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Te identifcation of the development of structural defects is an important part of bridge structure damage diagnosis, and cracks
are considered the most typical and highly dangerous structural disease. However, existing deep learning-based methods are
mostly aimed at the scene of concrete cracks, while they rarely focus on designing network architectures to improve the vision-
based model performance from the perspective of unmanned aircraft system (UAS) inspection, which leads to a lack of specifcity.
Because of this, this study proposes a novel lightweight deep convolutional neural network-based crack pixel-level segmentation
network for UAS-based inspection scenes. Firstly, the classical encoder-decoder architecture UNET is utilized as the base model
for bridge structural crack identifcation, and the hourglass-shaped depthwise separable convolution is introduced to replace the
traditional convolutional operation in the UNET model to reduce model parameters. Ten, a kind of lightweight and efcient
channel attention module is used to improve model feature fuzzy ability and segmentation accuracy. We conducted a series of
experiments on bridge structural crack detection tasks by utilizing a long-span bridge as the research item. Te experimental
results show that the constructedmethod achieves an efective balance between reasoning accuracy and efciency with the value of
97.62% precision, 97.23% recall, 97.42% accuracy, and 93.25% IOU on the bridge concrete crack datasets, which are signifcantly
higher than those of other state-of-the-art baseline methods. It can be inferred that the application of hourglass-shaped depth-
separable volumes can actively reduce basic model parameters. Moreover, the lightweight and efcient attention modules can
achieve local cross-channel interaction without dimensionality reduction and improve the network segmentation performance.

1. Introduction

Tere are nearly 1 million road bridges and 22,000 kilometers
of high-speed railways in China, which means that the cu-
mulative length of high-speed railway bridges exceeds 50% of
the total length of the line [1, 2]. However, at present, 40% of
bridges in China have entered the old age of use for more than
25 years, and the aging of bridge materials and degradation of
service performance have become key issues worthy of
attention.

Figure 1 shows the commonly used artifcial inspection
methods in bridge safety management. It can be inferred that
the traditional bridge inspection mainly uses the bridge
bottom inspection channel and the bridge inspection vehicle

(BIV) for inspection [3].Te former is constructed at the same
time as the bridge, and due to the aging of components during
operation, it usually loses its function within the design service
life. On the other hand, the BIV technique is widely used in
current bridge inspection activities, but its shortcomings are
also very prominent. Firstly, the BIV technique will inevitably
occupy the road, which seriously afects the trafc operation
efciency of bridges. Secondly, manual defect detection and
identifcation are still used in BIV inspection tasks. Manual
detection is time-consuming and laborious, and the com-
prehensiveness and objectivity of the results are difcult to
guarantee. In addition, when using the above two methods for
inspection, the inspectors are usually at a height of tens of
meters, which poses high safety hazards.
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Traditional nondestructive testing instruments and
manual testing methods have certain advantages in detecting
internal structural defects of bridges [4–7]. However, there
are still certain shortcomings in realizing large-scale defect
detection of bridges, which are limited by inspection ef-
ciency and accuracy [8]. With the continuous development
of aerial photography technology and remote sensing
technology, the application of the unmanned aircraft system
(UAS) technique has penetrated more into all walks of life,
including the maintenance of civil infrastructure [9–11].
Specifcally, the bridge intelligent detection scheme with
UAS as the carrier and artifcial intelligence as the core is
gradually applied to bridge engineering inspection [12].
UAS detection technology has signifcant advantages,
which can realize fxed-point hovering observation, real-
time transmission of pictures, and self-control fight. Even
for dangerous places such as bridge piers, bases, and bellies,
there is no need to build a frame or a hanging basket to
cooperate with personnel detection, which greatly im-
proves safety. For some unreachable bridge parts (like belly
and cable), UAS can get close to observe and acquire more
details [11].

With the development of image recognition technology,
automatic identifcation of structural defects based on
computer vision has become a research hotspot [13–18].
With the development of deep neural networks, semantic
segmentation has achieved tremendous progress [15, 19, 20].
For this purpose, the encoder-decoder structures are widely
used in many actual inspection scenarios [21]. For example,
Ren et al. [22] proposed an improved deep fully convolution
neural network, called CrackSegNet, to realize the dense
pixelwise crack segmentation for tunnel concrete structures.
Teng et al. [23] developed a concrete crack detection model
using the well-known feature extractor model and the YOLO
v2 Network. Xu et al. [24] proposed a lightweight semantic
segmentation model for bridge structural damage under
complicated backgrounds. Li and Zhao [25] designed an
image-based crack detection method using the deep
convolutional neural network. Zhang et al. [26] developed
an improved UNET-based concrete crack detection al-
gorithm using deep learning technology. Based on the

