertia double tuned mass damper), for blade in-plane vi-
bration mitigation where a tuned viscous mass damper is
used in place of the viscous damper in a classical TMD (the
inerter is in parallel with a dashpot while in series with
a spring). Tey established the explicit formulas for the
RIDTMD optimal calibration and demonstrated its superior
performance in mitigating blade edgewise vibrations com-
pared with the optimal TMD. It is worth noting that all these
inerter-based devices are realized mechanically and may face
practical challenges when being installed inside the hollow
blade with space constraints. Furthermore, the potential of
semiactive control has not been explored. Terefore, an
alternative inerter-based device that can be realized elec-
tromagnetically is of great interest, as it can potentially
address these two points.

In the present paper, an inerter-based vibration absorber
(IDVA) that can be realized both mechanically and elec-
tromagnetically is proposed for edgewise vibration mitiga-
tion of a rotating blade. Closed-form optimal design
formulas are derived for the rotating wind turbine blade-
equipped IDVA, where the IDVA device consists of an
absorber elastically bonded to the blade structure and a se-
ries inerter-dashpot-spring system. Te 3-degree-of-
freedom (3-DOF) blade-IDVA system consisting of the
rotating blade, an absorber, and a series inerter-dashpot-
spring system is frstly built via the analytical dynamics
method, where the mechanical force produced by the series
inerter-dashpot-spring system is considered as a DOF.
Explicit expressions related to the optimal stifness ratio,
optimal mass ratio, and optimal damping ratio for the IDVA
as well as the optimal absorber stifness ratio are then derived
using a pole-placement method where the equalized-modal-
damping-ratio principle and the triple-root-bifurcation
condition are used. Tese optimal analytical formulas
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defning the IDVA type damper are proven to merely de-
pend on the spinning speed of the rotor, given the IDVA
location and the absorber mass. Te dynamic amplifcations
for blade displacement, the IDVA-type damper stroke, and
the system root locus diagrams are analyzed numerically in
comparison with the optimal TMD and optimal RIDTMD.
Parametric study for the absorber mass, the rotor speed, the
IDVA location is performed. Furthermore, the modal
damping ratio for the optimal tuning blade-IDVA system is
investigated in comparison with the optimal TMD and
optimal RIDTMD. Te NREL 5MW reference wind tur-
bines are used as the numerical example for verifying the
efectiveness of the proposed optimal IDVA calibration
formulas. Comparison results show that optimal IDVA leads
to superior performance than optimal TMD in mitigating
the blade edgewise vibration and behaves nearly as same as
optimal RIDTMD along with slight deviations in optimal
damper parameters. Te device is electromagnetically re-
alizable, thus superior than the RIDTMD, due to the
eliminated maintenance issues such as oil leakage.

2. Modeling for the Blade-IDVA System

2.1.ProblemDefnition. Figure 1 demonstrates themodel for
a rotating blade bonding with an IDVA. A local moving
coordinate system (x1, x2, x3) is used to describe the
edgewise vibration of the undeformed blade, where x1 axis is
aligned with the along wind direction, x3 axis is aligned with
the undeformed blade axis from the hub to blade tip, and x2
is determined by the right-hand coordinate rule. Further-
more, a fxed global coordinate system (X1, X2, X3) is in-
troduced to describe the IDVA movement, where it can be
defned when x3 axis in the local moving coordinate system
points vertically upwards. Te model of each blade for wind
turbines is considered using the rotating Euler–Bernoulli
beam theory, where μ(x3) is the mass per unit length and
EI(x3) is the edgewise bending stifness.

Te azimuthal angle Ψ(t) for a considered blade driven
by the rational speed Ω of the rotor can be given as follows:

Ψ(t) � Ωt. (1)

Te wind-induced edgewise vibration for the blade can
be modelled as a degree of freedom (DOF) of q(t), signifying
the blade tip displacement, since this vibration is dominated
by the fundamental mode. Ten, the local displacement
u2(x3, t) of the rotating blade in the edgewise direction can
be described as follows:

u2 x3, t( 􏼁 � − Φ x3( 􏼁q(t), (2)

where Φ(x3) denotes the normalized fundamental mode
shape in the edgewise direction, where the normalization is
conducted by the tip-mode shape of the blade. Te negative
means the movement direction of q(t) is opposite to the
positive direction of x2 axis.

In fact, the IDVA is installed inside the rotating blade as
shown in Figure 1. Te mounted location for the IDVA is
assumed at the coordinate x3 � x0. Tis provides the blade
local displacement at this mounted location:

u2 x0, t( 􏼁 � − aq(t), (3)

where a � Φ(x0) is an IDVA position parameter, varying
from 0 to 1. It can be determined by the designer, repre-
senting the infuence of the IDVA location on the blade
vibration reduction performance, which has been elaborated
in the later section.

Te proposed IDVA device is built where the dashpot in
the traditional TMD is replaced by a series inerter-dashpot-
spring system where the absorber mass and the connected
spring stifness are denoted by md and kd, respectively, as
shown in Figure 1. Te series system includes a secondary
spring with a stifness of k2, a linear viscous damper with
a damping coefcient of c2, and an inerter with an inertance
of bd. It should be pointed out that the inerter physical mass
can be negligible as opposed to the masses md and bd,
benefted from the characteristic of the inerter. For the
absorber vibration, u(t) is used to represent the absorber
mass displacement with respect to the deformed blade. For
the series system, it can produce a mechanical force, denoted
as fd(t), which is considered as a DOF. Hence, the 3-DOF
blade-IDVA system of q(t), u(t), and fd(t) is formed.

Te advantage of the proposed IDVA is that this con-
fguration can be realized by not only the mechanical
components but also the electrical shunt-based electro-
magnetic (EM) transducer [33], as given in Figure 2.Te EM
transducer is one type of electromechanical device [34]
exhibiting the electromechanical coupling efects. Supple-
menting EM transducer with additional shunts (electrical
impedances) was proposed with the purpose of realizing
a resonant vibration absorber [35–37]. Te shunted EM
transducers have also been proposed in combination with
inertia-based vibration absorber [38, 39] to realize two
resonances for improving the vibration control efect. Here,
for the shunted EM transducer-based IDVA that is to be
installed inside the blade, the shunted EM transducer is
introduced to replace the classic dashpot. A series resistive-
capacitative-inductive (RCL) network is designed as the
supplemental shunt for the EM transducer, where Ls denotes
the shunt inductance, Rs is the resistance, and Cs represents
the capacitance, as given in Figure 2. Te working principle
for the shunted EM transducer is that the transducer driven
by the blade vibration yields electricity, which can be dis-
sipated by the shunt circuit.Temechanical vibration energy
is thereby dissipated, resulting in suppressed blade vibration.
In fact, the shunted EM transducer-based IDVA can be
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k d
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Figure 1: Te model of the blade-IDVA system.
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equivalently represented by the mechanical structure-based
IDVA, and the shunt components are calibrated based on
the equivalent mechanical model [33].

