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In this paper, a ground-based experimental system for solar array active vibration suppression has been established. Firstly, in order
to establish an accurate model of the solar array, the solar array is regarded as a fexible cantilevered thin plate, and the corresponding
dynamical equations are derived using the absolute nodal coordinate method. In addition, in this paper, the more advanced MFC
piezoelectric patch is used instead of the traditional PZTpiezoelectric ceramic patch. Te electromechanical coupling fnite element
model of the P1-typeMFC patch is established and substituted into the kinetic equation of the solar array. Finally, the accuracy of the
electromechanical coupling modeling and the control efect of active vibration suppression were verifed using the PID control. A set
of experimental frameworks for evaluating the active vibration suppression efect, including the free vibration test, sinusoidal
perturbation test, and white noise perturbation test, as well as the analysis strategy of the test data, are established.

1. Introduction

Large-scale solar arrays are energy support components for
spacecraft such as satellites and space stations. Tey are the
most common large-scale fexible space structures. Tese
structures often have complex dynamic characteristics such
as ultra-low frequency, high-density modes, and strong
geometric nonlinearity [1–6]. In the space environment,
satellites or spacecrafts are usually deployed in scheduled
orbit, and the interference caused by the manoeuvre in
changing orbit or the attitude adjustment towards the sun
will generate the transient vibration of the solar array [7].
Te space environment is in a state of low damping, and it is
difcult for the vibration to be attenuated quickly. Prolonged
and continuous vibration not only causes damage to solar
arrays, but also afects the pointing accuracy and attitude
stability of the satellites or spacecraft, making it take longer
and consume more fuel to adjust their attitude, which has an
extremely negative impact on their attitude control and

operation [8, 9]. Te rapid vibration suppression method of
solar arrays is therefore essential to ensure spacecraft
pointing accuracy and attitude stability [10–15].

Vibration suppression mainly includes passive control,
active control, and semiactive control. Te passive control
technology is widely used due to its advantages of simple
structure, easy implementation, and no need for external
power supply. Te main idea is to set up a passive energy
dissipation system to suppress vibration by setting up ma-
terials and devices on the structure to increase damping,
stifness, and strength. Tere have been many research di-
rections in this technique, such as tuned mass damper
(TMD) and friction damper. Typical studies are described as
follows. Zhao et al. [16] proposed a novel variable friction-
tuned viscous mass damper (VF-TVMD), which benefts
from variable friction to signifcantly reduce structural vi-
bration over a wider frequency band compared to TVMD.
Graphene platelets (GPL) have a signifcant reinforcing efect
on the strength of composite cantilever beams, porous
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beams, cantilever plates, and hyperbolic shallow shells with
respect to the behaviour of buckling, thermal buckling, and
postbuckling [17–19]. However, passive vibration suppres-
sion is considered to be nonconfgurable and cannot be tuned
and controlled over a wide operating frequency band
[20–22]. Active vibration suppression techniques, on the
other hand, have the advantage of being adaptable and ca-
pable of achieving vibration control in the lower frequency
bands. Terefore, scholars are now paying more and more
attention to active vibration control technology. Tere has
been a great deal of research on active vibration suppression
of solar arrays. Tere are two keys to this technology: the
choice of actuator and the design of the control law. Vishal
et al. [23] used shape memory alloy wires as the actuator, and
designed a nonlinear controller using dynamic inverse and
optimal control techniques to realize the active suppression
of cantilever beam vibration. Kras and Gardonio [3] pro-
posed a new fywheel inertial actuator for a four-side solidly-
supported steel plate, which has a good passive damping
efect in an open loop, and obtains a better active control
efect after rate negative feedback closed loop. Shen and
Homaifar [24] pasted fve pairs of collocated PZT piezo-
electric ceramic patches on a four-side solidly-supported
thin-walled rectangular aluminum plate, and investigated
control efects of rate-feedback control, hybrid fuzzy PID
control, PID control designed by genetic algorithm and linear
quadratic Gaussian/loop transfer recovery (LQG/LTR)
control. It provides a suitable framework for optimization
and robustness studies of vibration control of fexible
structures. Kwak and Heo [25] applied piezoelectric ceramic
patches as sensors and actuators to design a multi-input
multi-output positive position feedback controller and
proposed a block inverse technique to cope with modes with
a larger number of actuators and sensors. Tey experi-
mentally verifed the efectiveness and stability of the pro-
posed vibration suppression method. Omidi et al. [26]
proposed a new multiple positive feedback (MPF) control
based on modifed positive position feedback (MPPF) con-
trol. Te efectiveness of the control law was verifed using
a piezoelectric ceramic patch as an actuator and a clamped
beam at both the ends as a test platform. Sharma et al. [27]
utilized polarization-tuned piezoelectric material as the ac-
tuator and PZT patch as the sensor. Te actuator and sensor
are arranged in alignment on a four-sided simply supported
square plate, and the driving voltages of piezoelectric ma-
terials with diferent polarization directions in diferent
operating modes and their efects on the control efect of the
fuzzy logic controller are investigated in detail. Prakash et al.
[28] applied piezoelectric fber reinforced composites
(PFRCs) for active vibration suppression of cantilever beams,
and designed the classical rate-feedback control and optimal
(LQG/LQR) control law, and investigated the efects of fber
volume fraction and fber orientation of PFRC on build-up
time, active damping ratio, peak defection, and peak control
voltage. Te minimum control voltage strategy at a given
time gives the best control results. Cao et al. [29] studied the
time-dependent attitude manoeuvering problem of a fexible
satellite containing a rigid body and a fexible attachment.
Tey also designed a shape input delay controller using