abovementioned literature, it can be inferred that these
networks are efective in semantic segmentation, but they
sufer from a degree of inadequacy and lack of perfor-
mance due to the challenging and specialized nature of the
task [9, 27]. Te specifc defciencies are manifested in the
following aspects. (a) Due to the small width of bridge
cracks (low pixel ratio), the deep learning-based semantic
segmentation model will perform pooling operations
multiple times, and the reduced resolution image will
cover up the feature information of small cracks and their
existence. (b) Cracks in actual engineering are continu-
ously closed, but vision-based crack detection models are
prone to fractures and discontinuities, which afect the
recognition efect. (c) Inference efciency is also a concern,
so it is important to reduce model parameters and improve
computational efciency. Moreover, most of these studies
focus on the cracks in concrete materials. However,
compared with half of the concrete materials, bridge
concrete cracks are more subtle and complex in charac-
teristics, making their identifcation more difcult. In
addition, the uniqueness of the UAS detection scene puts
forward higher requirements for the real-time perfor-
mance and inference efciency of the visual defect de-
tection algorithm [28, 29]. Te above factors make it
urgent to propose a high-efciency and applicable visual
identifcation method for bridge concrete defects.

To solve the above problems, this study frst utilizes
UAS detection technology to develop a dataset of bridge
concrete structure cracks. Ten, the UNET-based
encoder-decoder network is used as the base model for
training, and the hourglass-like deep separable convo-
lution is inserted into the UNET model to replace the
conventional convolutional operation for improving
model calculation efciency. Ten, the lightweight ef-
cient channel attention (ECA) is introduced to improve
network performance. In the second step, the cheap
operation module is utilized in the feature graph simple
mapping to further compress the network and the
structure reparameterization is utilized to decouple the
training and the inference models, further improving the
feature fusion ability and inference efciency.

Figure 1: Common artifcial bridge inspection methods.
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Temain contributions of this study can be attributed as
follows:

(1) Te application of hourglass-shaped depth-separable
volumes can actively reduce basic model parameters,
and the lightweight and efcient attention modules
can achieve local cross-channel interaction without
dimensionality reduction and improve the network
segmentation performance.

(2) Cheap operation is used to generate ghost feature
maps by reducing redundant feature maps, and
parameter reconstruction is utilized to reduce the
size of model parameters.

(3) Te experimental results show that the constructed
method achieves an efective balance between rea-
soning accuracy and efciency with the value of
97.62% precision, 97.23% recall, 97.42% accuracy,
and 93.25% IOU on the bridge concrete crack
dataset, which are signifcantly higher than those of
other state-of-the-art baseline methods.

Te remainder of this research is described as follows.
Firstly, the basic theory about the lightweight convolution
network, parameter reconstruction, and model compression
is shown in Section 2. Ten, a steel truss girder suspension
bridge with two towers and two spans is utilized as the case
study, and the details of the UAS-based bridge inspection
process are described in Section 3. Te indicators and
performance parameters of the model in the training, ver-
ifcation, and testing phases are elaborated in Section 4.
Lastly, the conclusions and limitations of this research are
provided in the fnal part of this paper.

2. Methodology

According to the calculation requirements of the bridge UAS
detection scene, a lightweight and efcient deep convolu-
tional neural network framework for bridge structural crack
detection is proposed in this paper. Te main work of
building a lightweight network model is to ensure that the
network performance is basically unchanged or slightly
degraded while reducing the number of parameters. Figure 2
shows the architecture of the proposed lightweight and
efcient bridge structural defect identifcation network. It
can be inferred that frstly the hourglass-like deep separable
convolution is inserted in the UNET-based encoder-decoder
network to replace the conventional convolutional operation
for model lightweight, and then the lightweight ECAmodule
is introduced to improve network performance. Ten, in the
second step, the cheap operation module is utilized in the
feature graph simple mapping to further compress the
network, and the structure reparameterization is utilized to
decouple the training and the inference models, further
improving the feature fusion ability and the inference
efciency.

2.1. Lightweight UNET-Based Network for Bridge Defect
Detection. In semantic segmentation, the goal is to classify
each pixel in an image into a specifc class. Among them,

UNET is a popular architecture used for semantic seg-
mentation tasks, which utilizes an encoder-decoder archi-
tecture that allows it to capture both low-level features
and high-level context information. Figure 3 shows the
general schematic diagram of the UNETnetwork. It can be
inferred from this fgure that the encoder part of the
UNET architecture consists of a series of convolutional
and pooling layers that downsample the input image,
while the decoder part consists of upconvolutional and
concatenation layers that upsample the feature maps to
the original image size. Tis allows the model to capture
both local and global context information, which is im-
portant for accurate semantic segmentation. Overall,
UNET captures both low-level features and high-level
context information making it a powerful architecture
for semantic segmentation tasks.