2.2.GoverningEquationof theBlade-IDVASystem. To derive
the analytical dynamics for the rotating blade, the
Euler–Lagrange equations are introduced to describe the
system vibration. Te velocity components v2(x3, t) and
v3(x3, t) for a vibrating blade cross-section in the moving
local planar coordinate system (x2, x3) and the velocity
components V2,d(t) and V3,d(t) for the IDVA absorber mass
in the fxed global planar coordinate system (X2, X3) are

frst required to build to obtain the system kinetic energy and
potential energy, expressed as, respectively.

v2 x3, t( 􏼁 � − Ωx3 − Φ x3( 􏼁 _q(t)

v3 x3, t( 􏼁 � − ΩΦ x3( 􏼁q(t)

⎫⎬

⎭,

V2,d(t) � − x0Ω + a _q + _u􏼐 􏼑cosψ +(aq + u)Ω sinψ

V3,d(t) � − x0Ω + a _q + _u􏼐 􏼑sinψ − (aq + u)Ω cosψ

⎫⎪⎬

⎪⎭
.

(4)

Tese velocity components provide the kinetic energy of
the blade-IDVA system.

T(t) �
1
2

􏽚
L

0
μ x3( 􏼁 v

2
2 x3, t( 􏼁 + v

2
3 x3, t( 􏼁􏼐 􏼑dx3 +

1
2
md V

2
2,d(t) + V

2
3,d(t)􏼐 􏼑

�
1
2
m0 _q

2
+Ω2 q

2
􏼒 􏼓 + m1Ω _q +

1
2
Ω2m2 +

1
2
md x0Ω + a _q + _u􏼐 􏼑

2
+(aqΩ + uΩ)

2
􏼔 􏼕,

(5)

where m0 � 􏽒
L

0 μ(x3)Φ2(x3)dx3 is the blade modal mass,

m1 � 􏽒
L

0 μ(x3)x3Φ(x3)dx3 is a mass parameter considering
the coupling efect between the rotor rotation and the modal
response, and m2 � 􏽒

L

0 μ(x3)x
2
3dx3 represents the mass

moment of inertia for the rotating blade relative to the hub.

On the other hand, the potential energy of the blade-
IDVA system is expressed as

U(t) � mdg x0 cosΨ − aq sinΨ − u sinΨ( 􏼁 +
1
2
k0q

2
+
1
2
kdu

2
, (6)

where g is the gravity acceleration. k0 represents the blade
modal stifness, given as

k0(Ω) � 􏽚
L

0
EI x3( 􏼁

d2Φ x3( 􏼁

dx2
3

􏼠 􏼡

2

+ N x3,Ω( 􏼁
dΦ x3( 􏼁

dx3
􏼠 􏼡

2
⎛⎝ ⎞⎠dx3, (7)

k d

m d

u (t)

V

L s
R s

C s

k d

k 2

c 2

b d

m d

u (t)

(a) (b)

Figure 2: Realization schematic of the IDVA system. (a) Te EM transducer with supplemental electrical shunt. (b) Te equivalent
mechanical model.
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where N(x3,Ω) � Ω2 􏽒
L

x3
μ(ξ)ξdξ is the centrifugal force

per unit length along the blade. Tis relates to the rotor
rotational speed Ω, refecting the contribution of the
centrifugal force to geometric stifness. Furthermore, the
eigenfrequency of the 1st blade edgewise mode is written as
follows:

ω0(Ω) �

�����
k0(Ω)

m0

􏽳

. (8)

Insertion of equations (5) and (6) into the Lagrange
equation [40] provides the frst two equations of motion
related to q(t) and u(t) for the 3-DOF blade-IDVA
system.

m0 + a
2
md􏼐 􏼑€q + amd€u + c0

_q + k0 − m0 + a
2
md􏼐 􏼑Ω2􏽨 􏽩q − amdΩ

2
u � f(t) + amdg sinΨ, (9)

amd€q(t) + md€u(t) − amdΩ
2
q(t) + kd − mdΩ

2
􏼐 􏼑u(t) + fd(t) � mdg sinΨ, (10)

where c0 � 2ζ0m0ω0 signifes the structural modal
damping coefcient in which ζ0 denotes the modal
damping ratio. f(t) signifes the turbulent wind and the
gravity-induced modal load. We note that the real blade
modal stifness is smaller than k0 due to the negative term
− (m0 + a2md)Ω2, representing the stifness softening
phenomenon. Te same phenomenon also occurs in the
IDVA motion.

To facilitate deriving the closed-form tuning formulas,
the force mdg sinΨ related to the gravity and the structural
damping c0 are neglected in the following due to the in-
signifcant infuence on the damper performance [31]. As-
suming harmonic motions, equations (9) and (10) can be
rewritten in the frequency domain as

− ω2
m0 + a

2
md􏼐 􏼑 + k0 − m0 + a

2
md􏼐 􏼑Ω2􏼐 􏼑􏽨 􏽩q + − ω2

amd − amdΩ
2

􏼐 􏼑u � f, (11)

− ω2
amd − amdΩ

2
􏼐 􏼑q + − ω2

md + kd − mdΩ
2

􏼐 􏼑􏽨 􏽩u + fd � 0, (12)

where ω is the angular frequency under harmonic
motion.

For harmonic motions, the force-displacement relation
of the series inerter-dashpot-spring system as illustrated in
Figure 1 is written as

u �
1
k2

+
1

iωc2
+

1
− ω2

bd

􏼠 􏼡fd, (13)

which leads to the equation of motion for the third DOF
fd:

fd �
− ω2

bdk2

− ω2
bd + iωbdk2/c2 + k2

u. (14)

In fact, equation (13) representing the mechanical
inerter-dashpot-spring system can be converted from
a resonant EM absorber obtained by the series RCL-shunt
in Figure 2(a), with the following electrical balance
equation.

V � iωLs + Rs +
1

iωCs

􏼠 􏼡I, (15)

where V denotes the applied loading from the shunt and I is
the coil current.

With the following relations,

k2 �
K

2
m

Lm + Ls

,

c2 �
K

2
m

Rm + Rs

,

bd � K
2
mCs,

(16)

the electrical balance equation (15) can be converted to the
equivalent absorber force relation (14) for the equivalent
absorber model in Figure 2(b) with a spring, dashpot, and
inerter in series. Km represents the electromechanical
coupling coefcient. Lm is the inductance and Rm is the
resistance, in which their series connection represents the
inherent impedance of an EM transducer. When an EM
transducer operates, a voltage proportional to the velocity
is induced and appears across the terminals of the coil
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through moving a magnetic core with a given velocity.
With a coil as a force actuator, the mechanical force im-
posed by the EM transducer is proportional to the coil
current. Furthermore, the inherent impedance of an EM
transducer is generally represented by an inductance in
series with an intrinsic loss resistance. Te oscillatory
voltage amplitude induced by the blade structure motion
across the EM transducer must balance the inherent coil
impedance and the applied shunt loading. A desired res-
onant EM absorber can be obtained by the series RCL-
shunt containing the shunt inductance, resistance, and
capacitance.

Hence, equations (11), (12), and (14) make up the
frequency-domain motion equations of the 3-DOF rotating
blade-IDVA-coupled system.