piezoelectric actuators. Simulation results show that the
designed input shaper can suppress vibration. Qiu et al. [30]
investigated an active vibration control method based on
acceleration sensors for a cantilever beam piezoelectric patch
to suppress the frst-order and second-order bending mode
vibrations of the beam. Yuan et al. [31] considered the
coupling efects of rotation and translation in the dynamics of
highly fexible structures and applied an improved position
positive feedback control law to active vibration suppression
of mobile spacecraft. Jiang et al. [32] then used a positive
position feedback (PPF) control strategy for geometrically
nonlinear vibration suppression of piezoelectric functionally
graded graphene-reinforced laminated composite cantilever
(PFG-GRLCC) rectangular plate. In semiactive control, this
vibration suppression technology combines passive vibration
suppression with active vibration suppression, thus reducing
the design difculty and energy consumption of active
control law. However, this technique is mostly used in objects
with large sizes and high stifness, such as building structures
and ship-bearing systems, and it is difcult to be used for
vibration suppression of large fexible structures such as
fexible solar arrays. For example, Soni et al. [4] utilized an
electromagnetic actuator for active control of rotor bearing
transverse vibration of a ship under wave resistance condi-
tions and considered the parametric excitation of the rotor
bearing system by the propagating motion. Te Four-Ele-
ment/Modifed Real Proportional Integral Derivative (FE/
MRPID) control algorithm is designed based on a multiele-
ment support/suspension model and the control current and
vibration response at the control position are selected as the
objective function for multiobjective optimization of the
control parameters, and the optimal control parameters with
good robustness are obtained.