A lightweight encoder-decoder network is a type of
neural network architecture that is designed to have
a smaller number of parameters and computational com-
plexity compared to traditional encoder-decoder networks.
It is typically used in scenarios where computational re-
sources are limited or where faster inference is required, like
UAS inspection scenes. Te lightweight encoder-decoder
network achieves its efciency by employing techniques
such as parameter sharing, layer reduction, or using light-
weight building blocks like depthwise separable convolu-
tions. Tese techniques help reduce the number of
parameters and operations while still maintaining reason-
able performance.

In this study, the classical encoder-decoder architec-
ture UNET is utilized as the base model for bridge
structural defect identifcation, and the hourglass-shaped
depthwise separable convolution is introduced to replace
the traditional convolutional operation in the UNET
model to reduce model parameters. Ten, a kind of
lightweight and efcient channel attention module is used
to improve model feature fuzzy ability and segmentation
accuracy.

2.2.Te Hourglass-Shaped Depthwise Separable Convolution.
Hourglass-shaped deep separable convolution refers to
a type of convolutional neural network architecture that uses
separable convolutions in an hourglass shape. Figure 4
shows the overall diagram of the hourglass-shaped deep
separable convolution. It can be seen from this fgure that
separable convolutions are used to reduce the number of
parameters and improve efciency while maintaining ac-
curacy. Te hourglass shape allows for multiscale feature
extraction and improves the network’s ability to capture
both local and global features. Regarding the hourglass
convolution as the basic module of the UNET model, the
calculation process for replacing the traditional general-
purpose convolution is as follows:

Step 1: 3× 3 layer-by-layer convolution (depthwise
conv) is used to extract features in the depth direction
of the input feature map. At this time, the input Xi is
not compressed in dimension, and the extracted spatial
features are more expressive.
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Step 2: the feature map X′ ∈ RH×W×C after the frst layer
of layer-by-layer convolution is used as the input of the
hourglass-shaped pointwise convolution layer (1× 1
pointwise conv).

Step 3: to make up for the loss of these features, a layer
of 3× 3 layer-by-layer convolutional layers is added at
the end to supplement the spatial feature information
and make up for the lost part of the spatial information.
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2.3. Te Lightweight Efcient Channel Attention Module.
Te squeeze-and-excitation (SE) module is a technique used
in convolutional neural networks (CNNs) to enhance their
representational power [30]. Te fundamental function is to
introduce amechanism that allows the network to adaptively
recalibrate the feature responses according to their impor-
tance. In the SE module, the “squeeze” operation reduces the
spatial dimensions of the feature maps, typically using global
average pooling. Tis reduces the number of parameters and
computational complexity. Ten, the “excitation” operation
applies a set of fully connected layers to model the in-
terdependencies between channels. Tese layers learn
channelwise weights, which are then used to rescale the
feature maps. Te relevant mathematical formulas are
expressed as follows:

w � σ f W1 ,W2{ }(g(x))􏼒 􏼓, (1)

where g(x) � 1/WH􏽐
W,H
i�1,j�1xij, xij denotes the channel

global average pooling, and σ(·) represents the sigmoid
function. To avoid high model complexity, the sizes of W are
set to C × (c/r).

By incorporating SE blocks into CNN architectures,
models can selectively emphasize or suppress certain
channels based on their relevance to the task at hand. Tis
helps improve the discriminative power of the network and
leads to better performance in various computer vision tasks,
such as image classifcation and object detection. Practical
application has proven that the utilization of the SE module
can improve network performance, but the addition of most
attention modules increases the performance of the network
while adding a large amount of computing burden.
Terefore, the focus of this study is whether efective channel
attention can be learned more efciently.

To address the abovementioned limitation, this
study develops an improved ECA module, which can
enhance model performance by introducing several key
parameters. ECA is a technique used in computer vision
to selectively attend to informative channels in a con-
volutional neural network. It helps to reduce the com-
putational cost of a network while maintaining or
improving its accuracy. ECA achieves this by adaptively
weighting the feature maps of each channel based on their
importance. Tis method has been proven to be efective
in various computer vision tasks, such as image classi-
fcation, object detection, and semantic segmentation.
Figure 5 demonstrates the overall view of the ECA net-
work. Te mathematical expression for this ECA mech-
anism is as follows:

g(φ) �
1

WH
􏽘

W,H

i�1,j�1
φij,

φo � g φs( 􏼁.