3. Optimal Design for the Rotating Blade-
IDVA System

In this section, optimal calibration of the IDVA bonded to
the blade structure is conducted using a pole-placement
method [32, 39, 41, 42] since it is capable of the pole
placement for the complex system, providing a series of
analytical formulas. Furthermore, the complex system poles
can be considered as the roots of the sixth-order charac-
teristic equation, representing the (complex) frequencies of
the free vibration modes. Hence, in order to apply the pole-
placement method to the 3-DOF rotating blade-IDVA
system, its normalized characteristic equation is frst de-
duced in Subsection 3.1. On this basis, the equalized-modal-
damping-ratio principle and the triple-root-bifurcation
condition (the three root loci of the three modes intersect
at a single point) are introduced to achieve the optimal
calibration of the IDVA parameters in the form of a set of
closed-form formulas, which are presented in Subsections
3.2 and 3.3, respectively.

It should be noted that the pole-placement method can
provide simple analytical solutions for the harmonic exci-
tation case, which is an approximation to the H∞ perfor-
mance measure [43, 44]. Tis is diferent from the case the
maximum dynamic amplifcation is directly minimized,
leading to a diferent frequency tuning and nonexistence of
the equal modal damping property, which has been
demonstrated [45].

3.1. Normalized Characteristic Equation. To facilitate the
later derivation process, the normalized parameters re-
garding the blade modal mass m0 and stifness k0 are in-
troduced, including the frequency ratio r, absorber mass
ratios μd, absorber stifness ratio κd, as well as IDVA mass
ratio μ, IDVA stifness ratio κ, and IDVA damping ratio β, as
follows:

r �
ω
ω0

,

μd �
md

m0
,

κd �
kd

k0
,

μ �
bd

m0
,

κ �
k2

k0
,

β �
c2�����

m0k0
􏽰 .

(17)

Insertion of these expressions into equations (11), (12),
and (14) rewrites the equations of motion as

− r
2 1 + a

2μd􏼐 􏼑 + 1 −
1
ω2
0

1 + a
2μd􏼐 􏼑Ω2􏼢 􏼣q + − r

2
aμd −

1
ω2
0

aμdΩ
2

􏼠 􏼡u �
f

k0
,

− r
2
aμd −

1
ω2
0

aμdΩ
2

􏼠 􏼡q + − r
2μd + κd −

1
ω2
0
μdΩ

2
􏼢 􏼣u +

fd

k0
� 0,

fd

k0
�

− r
2

− μκ
− r

2μ +(irμκ/β) + κ
u.

(18)
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In fact, the structural response amplitude can be rep-
resented by its frequency response function. Based on the
abovementioned equations, the structural response

amplitude normalized by the static response f/k0 in fre-
quency domain can be expressed as

qk0

f
�

r
4μμd − r

2 μdκ + μκd + μκ − μμdΩ
2
ω􏼐 􏼑 + κκd − μdκΩ

2
ω − ir(μκ/β) r

2μd − κd + μdΩ
2
ω􏼐 􏼑

− r
6μμd + r

4 μμd 1 − 2Ω2ω􏼐 􏼑 + μdκ + μκd + μκ( 􏼁 1 + a
2μd􏼐 􏼑􏽨 􏽩

− r
2 μdκ 1 − 2Ω2ω􏼐 􏼑 − μμdC2 + μκd + μκ( 􏼁C1 + κκd 1 + a

2μd􏼐 􏼑􏽨 􏽩 + κκdC1 − μdκC2

+ ir(μκ/β) r
4μd − r

2 μd 1 − 2Ω2ω􏼐 􏼑 + κd 1 + a
2μd􏼐 􏼑􏽨 􏽩 + κdC1 − μdC2􏽮 􏽯,

(19)

where the three dimensionless parameters are introduced to
facilitate equation (19) as follows:

Ωω �
Ω
ω0

,

C1 � 1 − Ω2ω 1 + a
2μd􏼐 􏼑,

C2 � Ω2ω 1 − Ω2ω􏼐 􏼑.

(20)

Setting the denominator of equation (19) equal to zero
then provides the characteristic equation, given as follows:

− r
6μμd + r

4 μμd 1 − 2Ω2ω􏼐 􏼑 + μdκ + μκd + μκ( 􏼁 1 + a
2μd􏼐 􏼑􏽨 􏽩

− r
2 μdκ 1 − 2Ω2ω􏼐 􏼑 − μμdC2 + μκd + μκ( 􏼁C1 + κκd 1 + a

2μd􏼐 􏼑􏽨 􏽩 + κκdC1 − μdκC2

+ ir
μκ
β

r
4μd − r

2 μd 1 − 2Ω2ω􏼐 􏼑 + κd 1 + a
2μd􏼐 􏼑􏽨 􏽩 + κdC1 − μdC2􏽮 􏽯 � 0.

(21)

Studies on a classical TMD [30, 41] demonstrate that the
optimal design can be achieved by equalizing the two modal
damping ratios of the frst two free vibration modes. Tis can
also be guaranteed by the condition that the two normalized
complex frequencies of the free vibration modes (relative to
a reference frequency ωr) are inverse points with regard to
a unit-radius quarter circle. Furthermore, the reference fre-
quency for a classic TMD turns out to be the natural frequency
of the rigidly connected blade-TMD combined system [41].

Similarly, a reference frequency ωr is introduced to further
achieve the normalization of the characteristic equation so as to
facilitate the root locus calibration.Tis can be achieved through
introducing two newdimensionless ratios: frequency ratio ξ and
reference frequency ratioΩr, which are defned in the following:

ξ �
ω
ωr

�
r

Ωr

,

Ωr �
ωr

ω0
.

(22)

It should be noted that the parameter ωr can be con-
sidered to be introduced for normalization. Tis parameter,
however, needs to be determined to get the closed-form
expressions during the optimal calibration as shown in the
following.

Substitution of equation (22) into equation (21) provides
the normalized characteristic equation with a sextic poly-
nomial with respect to ξ:
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− ξ6 +
ξ4

Ω2r
1 − 2Ω2ω􏼐 􏼑 +

κ
μ

+
κ + κd

μd

1 + a
2μd􏼐 􏼑􏼢 􏼣

−
ξ2

Ω4r

κ
μ

1 − 2Ω2ω􏼐 􏼑 − C2 +
κ + κd

μd

C1 +
κκd

μμd

1 + a
2μd􏼐 􏼑􏼢 􏼣 +

1
Ω6r

κκd

μμd

C1 −
κ
μ

C2􏼢 􏼣

+
iξ
Ωr

κ
β

ξ4 −
ξ2

Ω2r
1 − 2Ω2ω􏼐 􏼑 +

κd

μd

1 + a
2μd􏼐 􏼑􏼢 􏼣 +

1
Ω4r

κd

μd

C1 − C2􏼠 􏼡􏼨 􏼩 � 0.