After investigation, it was found that the piezoelectric
materials are very suitable for active control actuators and
sensors because of their positive and negative piezoelectric
efects and low mass. However, the traditional PZT piezo-
electric ceramic patch has insufcient force, which in itself is
more fragile and difcult to use for fexible surfaces.
Terefore, the NASA Langley Center [33] developed
a macrofber composite (MFC) actuator. As a new smart
material, MFC has the advantages of high fexibility, large
strain capacity, and lightweight. Terefore, it has received
more and more attention. Kovalovs et al. [34] confrmed the
potential of MFC for structural vibration control through
experimental and numerical results. Steige and Mokrý [35]
developed a fnite element model of piezoelectric macrofber
composites. Macroscopic values of the elastic fexibility and
piezoelectric tensor were calculated, allowing the MFC ac-
tuator to be approximated as a plate-like uniform piezo-
electric material. Tis greatly reduces the complexity of the
fnite element model. Leniowska and Mazan [36] pasted
MFC on a thin circular plate fxed by a uniform load around
the circumference as an actuator and sensor and used it as
a test platform. Tey used the ARX identifcation method to
derive a linear model in the form of a ninth-order transfer
function, and then, used the resulting model to develop
a rate-feedback control algorithm, which was fnally ob-
tained to validate the control on the test platform. Zhang
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et al. [37] equated the honeycomb plate as an orthotropic
anisotropic plate. Te driving force and bending moment
formulas of the MFC actuator and the governing equations
of the honeycomb plate afxed with MFC actuators were
derived. Tey found that the driving force and bending
moment are not only related to the driving voltage and
piezoelectric strain constant (d33), but also related to the
elastic modulus of the honeycomb plate. Zhang et al. [38]
used MFC as the actuator and proposed a PID-LQR hybrid
controller. Te efectiveness of the hybrid controller under
various excitation conditions was verifed by active control
simulations and experiments, and the vibration response
was reduced by about 31.55% after control. Wu et al. [39]
used four MFC patches as actuators and sensors, and
constructed a controller using Proportional Derivative (PD)
and fuzzy control algorithms to suppress the frst two orders
of vibration of the plate refector antenna under free vi-
bration and sinusoidal excitation, thus verifying the efec-
tiveness of using MFC for antenna vibration suppression. Li
et al. [40] designed the LQR controller to suppress the vi-
bration of a cantilever beam under transient and continuous
disturbances with 94.4% and 65.4% amplitude reduction,
respectively, using MFC as the actuator and sensor. Lu et al.
[41] constructed an adaptive controller using MFC and
FxLMS algorithms, and the experimental results show that
their proposed controller is able to quickly suppress low-
frequency vibrations of composite sandwich beams.

Terefore, in this paper, MFCs will be used as actuators
and sensors to realize the active vibration suppression of large
fexible solar arrays. In order to realize the active control al-
gorithm, this paper simplifes the solar array into a cantilever
plate and uses the absolute nodal coordinate method to es-
tablish its fnite element model. Te absolute nodal coordinate
method was proposed by Shabana [42], which is not limited to
small deformation assumptions and can be used to model the
dynamics in the case of large deformation and large rotation,
so it has received more and more attention from scholars.
Shabana [43] frst modeled one-dimensional (one-di-
mensional) beam elements using the ANCF method. Shabana
[43] frst modeled one-dimensional (one-dimensional) beam
elements using the ANCF method. Later, Escalona et al. [44]
applied ANCF to the dynamic analysis of large deformation
fexible systems. Recuero and Negrut [45] classifed the ANCF
elements into three categories: fully parameterized elements,
gradient-defcient elements, and higher-order coordinate el-
ements. A novel Euler–Bernoulli beam fnite element model
(FEM), developed by means of the absolute nodal coordinate
formulation (ANCF), is used to simulate and analyze the
performance of a surface-bonded piezoelectric actuator in
suppressing nonlinear transverse vibrations induced by fast
slewing, and the validity of the ANCF control model is verifed
with the example of PD feedback control by Gilardi et al. [46].

Firstly, in this paper, the solar array with piezoelectric
patches is simplifed into a fexible cantilever beampiezoelectric
lamination, and the generalized mass matrix, generalized ex-
ternal force matrix, and generalized elastic force matrix of the
fexible cantilever beam substrate are established by using the
absolute nodal coordinate method. Ten, the piezoelectric
eigenstructure equation of the P1 MFC patch is established,