(2)

Ten, the channel weights through one-dimensional
convolution with extremely low computation are gener-
ated, which are as follows:

Wj � ε 􏽘
k

i�1
c

i
y

i
j

⎛⎝ ⎞⎠, (3)

where yi
j represents the set of k adjacent channels in φ and ε

denotes the sigmoid function.
Finally, the output feature map is obtained by the

product of the channel weight and the input feature map,
which can make the increase of the operation negligible
while improving the defect recognition efect of semantic
segmentation network performance.

2.4. Structure Reparameterization andModel Compression for
Redundant Feature Map. Structure reparameterization is
a technique used in deep learning to modify the structure of
a neural network during training. It involves changing the
number of neurons or layers in the network to improve its
performance. Tis can be done by adding or removing
neurons or by changing the connections between them. Te
goal of structure reparameterization is to fnd the optimal
network architecture for a given task, which can improve the
accuracy and efciency of the model.

Structural reparameterization is a technique used in
machine learning to simplify and improve the training of
deep neural networks. It involves modifying the network’s
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architecture by introducing new parameters that are learned
during training, which can help to reduce the number of
parameters and improve the overall performance of the
network. Figure 6 shows the application of the structural
reparameterization for the building blocks of the network. It
can be inferred from this fgure that a 3× 3 convolution
fltering, 1× 1 convolution fltering, and two bias term
transformations are obtained. Ten, the 1× 1 convolution
flter is padded with 0 to form a 3∗ 3 convolution flter,
and the convolution flter and ofset term distribution are
added to the fnal inference convolution flter W and bias
term B.

Feature map-based model compression technology can
reduce the use of computing and storage resources while
maintaining model accuracy, so it has broad application
prospects in resource-constrained environments such as
mobile devices and embedded systems. From the perspective
of feature map redundancy, one of two very similar feature
maps can be regarded as the “shadow” of the other feature
map. Tis type of feature map can be obtained through
cheap operation, thereby reducing a large number of 1× 1
convolutional operations.

Figure 7 shows the integration of the cheap operation
module into the UNET-based encoder-decoder network.
Te actual compression parameter ratio of cheap operation
can be formulated as follows:

C0 × Hi × Wi × Ci

(K − 1) × Co/K + Co × Hi × Wi × Ci/K
�

K × Hi × Wi × Ci

(K − 1) × Hi × Wi × Ci

. (4)

Te number of input channels in a deep network is often
hundreds or thousands, that is, Ci≫K. Tus, equation (4)
can be approximated as follows:

K × Hi × Wi × Ci

(K − 1) + Hi × Wi × Ci

≈ K. (5)

2.5. Loss Function and Evaluation Metrics. Te network is
optimized using the sum of the binary cross-entropy loss
function and the Dice loss function as the total loss function.
Te higher the accuracy of the prediction, the lower the loss
value, which is a good measure of the diference between the
two probability distributions.Te binary classifcation cross-
entropy loss function is formulated using the following
equals:

BCELoss xn, yn( 􏼁 � −wn yn × lgxn + 1 − yn( 􏼁 × lg 1 − xn( 􏼁􏼂 􏼃,

(6)

where xn represents the predicted image (the range is be-
tween 0 and 1); yn represents the real label (the value is 0 or
1); and wn represents the scaling factor of the loss value,
which is used to adjust the weight between samples, and this
paper takes 1.

Te Dice coefcient is a set similarity measure function,
usually used to represent the similarity of two samples:

Dice Coefficient �
2|X∩Y|

|X| +|Y|
, (7)

where |X∩Y| represents the intersection of two sets X and Y
and |X| and |Y| represent the number of elements.

Dice Loss � 1 −
2|X∩Y| + smooth
|X| +|Y| + smooth

. (8)

In this study, several evaluation indicators about the
inference efciency are selected to calculate the calculation
efciency of the vision-based defect detection model. Te
specifc mathematical expressions are as follows:

MFLOPs � 2HW K
2

· Cl−1 + 1􏼐 􏼑 · Cl · 10− 6
,

MParams � 􏽘
L

l�1
K

2
l · Cl−1 · Cl · 10− 6

,
(9)

where H and W represent the height and the width of input
images, K denotes the kernel size, and Cl−1 are Cl the input
and output channels. It is worth noting that a smaller value
of MFLOPs and MParams represents a smaller parameter
size of the model, that is, a higher inference efciency.

In addition to the detection efciency, the detection
accuracy is also an important indicator worthy of attention.

Accuracy �
TP + TN

TP + FP + TN + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 �
2 ∗ precision ∗ recall
precision + recall

,

(10)

where TN, TP, FP, and FN denote the number of test bridge
defect images for true negatives, true positives, false posi-
tives, and false negatives, respectively. It is worth noting that
a larger value of these indexes represents a more accurate
and comprehensive defect identifcation efect.