(23)

Two limit states for the IDVA damping, i.e., β⟶ 0 and
β⟶∞, are considered to determine the relationship for
diferent parameters in equation (23). It can be observed that
in the complex ξ2-plane, the roots in the quadratic equation
for the third line of equation (23) can be entirely determined
as the IDVA damping ratio β⟶ 0. As the IDVA damping
ratio β⟶∞ corresponding to a rigidly combined system,
the roots in the cubic equation in the complex ξ2-plane can
be entirely determined.

Once the mass ratio μd of the absorber is predetermined,
the optimal calibration can be conducted to determine the
values of κd, κ, β, and μ. First, the equalized-modal-damp-
ing-ratio principle in two of the three free vibrational modes
is initially introduced, which results in two equations rep-
resenting the explicit expression of the absorber stifness κd

and the relationship among the absorber stifness κd, the
IDVA inertance μ, and the IDVA stifness κ, respectively.
Furthermore, the triple-root bifurcation point condition is
applied, which provides two extra equations, one repre-
senting the relation between the IDVA stifness κ and the
absorber stifness ratio κd and the other one building the
relation between the IDVA damping ratio β and the IDVA
inertance μ. Based on the abovementioned equations (totally
four), the analytical expressions of optimal parameters the
IDVA (κd, κ, β, and μ) can be fnally built.

3.2. EqualizedModalDampingRatios. In this subsection, the
equalized-modal-damping-ratio principle is introduced, i.e.,
two out of the three roots in the complex ξ2-plane being
inverse points regarding a unit-radius quarter circle (radius
being 1). Moreover, this circle intersects with the real axis at
ξ2 � 1 and the imaginary axis at ξ2 � i. In terms of the third
root, it is located on this unit quarter circle. In fact, IDVA
damping ratio β can be assigned with diferent values,
varying from 0 to ∞, which can provide the system root

locus diagram. Generally, the root locus diagrams in the ξ2

domain may be classifed into three cases including no bi-
furcation point, a single bifurcation point, as well as two
double-root bifurcation points, as given in Figure 3, which
are actually determined by the calibration. Te two hollow
circles on the horizontal axis represent the two real roots ξ20−

and ξ20+ of equation (23) as β approaches 0, i.e., β⟶ 0, and
the three square markers are the three real roots ξ2∞− , 1, and
ξ2∞+ as β approaches ∞, i.e., β⟶∞. Te elaboration of
Figure 3 will be given in Section 4.3.

Te inverse point condition on the real axis can provide
the following expressions:

ξ2∞− ξ
2
∞+ � 1,

ξ20− ξ
2
0+ � 1.

(24)

Ten, a general quadratic polynomial equation in ξ2

under the limit β⟶ 0 can be expressed as

ξ2 − ξ20+􏼐 􏼑 ξ2 −
1
ξ20+

􏼠 􏼡 � 0⇒ ξ4 − ξ2 ξ20+ +
1
ξ20+

􏼠 􏼡 + 1

� 0.

(25)

It can be observed that the coefcient ratio of the
constant term to the 4th-order term is 1. Equalization of this
ratio to that in the quadratic equation in ξ2 in equation (23)
under the limit β⟶ 0 can provide the following relation,
given as

1
Ω4r

κd

μd

C1 − C2􏼠 􏼡 � 1. (26)

Similarly, the limit β⟶∞ in equation (24) provides
a third-order polynomial equation in ξ2, expressed as

ξ2 − 1􏼐 􏼑 ξ2 − ξ2∞+􏼐 􏼑 ξ2 −
1

ξ2∞+

􏼠 􏼡 � 0⇒ ξ6 − ξ4 1 + ξ2∞+ +
1

ξ2∞+

􏼠 􏼡 + ξ2 1 + ξ2∞+ +
1

ξ2∞+

􏼠 􏼡 − 1

� 0.

(27)
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It can be observed from equation (24) that the coefcient
ratio of the constant terms to the 6th-order term is − 1, and
the same ratio is applied to the coefcient ratio of the 2nd-
order term to the 4th-order terms. Given the limit β⟶∞,
the former condition rewrites equation (23), providing the
following expression.

1
Ω6r

κκd

μμd

C1 −
κ
μ

C2􏼠 􏼡 � 1, (28)

while the latter leads to

1
Ω2r

1 − 2Ω2ω􏼐 􏼑 +
κ
μ

+
κ + κd

μd

1 + a
2μd􏼐 􏼑􏼢 􏼣 �

1
Ω4r

κ
μ

1 − 2Ω2ω􏼐 􏼑 − C2 +
κ + κd

μd

C1 +
κκd

μμd

1 + a
2μd􏼐 􏼑􏼢 􏼣. (29)

Insertion of equations (26) and (28) into equation (29)
provides the following expression with respect to the ref-
erence frequency ratio Ωr:

Ω2r �
C1

1 + a
2μd

, (30)

where C1 has been given in equation (20). It can be observed
that Ω2r < 1 for both nonrotating blade and rotating blade
under the equalized-modal-damping principle, being dif-
ferent from classical TMD, where the corresponding ref-
erence frequency is identical to the eigenfrequency
(reference frequency ratio Ωr being equal to 1) of the
combined system.

Based on equations (26) and (28), two equations are
obtained as follows:

κd � μd

Ω4r + C2

C1
,

μ �
κ
Ω2r

.

(31)

Te former equation presents the explicit expression of
κd, while the latter presents the relation between μ and κ.

3.3. Triple-Root-Bifurcation Condition. In this subsection,
the condition that the three root loci intersect at a triple-
root-bifurcation point is frst applied. To derive the ana-
lytical optimal design formulas conveniently, equation (23)
can be further simplifed by means of utilizing the afore-
mentioned equal modal damping criterion, resulting in

− ξ6 +
ξ4 − ξ2

Ω2r
1 − 2Ω2ω􏼐 􏼑 +

κ
μ

+
κ + κd

μd

1 + a
2μd􏼐 􏼑􏼢 􏼣 + 1 +

iξ
Ωr

κ
β

ξ4 −
ξ2

Ω2r
1 − 2Ω2ω􏼐 􏼑 +

κd

μd

1 + a
2μd􏼐 􏼑􏼢 􏼣 + 1􏼨 􏼩 � 0. (32)

As the limit β⟶ 0, equation (32) can be further
simplifed as follows:

1

1

Im (ξ2)

Re (ξ2)

ξ2
∞− ξ2

∞+ξ2
0− ξ2

0+

(a)

1

Re (ξ2)

Im (ξ2)

1ξ2
∞− ξ2

∞+ξ2
0− ξ2

0+

(b)

1

Re (ξ2)

Im (ξ2)

1ξ2
∞− ξ2

∞+ξ2
0− ξ2

0+

(c)

Figure 3: Conceptual illustration for three root loci diagrams of the blade-IDVA system. (a)Te case without bifurcation point. (b)Te case
with a single bifurcation point. (c) Te case with two double-root bifurcation points. Blue stars: the bifurcation points.
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ξ4 −
ξ2

Ω2r
1 − 2Ω2ω􏼐 􏼑 +

κd

μd

1 + a
2μd􏼐 􏼑􏼢 􏼣 + 1 � 0. (33)

Te roots of the quadratic equation in ξ2 can be obtained
as follows:

ξ20± � C0 ±
������

C
2
0 − 1

􏽱

, (34)

with C0 signifying the algebraic mean value of the two roots
when the limit β⟶ 0 is introduced, expressed as

C0 �
1
2

ξ20+ + ξ20−􏼐 􏼑

�
1

2Ω2r
1 − 2Ω2ω􏼐 􏼑 +

Ω4r + C2

C1
1 + a

2μd􏼐 􏼑􏼢 􏼣.