and the generalized elastic forcematrix of the piezoelectric layer
is derived, which is substituted into the kinetic equation of the
solar array. Finally, in order to verify the efectiveness of the
system and prepare for the subsequent research of the active
vibration suppression algorithm, a PID controller is designed.
A set of test frameworks for evaluating the efect of active
vibration suppression is established, including the free vibra-
tion test, sinusoidal disturbance test, and white noise distur-
bance test, as well as analysis strategies for test data.Te novelty
of this work is that the dynamic model of the piezoelectric
laminate considering the infuence ofMFCmass and stifness is
established based on the absolute nodal coordinatemethod; the
ground experimental platform of the solar array is built, the
closed-loop control system is designed and implemented, and
the accuracy of the model and the feasibility of using MFC for
active vibration control are verifed in the experiments; and the
feasibility of the experimental platform built as the basic
platform for subsequent aerospace project research is verifed.

2. Absolute Nodal Coordinate Modeling of
Piezoelectric Laminate Plate

When the elastic deformation of the fexible body is greater
than 20% of the structure size, this deformation can be
regarded as a large deformation [47]. Considering the large
deformation of large-scale fexible bodies, in the modeling
process, it is necessary to abandon the assumption of small
deformation and further consider the higher-order term of
deformation. Te stifness matrix is no longer constant at
large deformations, and themodal method cannot be used to
reduce the degrees of freedom of the system. If the hybrid
coordinate method is used for modeling, its computational
efciency is low. Terefore, a dynamic modeling method
suitable for large deformation analysis is required.

In order to solve the modeling problem of fexible bodies
under large deformation, Shabana proposed the absolute nodal
coordinate method in 1996. Te absolute nodal coordinate
method defnes the element coordinates in the inertial co-
ordinate system, and uses the slope vector of the element node
to replace the node rotation angle coordinate vector in the
traditional fnite element idea. Compared with the hybrid
coordinate method, this method has the following character-
istics: the generalized mass matrix and the generalized external
force matrix are both constant value matrices, and the non-
linear term only includes the generalized elastic force matrix.

For any column vector a � [a1 a2 a3]
T, there are the

following rules:

a,x �
za
zx

, a,y �
za
zy

, a,xy �
z
2a

zxzy
, (1)

􏽥a �

0 − a3 a2

a3 0 − a1

− a2 a1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

First, establish an inertial coordinate system O − XYZ as
shown in Figure 1. Te large deformation thin plate
structure is discretized by the fnite element method, and the
element coordinate system oe − xeyeze is established for the
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e-th element, where ae and be represent the length and width
of the rectangular thin plate element, respectively. Let the
position coordinate of any point k0 on the midplane in the
element coordinate system be (x, y, 0). Based on the
Kirchhof assumption, the sheet normal n0(x, y, t) remains
perpendicular to the midplane. Te coordinate vector of the
absolute position vector of any point k0 on the middle
surface of the thin plate in the inertial coordinate system is
r0(x, y, t), and the absolute position vector r of any point on
the non-middle surface of the thin plate is expressed in the
inertial coordinate system as follows:

r(x, y, z, t) � r0(x, y, t) + zn0(x, y, t). (3)

Based on the absolute node coordinate method, the
absolute position vector of the corresponding point k0 on the
midplane is expressed in the inertial coordinate system as
follows:

r0(x, y, t) � S(x, y)qe(t), (4)

where S(x, y) is the shape function matrix [48], which is
a 3 × 48 matrix. qe(t) is the absolute position coordinate of
the element node, which is a 48 × 1 coordinate vector, in-
cluding the position coordinate, the frst derivative of the
position coordinate to x, y, and the second derivative of the
position coordinate to x and y. Te expressions are as
follows:

S(x, y) � S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16􏼂 􏼃, (5)

qe(t) � q1e(t)T q2e(t)T q3e(t)T q4e(t)T􏽨 􏽩
T
, (6)

S1 � S1(ξ)V1(η)I3×3,

S2 � S2(ξ)V1(η)I3×3,

S3 � S1(ξ)V2(η)I3×3,

S4 � S2(ξ)V2(η)I3×3,

S5 � S3(ξ)V1(η)I3×3,

S6 � S4(ξ)V1(η)I3×3,

S7 � S3(ξ)V2(η)I3×3,

S8 � S4(ξ)V2(η)I3×3,

S9 � S3(ξ)V3(η)I3×3,

S10 � S4(ξ)V3(η)I3×3,

S11 � S3(ξ)V4(η)I3×3,

S12 � S4(ξ)V4(η)I3×3,

S13 � S1(ξ)V3(η)I3×3,

S14 � S2(ξ)V3(η)I3×3,

S15 � S1(ξ)V4(η)I3×3,

S16 � S2(ξ)V4(η)I3×3.