3. Case Study

3.1. Project Description. Te case object for UAS-based in-
spection is a steel truss girder suspension bridge with two
towers and two spans.Te total span of this bridge is 1480m,
and its architectural design and real shots are shown in
Figure 8. It is currently the world’s largest span plate-truss
combined stifened girder suspension bridge, ranking sec-
ond in the world and frst in China. Since it is near the key
control project of Hangrui Expressway, the construction

6 Structural Control and Health Monitoring



Figure 8: Te steel truss girder suspension bridge in this study.
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conditions of the bridge are complicated and the scale
is grand.

3.2. Te UAS-Based Inspection Process for Bridge Appearance
Detection. Te height of the cable-stayed or suspension
bridge is high, and due to the obstruction of the cables, it is
impossible to use the bridge inspection vehicle to inspect the
bottom plate. As a result, the efect of traditional visual
inspection is poor, and it is difcult to inspect the outer
surface of the cable tower.

To solve the above problems, this study introduces the
UAS-based inspection technology equipped with zoom
high-resolution cameras for bridge structural appearance
detection. Figure 9 shows the UAS-based inspection process
for bridge appearance detection. Table 1 shows the operating
performance parameters of the UAS equipment used in this
bridge inspection case. Table 2 shows the basic parameters of
the visual inspection system carried by the UAS. It can be
seen from the fgure that during the aerial photography fight
of the UAS, diferent safety distances are controlled
according to the diferences of the detected objects. Bridge
piers and tower columns are generally controlled at about
1.5–3m, while complex parts such as cables and steel
components are generally controlled at about 3–5m. During
fight operations, only one side is inspected and photo-
graphed at a time, and the upper and lower parts of the
bridge are inspected separately. Te inspection sequence is
from left to right, frst up and then down. During the in-
spection of the lower part, the upper camera is used to
operate on the same side as the pilot, and when the upper
part is inspected, the lower camera is used to operate on the
same side as the pilot.

3.3. Dataset Preparation and Augmentation for Deep
Learning. About 100 images of cracks in bridge concrete
structures collected by UAS were used for model training
and verifcation evaluation. Figure 10 shows the images of
bridge concrete cracks and the manual labeling results. It can
be inferred from the fgure that the resolution of the image of
bridge concrete cracks is high, but the image-pixel ratio of
cracks is relatively low because its accurate identifcation is
a challenging task.

After labeling is complete, the defect images collected by
the UAS are divided into multiple small images to input into
the network for training. To further improve data diversity,
data enhancement technology is introduced for data ex-
pansion. Data augmentation for images is a technique used
to increase the size of a dataset by applying various trans-
formations to the original images. Tis can help improve the
accuracy of DL-based models by exposing them to a wider
range of variations in the data. Figure 11 demonstrates the
application of data enhancement technology in the bridge
crack dataset. It can be inferred from the fgure that a series
of data enhancement techniques are applied in this study,
including fipping, rotation, scaling, saturation, contrast
map, and brightness adjustment, to enrich the diversity of
the image. A total of approximately 6,000 images with an
image resolution of 200∗ 200 after data enhancement were

used for defect recognition model training and verifcation
evaluation. In this study, the bridge concrete structural
defect dataset was frst divided into the training, validation,
and test sets according to the ratio of 7 : 2 :1. Tere are 4200
defect images used for model training, 1,200 defect images
used for model validation, and 600 defect images used for
model test.Te validation metric was calculated by inference
on the validation dataset at the end of each epoch to evaluate
the training efect. It should be noted that the indicator to
evaluate the defect segmentation ability of the model on the
validation set is intersection over union (IOU).

4. Experimental Result and Discussion

4.1. Te Model Training Process. Tis experiment is per-
formed on the Windows 10 operating system. Te hardware
environment used in this study is 2×Xeon (R) Gold 5118,
256GB memory, 1×Tesla T4, and 1 TB SSD. Te software
environment is Python 3.7, Cuda12, and Cudnn7.7. Te
method used in this study is based on the deep learning
framework TensorFlow and the software platform Vscode
for coding and implementation. Specifcally, the number of
iterations is set to 200 and the number of batch processing is
set to 8. Cosine annealing learning rate is a type of learning
rate schedule commonly used in training deep learning
models. Tis study introduces the cosine annealing learning
rate change method to adjust the learning rate. Specifcally,
the initial learning rate of the model is set to 0.01, and in the
remaining iterations, the model adjusts the learning rate
according to the cosine function curve.