(35)

Applying equations (26), (28), (30), and (35) to equation
(32) provides the following compact form of the full
characteristic equation.

− ξ6 + ξ4 − ξ2􏼐 􏼑 2C0 +
κC1

κdC1 − μdC2
+ 1􏼠 􏼡 + 1 +

iξ
Ωr

κ
β

ξ4 − ξ22C0 + 1􏼐 􏼑 � 0. (36)

Te triple bifurcation point criterion further rewrites the
general polynomial as follows:

ξ − ξ∗( 􏼁
3 ξ − ξ∗)

3
� 0,􏼐 (37)

where ξ∗ denotes the common root corresponding to the
bifurcation point and ξ∗ is its negative complex conjugate.
By means of rewriting equation (37) in a form similar to
equation (36) and comparing the coefcients in the two
equations, the IDVA stifness ratio κ∗ and damping ratio β∗
corresponding to the bifurcation point are obtained

κ∗ � 16 C0 − 1( 􏼁
κdC1 − μdC2

C1
,

β∗ �
μΩr���������

54 C0 − 1( 􏼁

􏽱 .

(38)

Te triple-root bifurcation point means that the maxi-
mum modal damping can be obtained at this triple-root
bifurcation point under the equal modal damping criteria,
considered as a damping upper limit applied to the system
[41]. However, the triple-root bifurcation point presents,
indicating angular eigenfrequencies for the three modes are
identical. Tis will cause the constructive interference efect
between three modes, which makes calibration at this point
not optimal [42]. Instead, a bit lower modal damping ratio
will lead to superior vibration reduction for the damper [39].
Terefore, the parameters κ∗ and β∗ determined using the
triple-root bifurcation point criterion need to be tuned with
the following two scaling parameters α and η:

κ � ακ∗,

β �
1
η
β∗,

(39)

and these two scaling parameters are determined using
numerical optimization methods.

Tese explicit expressions related to κd, κ, μ and β
constitute the closed-form optimal calibration for the IDVA
bonded to the blade structure. Furthermore, Table 1 presents
the full calibration procedure for the rotating blade-IDVA
system.

4. Numerical Examples

Te rotating blades from the NREL 5-MW reference wind
turbine [46] are applied to numerical simulation where each
blade is 61.5m in length and its overall mass is 17740kg. Te
rotor rated rotational speed isΩ0 � 1.27rad/s corresponding
to rated wind speed of 11.4m/s and the cut-out wind speed is
25m/s. In practice, the rotor rotational speed remains at
rated speed Ω0 � 1.27rad/s for wind speed above rated wind
speed of 11.4m/s as a result of the pitch controller. Fur-
thermore, the related data for this wind turbine blade can be
found in reference [46].

4.1. Determination of the Scaling Parameters α and β.
Figure 4 shows the numerical optimization result for the
scaling parameters α and β, where x0 � 45m andΩ � Ω0 are
chosen. Te absorber mass ratio μd with three diferent
values of 0.01, 0.03, and 0.05 are used, and α is set to vary
from 0 to 2. Given α, the optimal η can be obtained through
minimizing the maximal blade displacement amplitude
max(|q|k0/f). Te minimized max(|q|k0/f) with respect to
α, under the condition of optimal η, is shown in Figure 4(a).
In terms of all μd selected, the structural amplitude changes
steeply with the slight variation of α when α< 0.3. For
α> 0.3, the structural amplitude increases very slightly with
the increase of α. Terefore, an appropriate scaling pa-
rameter can be determined based on the trade-of between
a relatively small amplitude and a sufcient margin away
from the rapid increase. Here, α � 0.5 is recommended. Te
mapping relation of the optimal η as a function of α is shown
in Figure 4(b) under diferent μd. As seen, ηopt is linearly
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correlated with α, which is almost unrelated to μd. Terefore,
it can be assumed that this slope is independent on μd given
small α and a fxed linear relation ηopt � 5/4α + 1/28 is
chosen. Furthermore, the recommended α � 0.5 and the
linear relation ηopt � 5/4α + 1/28 are proved to be applied for
other realistic values of x0 and Ω.

4.2.DynamicAmplifcation. Figure 5 illustrates the dynamic
amplifcation curves of the blade structural displacement,
where x0 � 45m and μd � 0.03 are chosen. In order to in-
vestigate the infuence of α on the IDVA performance, three
diferent values of the scaling parameter α under diferent
rotating speeds Ω are considered following the optimal
calibration procedure in Table 1, i.e., α � 0.2,0.5,1.0 under
each rotating speedΩ. Tree cases of rotational speedsΩ are
considered, i.e., Ω � 0 corresponding to nonrotating blade,
Ω � Ω0 corresponding to rated rotating blade, and Ω � 3Ω0
considered as an extreme case of rotating blade. As indicated
in Subsection 4.1, the optimal α is set to be 0.5 due to the

vibration amplitude mitigation performance and its ro-
bustness. Furthermore, the linear relation ηopt � 5/4α + 1/28
holds for varying α.

As seen, the IDVA can efectively reduce the structural
response for all considered α. A most fat plateau can be
achieved at α � 0.5. Tis indicates optimality, which is in
accordance with the classic TMD theory [41]. For α> 0.5
(α � 1 here), a worsen performance of the IDVA with
a higher displacement amplitude is observed in comparison
with the case of α � 0.5. In fact, a better performance with
a lower displacement amplitude can be achieved at α � 0.3.
However, the maximum dynamic amplifcation value in-
creases signifcantly when α changes from 0.3 to 0.2, as also
shown in Figure 4(a). In terms of the fat plateau and the
robustness against detuning, α � 0.5 is considered to be
optimal. Comparison among Figures 5(a)–5(c) show that the
dynamic amplifcation curves become broader and move to
left as Ω increases, which is also found in the blade-TMD
system [30], where Ω � 0 causes fully level plateau and the
curves become more skewed as Ω increases.

Table 1: Te full calibration procedure for the blade-IDVA system.

(1) Choose IDVA location and absorber mass ratio x0, μd

(2) Constants C1 and C2 C1 � 1 − Ω2ω(1 + a2μd), C2 � Ω2ω(1 − Ω2ω)

(3) Reference frequency ratio Ωr Ω2r � C1/(1 + a2μd)

(4) Constant C0 C0 � 1/(2Ω2r)[(1 − 2Ω2ω) + (Ω4r + C2)/C1(1 + a2μd)]

(5) Absorber stifness ratio κd κd � μd(Ω4r + C2)/C1
(6) Choose scaling parameters α and η Determined by a numerical optimization
(7) IDVA stifness ratio κ κ � α16(C0 − 1)(κdC1 − μdC2)/C1
(8) IDVA mass ratio μ μ � κ/Ω2r
(9) IDVA damping ratio β β � μΩr/(η

���������
54(C0 − 1)

􏽰
)
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Figure 4: Determination of the scaling parameters α and η, x0 � 45m, andΩ � Ω0. Te absorber mass ratio μd with three diferent values of
0.01, 0.03, and 0.05 is used. (a) Maximum structural displacement amplitude as a function of α, where the optimal η is applied to minimize
max(|q|k0/f) given α. (b) Mapping relation of the optimal η with respect to α.
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Figure 6 illustrates the results of the dynamic amplif-
cation factor for the relative motion of the absorber. As seen,
α � 0.5 leads to a fairly fat plateau within which the curves
for all considered α are quite similar. However, it is seen that
a smaller value of α causes higher peaks of the dynamic
amplifcation, which implies a large absorber stroke.
Analogy to the results in Figure 5, the curves become
broader and move to left as Ω increases.

Considering the mitigation efect on edgewise vibration
for the rotating blade and the relative absorber stroke, the
overall performance of the optimally designed IDVA is
investigated in comparison with the optimally designed
TMD and the rotational inertia double TMD (RIDTMD)
[32]. For RIDTMD, the absorber mass is bonded to a parallel
inerter-dashpot-spring system in which the inerter in par-
allel with a dashpot is in series with a spring. Te same
location and the absorber mass ratio are used. Figure 7
compares the dynamic amplifcation curves of the blade
displacement under the optimal IDVA, the optimal TMD,
and the optimal RIDTMD. Following Table 1, the optimal
α � 0.5 and linear relation ηopt � 5/4α + 1/28 for IDVA are
used. As seen, compared with the optimal TMD, the optimal
IDVA can further efectively suppress the edgewise struc-
tural displacement, and its plateau presents a more fat and
slightly more broad banded. Comparison between IDVA
and RIDTMD shows that they have similar vibration
damping performance on edgewise vibration of the blade,
while the plateau for the IDVA in terms of the dynamic
amplifcation of the structural displacement is more fat than
that for the RIDTMD. Comparing Figures 7(a)–7(c) cor-
responding to diferent Ω, the vibration damping en-
hancement for the optimal IDVA, optimal RIDTMD, and
optimal TMD are similar. Tis indicates the efcacy of the
optimally designed IDVA using the developed closed-form
formulas.

Figure 8 compares the normalized absorber stroke. As
shown in Figure 8, the curve for the IDVA is almost the same
as the RIDTMD, although slightly fatter. For the peak value,
three curves are almost identical. In terms of the plateau, it
becomes broader for the IDVA compared with the TMD.

Tis indicates the absorber strokes for the IDVA and
RIDTMD are slightly larger than those for the TMD. In
application, a large absorber stroke implies a high cost.
Terefore, the trade-of between vibration suppression and
the cost related to absorber stroke should be considered.

4.3. Root Loci Diagrams and the Resulting Modal Damping
Ratios. Figure 9 presents the root loci curves of the 3-DOF
rotating blade-IDVA system in ξ2 domain, which can be
obtained by means of varying the IDVA damping ratio β.
Te case with x0 � 45m, μd � 0.03, and Ω � Ω0 are used.
Furthermore, following Table 1, the optimal α � 0.5 and
linear relation ηopt � 5/4α + 1/28 for IDVA are used.

Here, α with three diferent values of 0.5,1.0,2.0 are
considered. Te root loci for optimal α � 0.5 are shown in
Figure 9(a). No bifurcation is observed. For β � 0, the two
roots are placed on the real axis, one at the close left-hand
side of 1.0 and one at the close right-hand side of 1.0.When β
increases from 0, these two roots move into the imaginary
half-plane in the frst quadrant. Tey form two locally
enclosed curves ending, respectively, at another two real
roots, one at the further left and one at the further right when
β⟶∞. On the other hand, the third root (of the total
three roots) follows the unit-radius circle ending at 1.0 on
the real axis, which exhibits a nonlocal character. Further-
more, an equal modal damping ratio can be confrmed with
the fact that the two roots located at the two locally-enclosed
curves are inverse points with respect to the unit-radius
quarter circle.Te red crosses represent the three roots of the
3-DOF system under the optimal β of the IDVA given in
equation (39). For the optimally designed IDVA (following
the procedure in Table 1), the obtained modal damping
ratios of the three modes are, respectively, 0.0415, 0.0415,
and 0.0788.

For comparison, the root loci for the optimal TMD
and optimally calibrated RIDTMD are plotted with the
same x0, μd, and Ω. It can be found that the 2-DOF blade-
classic TMD system has a bifurcation point [30]. On the
contrary, the 3-DOF blade-RIDTMD system has no
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Figure 5: Dynamic amplifcation curves for the structural displacement under diferent α, where x0 � 45m and μd � 0.03.Te ftted optimal
η is used. (a) Ω � 0. (b) Ω � Ω0. (c) Ω � 3Ω0.
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Figure 6: Dynamic amplifcation curves for the relative absorber motion under diferent α, where x0 � 45m and μd � 0.03. Te ftted
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Figure 7: Dynamic amplifcation curves for the structural displacement under the optimal IDVA, the optimal RIDTMD, and the optimal
TMD, μd � 0.03 and x0 � 45m. (a) Ω � 0 (nonrotating blade). (b) Ω � Ω0(1.27rads− 1). (c) Ω � 3Ω0.
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Figure 8: Dynamic amplifcation curves for the absorber stroke under the optimal IDVA, the optimal RIDTMD, and the optimal TMD,
μd � 0.03 and x0 � 45m. (a) Ω � 0 (nonrotating blade). (b) Ω � Ω0(1.27rads− 1). (c) Ω � 3Ω0.
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bifurcation point [32], the same as the blade-IDVA sys-
tem. Interestingly, the two systems of IDVA and RIDTMD
share the unit-radius quarter circle and two enclosed
curves as the common root locus diagram, while the arrow
directions on the unit-radius circle and enclosed curves
for these two systems are opposite. Comparison between
IDVA and TMD systems shows that they share the unit-
radius quarter circle with the same arrow direction and
exactly share the two real roots corresponding to β � 0,
i.e., the zero damping. Furthermore, these two real roots
also coincide with the two real roots of the 3-DOF blade-
RIDTMD system in the limit β⟶∞. Moreover, the
green-color crosses represent the three roots of the blade-
RIDTMD system with optimal β (RIDTMD damping
ratio), while the cyan-color crosses are two roots of the
blade-TMD system with optimal β (TMD damping ratio).
Te corresponding modal damping ratios are
0.0428,0.0428,0.0736 for optimally calibrated RIDTMD
and 0.0332,0.0332 for optimal TMD, respectively.