Figure 12 demonstrates the loss functions and metric
changes for the 200-epoch process of the developedmodel. It
can be inferred from the fgure that the loss function of the
built model in the training set gradually decreases steadily
and fnally tends to converge, indicating that the model has
learned enough efective information from sufcient crack
data. Moreover, it can be also seen that the BCE loss function
has a faster convergence rate and smaller numerical changes,
while the Dice loss function has a larger numerical value,
greater fuctuations, and a slower convergence rate. Cor-
respondingly, the segmentation performance evaluation
index of the model in the validation set gradually increases
and eventually tends to converge, indicating that the model
has a good crack segmentation ability.

To avoid the model from overftting or falling into a local
optimal solution, in this study, during the model iteration
process, the weight coefcients were saved for each iteration,
and the optimal model was selected based on the strategy
with the highest evaluation index (IOU in this study) on the
validation set. In this study, the highest iteration number of
the validation set evaluation index occurs in the 162nd it-
eration, and its maximum IOU value is 0.8306.

4.2. Ablation Study. To further verify the efectiveness of the
proposed method, a series of ablation experiments were
introduced in this study. Specifcally, diferent mechanisms
are introduced to change the architectural composition of
the neural network.
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Figure 9: Bridge inspection process display using UAS detection.

Table 1: Main fight performance parameters of UAS.

Main indicator Parameter value
Weight 1375 g
Wheelbase 350mm
Flight time 30min
Maximum ascent speed 6m/s
Maximum descent speed 4m/s
Maximum horizontal fight speed 72 km/h
Maximum fight altitude 6000m
Maximum wind resistance rating 10m/s
Maximum transmission distance 7.5 km
Working temperature 0–40 degrees

Table 2: Main parameters of the visual inspection system of UAS.

Main indicator Parameter value

Visual system Forward vision system
Downward-looking visual system

Speed measurement range Flight speed ≤10m/s (height 2m, sufcient light)
Height measurement range 0–10m
Precision hover range 0–10m
Maximum video stream 60mbps
Camera resolution 4000∗ 3000 pixel

(a)
Figure 10: Continued.
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(b)

Figure 10: Te bridge concrete crack images and corresponding labeling results. (a) Original images. (b) Manual label annotations.
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Figure 11: Te application of data augmentation in bridge crack images.
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Figure 12: Process lines for loss functions and evaluation metrics: (a) training set; (b) model validation.
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(i) Model I: the UNET model with the conventional
convolutional network

(ii) Model II: the UNET model with the hourglass-
shaped depthwise convolutional network

(iii) Model III: the UNET model with the lightweight
ECA attention mechanism

(iv) Model IV: the UNETmodel with the SE mechanism
(v) Model V: the UNET model with the hourglass-

shaped depthwise convolutional network, ECA,
and the structural reparameterization

Table 3 shows the detection performance comparison of
the ablation experiment results. It can be observed from
Table 3 that the introduction of the hourglass convolution
module will not signifcantly reduce the accuracy and per-
formance of the model in defect identifcation, but at the
same time, it can signifcantly reduce the size of the model
parameters and improve the inference efciency. In addi-
tion, the introduction of two types of attention mechanisms
(e.g., SE and ECA mechanisms) can improve the feature
fusion and defect identifcation capabilities of neural net-
works to a certain extent. In addition, the introduction of
two types of attention mechanisms can improve the feature
fusion and defect identifcation capabilities of neural net-
works to a certain extent. However, the lightweight ECA
mechanism module brings less increase in the number of
parameters, which can improve the efciency of model
reasoning to a certain extent. In addition, the combination of
the model structural parameter reconstruction and com-
pression technology can signifcantly reduce model pa-
rameters and improve the real-time reasoning ability of the
model. Moreover, it can be also seen from Table 3 about the
efciency comparison of the proposed method and other
benchmark methods. It can be inferred that the introduction
of the hourglass convolution module can efectively improve
the reasoning efciency of the model, while the introduction
of the ECA lightweight attention mechanism will not sig-
nifcantly reduce the reasoning efciency. In addition, the
joint application of model parameter reconstruction and
feature compression technology can signifcantly accelerate
the efciency of model inference.

4.3. Comparison with Other Algorithms. To illustrate the
efectiveness of our proposed defect detection model, we
compare the proposed model with some popular lightweight
vision-based inspection models. Te setting of the model
parameters and the proposedmethod are consistent in terms
of the training data of the algorithm. For the proposed
method and the comparison method, this study uses the
same hyperparameters for model training and inference,
that is, the number of iterations, the number of batch
processing, and the optimal model selection method. Spe-
cifcally, the number of iterations is set as 200, the number of
batch processing is set to 8, and the optimal model was
determined according to the strategy with the highest
evaluation index (IOU in this study) on the validation set.
(i.e., the highest accuracy segmentation index). Finally, the
model weight with the highest evaluation index in the

validation set is saved and used for model recommendation
and performance testing.