Figure 9(b) shows the results for α � 1.0. One can ob-
serve a triple-root bifurcation point, which is consistent with
the condition during derivation that the intersection point of
three root loci (the bifurcation point) exists when α � 1.0.
Te root loci curves start from two real roots on the hori-
zontal axis for β � 0 where one is located at the close left of
1.0, one at the close right of 1.0, and end at three diferent
real roots on the horizontal axis in the limit β⟶∞, where
one is located at the far left, one at the far right, and one at
1.0. Furthermore, the red crosses represent the three roots
under the optimal β. Te modal damping ratios for this case
are 0.0350, 0.0350, and 0.245, respectively.

Figure 9(c) shows the result for α � 2.0. In this case,
a pair of double-root bifurcation points is observed at the
root loci. Similarly, the root loci curves start from two roots
on the real axis for β � 0 and end at three diferent real roots
in the limit β⟶∞. Te red crosses represent the three
roots under the optimal β, and the resulting modal damping
ratios are 0.0316, 0.0316, and 0.558, respectively.
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Figure 9: Root loci diagrams, x0 � 45m, μd � 0.03, andΩ � Ω0. Red color crosses indicate the complex roots of the blade-IDVA system for
β defned as β � 1/ηβ∗ with η � 5/4α + 1/28. (a) α � 0.5 corresponding to the optimal case. (b) α � 1.0. (c) α � 2.0.
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4.4. Parametric Study. Tis section will investigate the
variation of the parameters κd, κ, μ, and β as well as modal
damping ratios under diferent rotational speed Ω, location
x0 equivalently represented by a and absorber mass ratio μ.
In the following, rotational speed Ω � 0,Ω0, 3Ω0, mode
shape parameter a � 0.0884,0.2221,0.5269, and the mass
ratio of the absorber μd � 0.03,0.05 are used for three
considered systems.

Table 2 gives the optimal IDVA parameters of the 3-DOF
rotating blade-IDVA system, under diferent rotational
speed Ω and location x0. Mass ratio of μd � 0.03 is used. As
seen, as the location x0 increases, the optimal absorber
stifness ratio κd decreases for all considered rotational
speeds, while the other optimal parameters κ, μ, and β in-
crease inversely. For a given location x0, the optimal ab-
sorber stifness ratio κd is almost unchanged as Ω increases

Table 2: Optimal parameters for the 3-DOF blade-mounted IDVA with μd � 0.03.

μd Ω x0(m) a
IDVA

κd κ μ β

0.03

0
20 0.0884 0.0300 2.81 × 10− 5 2.81 × 10− 5 5.35 × 10− 4

30 0.2221 0.0299 1.77 × 10− 4 1.77 × 10− 4 1.34 × 10− 3

45 0.5269 0.0295 9.83 × 10− 4 9.91 × 10− 4 3.15 × 10− 3

Ω0
20 0.0884 0.0300 2.91 × 10− 5 3.01 × 10− 5 5.44 × 10− 4

30 0.2221 0.0300 1.83 × 10− 4 1.90 × 10− 4 1.36 × 10− 3

45 0.5269 0.0295 1.02 × 10− 3 1.06 × 10− 3 3.20 × 10− 3

3Ω0
20 0.0884 0.0300 3.58 × 10− 5 4.57 × 10− 5 6.04 × 10− 4

30 0.2221 0.0299 2.26 × 10− 4 2.88 × 10− 4 1.51 × 10− 3

45 0.5269 0.0296 1.26 × 10− 3 1.62 × 10− 3 3.56 × 10− 3

μd � 0.03.

Table 3: Optimal parameters for the 3-DOF blade-mounted IDVA with μd � 0.05.

μd Ω x0(m) a
IDVA

κd κ μ β

0.05

0
20 0.0884 0.0500 7.81 × 10− 5 7.81 × 10− 5 1.15 × 10− 3

30 0.2221 0.0498 4.91 × 10− 4 4.92 × 10− 4 2.88 × 10− 3

45 0.5269 0.0486 2.70 × 10− 3 2.74 × 10− 3 6.72 × 10− 3

Ω0
20 0.0884 0.0500 8.07 × 10− 5 8.35 × 10− 5 1.17 × 10− 3

30 0.2221 0.0498 5.07 × 10− 4 5.26 × 10− 4 2.93 × 10− 3

45 0.5269 0.0487 2.79 × 10− 3 2.93 × 10− 3 6.84 × 10− 3

3Ω0
20 0.0884 0.0500 9.95 × 10− 5 1.27 × 10− 4 1.30 × 10− 3

30 0.2221 0.0498 6.26 × 10− 4 8.00 × 10− 4 3.26 × 10− 3

45 0.5269 0.0488 3.46 × 10− 3 4.48 × 10− 3 7.60 × 10− 3

μd � 0.05.
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Figure 10: Equal damping ratio as a function of location x0 and Ω. (a) μd � 0.03. (b) μd � 0.05.
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and the other IDVA parameters κ, μ, and β slightly increase.
Tis indicates the nonsensitiveness of the optimal IDVA
parameters to the variation of rotational speedΩ, which may
make a passive IDVA possible, deployed to mitigate blade
edgewise vibrations for the considered NREL 5MW wind
turbine. However, for other types of wind turbines with
larger changes in rotor rotational speed, a semiactive control
strategy may be required due to the variation of the optimal
IDVA parameters with the rotational speed. To this end, the
coil current can be supplied by tuning the shunt inductance
and resistance in the electrical network, corresponding to
stifness and damping in the equivalent mechanical absorber
model, respectively.

In order to investigate the efect of the absorber mass on
the variation of optimal IDVA parameters, Table 3 shows the
results for a large mass ratio μd � 0.05. Similar fndings for
the variation of optimal IDVA parameters κd, κ, μ, and β due
to location x0 and rotational speed Ω are found as the case
for μd � 0.03. Furthermore, comparison for the value of κd

under diferent μd indicates the variation of the absorber

stifness ratio is to guarantee the IDVA operating close to the
blade eigenfrequency. We also fnd that the variation of the
optimal IDVA parameters with the increase of μd is similar
to that with the increase of x0. Essentially, increasing μd is
equivalent to increasing x0. Tis can be explained by the fact
that a2μd is present in all the developed design formulas in
Table 1 and can be considered as the efective mass ratio.

Figures 10(a) and 10(b) illustrate the equal modal
damping ratio (ξ1 � ξ2) determined using the optimal de-
sign formulas for μd � 0.03 and 0.05, respectively. Com-
parison of the resulting modal damping ratios of these three
systems (blade-IDVA, blade-TMD, and blade-RIDTMD)
shows that the common modal damping ratio of the opti-
mally calibrated blade-IDVA system is always higher than
that of the optimally calibrated blade-classic TMD system,
while having similar values as the optimally calibrated blade-
RIDTMD model given the same rotational speed, absorber
location, and absorber mass ratio. Tis may explain why the
IDVA presents the superior performance than the TMD
while having similar performance as the RIDTMD in
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Figure 11: Time series of modal load f(t) with wind speed of 15m/s and turbulence intensity of 0.1.
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Figure 12: Fourier amplitude of q(t) with diferent mass ratio μd. x0 � 45m. Ω � Ω0. (a) μd � 0.03. (b) μd � 0.05.
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suppressing blade edgewise vibrations. However, it is worth
noting that a greater value of common modal damping ratio
does not necessarily signify a better vibration damping ef-
fcacy of the IDVA, which can be refected by the in-
troduction of the scaling parameters.

In order to investigate the damping efect of the IDVA
under realistic wind conditions, a mean wind speed of 15m/s
and turbulence intensity of 0.1 are considered to generate the
rotational sampled turbulence feld on the wind turbine
rotor [47] using a 13-DOF aero-servo-elastic wind turbine
model [16] where the blade edgewise modal load f(t) can be
simulated and obtained. Figure 11 shows the time histories
of the edgewise modal load f(t). Figure 12 illustrates the
performance of the optimally calibrated IDVA for damping
the blade edgewise vibration in comparison to the optimally
calibrated TMD and RIDTMD in frequency domain
(Fourier transformed from the time-domain responses),
driven by the modal load f(t) given in Figure 11. Two values
of mass ratio μd with 0.03 and 0.05 are investigated cor-
responding to Figures 12(a) and 12(b), respectively. It can be
observed that the blade edgewise vibration is fully governed
by its fundamental mode because of the low edgewise
aerodynamic damping. Tis can explain why the H∞ per-
formance measure can be used although the excitation vi-
bration is stochastic. Tree absorbers can suppress the blade
edgewise displacement q(t) efectively, especially for the
spectral peak corresponding to the fundamental edgewise
mode of the blade. Furthermore, the IDVA slightly out-
performs the TMD and has almost the same damping efect
as the RIDTMD. Te Fourier amplitude of absorber stroke
with diferent mass ratio of ud � 0.03 and 0.05 is given in
Figure 13. Te results indicate that the absorber stroke for
the IDVA is slightly increased comparing with the classic
TMD, while almost the same as the RIDTMD, which is

consistent with the results in Figure 8. In fact, the reduction
of the damper stroke can be reduced by means of increasing
the damper mass or installing the device closer to blade root
at the expense of decreased vibration damping efect.

5. Conclusions

Te present paper proposes a new type of inerter-based
vibration absorber (IDVA) that can be realized both
mechanically and electromagnetically for reducing blade
edgewise vibrations. Te IDVA consists of an absorber mass
bonded to the blade structure and a series inerter-dashpot-
spring system. A 3-DOF model has been built for the
coupled blade-IDVA system, including the blade tip dis-
placement, the relative displacement of the absorber mass
from the deformed structure, and the mechanical force
produced by the series inerter-dashpot-spring system. On
the basis of on this model, analytical optimal design formulas
for the IDVA in terms of the stifness ratio, mass ratio, and
damping ratio for the IDVA, as well as the absorber stifness
ratio, have been derived using the pole-placement method.
Te equalized modal damping principle, as well as the triple-
root bifurcation condition, is used. Te developed formulas
indicate that all optimal parameters of the IDVA exhibit
dependency on the spinning speed of the rotor given the
IDVA location and absorber mass.

Comparison for the dynamic amplifcation curve of the
structural displacement shows that the IDVA has superior
vibration damping performance on edgewise vibration than
the classic TMD while having similar performance with the
RIDTMD. We also found that the dynamic amplifcation
curve of the structural displacement for the IDVA is level,
which is diferent from the skewed corresponding curve for
the RIDTMD. Tis, to some extent, indicates the advantage
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Figure 13: Fourier amplitude of absorber stroke with diferent mass ratio μd. x0 � 45m. Ω � Ω0. (a) μd � 0.03. (b) μd � 0.05.
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of IDVA over RIDTMD. Comparison for the absorber stoke
shows the absorber strokes for the IDVA and RIDTMD are
slightly larger than those for the TMD. Furthermore, the
optimally calibrated IDVA results in a root locus diagram
with two locally enclosed curves and a unit-radius quarter
circle, without the existence of bifurcation points, which is
similar as the RIDTMD. However, interestingly, the arrow
directions on the unit circle and closed curves for these two
systems are exactly opposite. Tey are all diferent from the
TMD that has a bifurcation point. For the optimally cali-
brated blade-IDVA system, its common modal damping
ratio is consistently higher than that of the blade-classic
TMD system (with TMD optimally calibrated), while being
very slightly smaller than that of the optimally calibrated
blade-RIDTMD system, although it should not be consid-
ered as a performance indicator.

Regarding the 5MW reference ofshore wind turbine, it
turns out that the calculated optimal IDVA parameters
(using the developed formulas) are not very sensitive to rotor
rotational speed. Numerical simulations show that the
proposed optimal IDVA performs consistently slightly
better than the optimal TMD for blade edgewise vibration
given the same damper location and absorber mass, while
having similar performance with the optimal RIDTMD.Tis
indicates that the inerter-dashpot-spring system can be
deployed fexibly for damping rotating blade edgewise vi-
bration. Furthermore, since the proposed IDVA can be
achieved by the shunted EM transducer other than being
realized mechanically, it can avoid some maintenance issues
such as oil leakage.

Nomenclature

ATMD: Active tuned mass damper
CLCD: Circular liquid column damper
EM: Electromagnetic
IDVA: Inerter-based vibration absorber
LCOE: Levelized cost of energy
MR: Magnetorheological
RIDTMD: Rotational inertia double TMD
STFT: Short-time Fourier transform
STMD: Semiactive tuned mass damper
TCD: Tuned liquid damper
TLCD: Tuned liquid column damper
TMDI: Tuned mass-damper-inerter
TMD: Tuned mass damper
C0, C1, C2: Constants
Cs: Capacitance
EI(x3): Edgewise bending stifness
I: Coil current
Km: Electromechanical coupling coefcient
Lm: Inductance for EM transducer
Ls: Shunt inductance
N(x3,Ω): Centrifugal force per unit length along the blade
Rm: Resistance for EM transducer
Rs: Resistance
V: Applied loading from the shunt
Ω: Rotor rational speed

Ω0: Rated rotor rational speed
Ωr: Reference frequency ratio
Φ(x3): Normalized edgewise fundamental mode shape
Ψ(t): Azimuthal angle
α, η: Scaling parameters
β: IDVA damping ratio
κ: IDVA stifness ratio
κd: Absorber stifness ratio
μ(x3): Te mass per unit length
μ: IDVA mass ratio
μd: Absorber mass ratio
ω0: Eigenfrequency of the 1st blade edgewise mode
ζ0: Modal damping ratio
a: IDVA position parameter
bd: Inertance for inerter
c0: Structural modal damping coefcient
c2: Damping coefcient for linear viscous damper
f(t): Turbulent wind and the gravity-induced

modal load
fd(t): Mechanical force from the series system
k0: Blade modal stifness
k2: Spring stifness in series system
kd: Connected spring stifness for absorber mass
m0: Blade modal mass
m1: Mass parameter considering the coupling efect

between the rotor rotation and the modal
response

m2: Mass moment of inertia for the rotating blade
relative to the hub

md: Absorber mass
q(t): Blade tip displacement
r: Frequency ratio
u(t): Relative absorber mass displacement
u2(x3, t): Local edgewise displacement
x0: IDVA mounted location.
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