Tese models are described as follows:

(i) UNET: It was proposed by [31] in 2015. It uses an
encoder-decoder architecture that allows for a pre-
cise segmentation of objects in images. Te UNET
architecture has become popular in image seg-
mentation tasks due to its ability to efectively
capture contextual information and its ability to
handle limited training data.

(ii) DEEPLABV3: It was proposed by Liu et al. [32] in
2018. DeepLab V3 uses atrous convolution (also
known as dilated convolution) to capture multiscale
context information from the input image. It also
employs a spatial pyramid pooling module to
capture object context at multiple scales. DeepLab
V3 has achieved state-of-the-art performance on
several benchmark datasets for semantic image
segmentation.

(iii) Pyramid Scene Parsing Network (PSPNET): It was
proposed by Zhao et al. [33] in 2017. PsPNet utilizes
a pyramid pooling module to capture contextual
information at multiple scales, allowing for a more
comprehensive understanding of the scene. Tis
architecture has achieved excellent performance in
various scene parsing benchmarks and has been
widely used in computer vision applications.

(iv) Fully Convolutional Network (FCN): It was pro-
posed by Yan et al. in 2015 [34]. FCN replaces the
fully connected layers of a traditional CNN with
convolutional layers, allowing the network to accept
input images of any size and produce output feature
maps that are also of variable size. FCN has been
widely used in various applications, including
medical image segmentation, autonomous driving,
and object detection.

Table 4 demonstrates the evaluation of the constructed
method and other benchmark advanced algorithms on the
test set of the bridge concrete crack dataset. It can be seen
from the table that even considering the model detection
accuracy, precision, and recall rate at the same time, the
constructed method performs better than the other
methods, indicating that the method has a strong crack
identifcation performance.

In addition, model inference efciency is an important
evaluation index to measure the applicability of the model in
the actual bridge crack inspection process. Table 4 shows the
speed comparison between the constructed method and the
baseline method in inferring a bridge concrete crack image
with a resolution of 600∗ 400 pixels. It can be inferred from
the table that the constructed model has a real-time de-
tection efect, and its efciency is signifcantly higher than
that of other baseline methods. Tis is mainly due to the
comprehensive use of the lightweight convolutional seg-
mentation network PsPNet and the ResNet backbone feature
network, which reduces the parameters required for model
calculation and the number of network layers.

Structural Control and Health Monitoring 11



Figure 13 shows the bridge structural defect identifca-
tion comparison of the constructed method and other
benchmark models. It can be inferred from the fgure that
compared with the existing mainstream semantic segmen-
tation algorithms, the crack details obtained by the proposed
algorithm are richer and closer to the results of manual
observation.

4.4. Real Inspection Scene Validation. To further test the
practical application efect of the proposed method in bridge
detection, some complex scenes were selected for model
evaluation. Among them, the proposed method refers to the

model based on the UNET network and lightweight ECA
mechanism. Figure 14 demonstrates the efect of applying
the constructed defect recognition method to actual bridge
structure image recognition. It can be seen from the fgure
that the proposed method shows better segmentation ca-
pabilities in defect images with diferent backgrounds, in-
cluding rough concrete background surfaces, holes, red
paint distractors, and pockmarked scenes. Even for those
scenes with extremely dark lighting conditions and severely
insufcient light, the proposed method can still accurately
identify and segment the geometry of concrete cracks, which
shows that the method has strong generalization and
adaptability. Tis shows that the machine vision-based crack

Table 4: Model identifcation performance comparison of diferent algorithms.

Models Precision (%) Recall (%) Accuracy (%) IOU (%)
Te developed method 97.62 97.23 97.42 93.25
UNET 94.23 94.35 94.29 93.12
FCN 93.89 92.95 93.21 92.86
PSPNET 92.78 92.57 92.82 91.38
DEEPLABV3 93.85 93.74 93.78 92.82

Table 3: Ablation experiment results.

Models MFLOPs MParams Precision (%) Accuracy (%) Recall (%) Speed (FPS)
Model I 11.26 0.045 96.25 95.21 95.15 18.34
Model II 9.32 0.042 96.30 95.18 95.16 24.05
Model III 9.36 0.043 97.23 96.28 96.83 23.56
Model IV 12.35 0.052 96.82 95.95 95.62 16.36
Model V 9.11 0.033 97.62 97.23 97.42 28.71

Origin image Developed FCN PSPNET DEEPLAB V3 Ground Truth
IOU=92.45% IOU=88.23% IOU=90.05% IOU=90.56%

Origin image Developed FCN PSPNET DEEPLAB V3 Ground Truth

IOU=93.26% IOU=91.62% IOU=91.98% IOU=92.03%

Origin image Developed FCN PSPNET DEEPLAB V3 Ground Truth
IOU=91.95% IOU=90.62% IOU=90.80% IOU=90.81%

Figure 13: Comparison of the constructed method and other state-of-the-art methods.
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Origin image Origin image+mask Mask Image Ground Truth
IOU=93.21%

Origin image Origin image+mask Mask Image Ground Truth

IOU=93.72%

Origin image Origin image+mask Mask Image Ground Truth

IOU=92.81%

Origin image Origin image+mask Mask Image Ground Truth
IOU=93.16%

Origin image Origin image+mask Mask Image Ground Truth

IOU=90.06%

Origin image Origin image+mask Mask Image Ground Truth

IOU=90.21%

Origin image Origin image+mask Mask Image Ground Truth

IOU=89.32%

Origin image Origin image+mask Mask Image Ground Truth

IOU=89.84%

Figure 14: Evaluation of model detection results in complex real inspection scene.

(a) (b) (c)

Figure 15: Pixel-level segmentation results of bridge defects using the proposed method. (a) Original image. (b) Defect segmentation result.
(c) Ground truth.
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identifcation method has better environmental adaptability
than manual detection. Moreover, it can also be seen from
the fgure that the evaluation indicators of the proposed
method’s bridge defect segmentation results with diferent
complex backgrounds are higher than those of the com-
parative method, indicating its better recognition
performance.

4.5.QualitativeEvaluationonLarge-Scale Images. To achieve
high-resolution bridge information collection, UAS equip-
ment is usually equipped with high-defnition cameras, so
the recognition of high-defnition full-scale images is an
important part of evaluating the practical application
ability of visual inspection models. In this study, using the
proposed defect recognition method as a tool, three dif-
ferent images of bridge structural defects are used to verify
the efectiveness of the method. It should be noted that the
application of the developed method on the high-
resolution large-scale structural defect images is a test
scenario independent of the training and validation data.
Specifcally, the model construction in this study is mainly
based on small-scale bridge concrete structure defect im-
ages for model training and verifcation evaluation, while
further testing of the model robustness is based on high-
resolution defect images newly collected by UAS. Figure 15
shows the identifcation efect of the developed model ap-
plied to full-scale bridge structural defect images obtained by
UAS-based inspection technology. It can be seen from the
fgure that the constructed bridge structural defect seg-
mentation model has a good defect-shape segmentation
ability, and the defect geometry can be segmented from
large-scale images. Even for the cracks at the edge of the
bridge structure images, the morphological features of small
defects can still be accurately identifed and segmented.

5. Conclusions and Discussion

5.1. Conclusions. In this study, a machine vision detection
system suitable for bridge UAS detection scenes is proposed.
Te system can realize high-resolution image acquisition of
bridge concrete structural defects through UAS-based
photography technology. Firstly, the classical encoder-
decoder architecture UNET is utilized as the base model
for bridge structural defect identifcation, and the hourglass-
shaped depthwise separable convolution is introduced to
replace the traditional convolutional operation in the UNET
model to reduce model parameters. Ten, a kind of light-
weight and efcient channel attention module is used to
improve model feature fuzzy ability and segmentation ac-
curacy. On this basis, an end-to-end lightweight efcient
inference neural network is proposed to achieve pixel-level
bridge structural defect segmentation in diferent noise
scenarios.

Te specifc contributions of this study are as follows:

(1) Cheap operation is used to generate ghost feature
maps by reducing redundant feature maps, and
parameter reconstruction is utilized to reduce the
size of model parameters.

(2) Te experimental results show that the constructed
method achieves an efective balance between rea-
soning accuracy and efciency with the value of
97.62% precision, 97.23% recall, 97.42% accuracy,
and 93.25% IOU on the bridge concrete defect
dataset, which are signifcantly higher than those of
other state-of-the-art baseline methods.

5.2. Limitations and Future Discussion. However, some
limitations need to be further addressed. Firstly, this study
mainly focuses on typical defects such as concrete cracks.
In subsequent research, we will study detection and
identifcation methods for multicategory structural de-
fects like calcium precipitation, aggregate exposure, and
holes, to further expand the application scope of machine
vision inspection technology. Moreover, this study mainly
focuses on fast and efcient defect identifcation and
detection, but there is still a lack of research on the follow-
up bridge digital twin scene construction and defect
mapping. Based on visual defect detection, the con-
struction of the digital twin and bridge information model
techniques is an important research content in the future.
Realizing the three-dimensional mapping interaction
between machine vision inspection models and digital
twin scenes is important research content for future
bridge safety management. In future research, the pro-
posed method can be further extended to the operation
and maintenance of various civil infrastructures such as
housing construction and transportation to improve
automation and intelligence level.
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