(7)

where the dimensionless variables ξ and η are defned as
ξ � x/ae, η � y/be, (0≤ ξ, η≤ 1), respectively; I3×3 is a unit
matrix, and the shape functions Si(ξ) and Vi(η) are as
follows [48]:

S1(ξ) � 1 − 3ξ2 + 2ξ3,
S2(ξ) � ae ξ − 2ξ2 + ξ3􏼐 􏼑,

S3(ξ) � 3ξ2 − 2ξ3,
S4(ξ) � ae ξ3 − ξ2􏼐 􏼑,

V1(η) � 1 − 3η2 + 2η3,
V2(η) � be η − 2η2 + η3􏼐 􏼑,

V3(η) � 3η2 − 2η3,
V4(η) � be η3 − η2􏼐 􏼑.

(8)

And qie(t) in qe(t) is the coordinate vector of the four
nodes of the element in the inertial coordinate system as
follows:

qie(t) � rk(t)T rk,x(t)T rk,y(t)T rk,xy(t)T
􏽨 􏽩

T
, (9)

where rk is the coordinate vector of the node in the inertial
coordinate system. rk,x and rk,y are the expressions of the
frst derivative of rk to the coordinates x and y of the element
coordinate system, respectively, in the inertial coordinate
system, rk,xy is the second derivative of rk to the coordinates
x and y of the element coordinate system in the inertial
coordinate system expression.
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Let q(t) be the overall absolute node coordinate array,
which is a 12N × 1 vector, and N is the number of nodes on
the entire board; the relationship between qe(t) and q(t) is

qe(t) � Beq(t), (10)

where Be is the Boolean matrix of element e, which is
a 48 × 12N matrix.

Based on the Kirchhof hypothesis, the coordinate vector
n0 of the unit normal vector of the midplane in the inertial
coordinate system can be expressed as follows:

n0 �
n
n

, (11)

where

n � r0,x × r0,y � €r0,xr0,y, (12)

n �

����

nTn
􏽱

. (13)

Te relationship between Green’s strain array and ab-
solute displacement is

ε �

ε11

ε22

2ε12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
2

rT,xr,x − 1􏼐 􏼑

1
2

rT,yr,y − 1􏼐 􏼑

rT,xr,y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Substitute equation (3) into equation (14), ignoring the
terms related to z2, we obtain

ε �

1
2

rT0,xr0,x − 1􏼐 􏼑 + zrT0,xn0,x

1
2

rT0,yr0,y − 1􏼐 􏼑 + zrT0,yn0,y

rT0,xr0,y + zrT0,xn0,y + zrT0,yn0,x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Considering that the normal n0 remains perpendicular
to the midplane, we have:

rT0,xn0 � 0 rT0,yn0 � 0. (16)

Taking the derivative of equation (16) with respect to x,
we obtain

rT0,xn0,x + rT0,xxn0 � 0 rT0,yn0,x + rT0,yxn0 � 0. (17)

Taking the derivative of equation (16) with respect to y,
we obtain

rT0,xn0,y + rT0,xyn0 � 0 rT0,yn0,y + rT0,yyn0 � 0. (18)

Substituting equations (17) and (18) into equation (15),
and rT0,yx � rT0,xy, the Green strain can be decomposed into the
following form:

ε � ε0 − zκ, (19)

k0

h

xe

ye

ze

Oe

X

Y
Z

O

r (x, y, z, t0)

ae

be

Figure 1: Tin rectangular plate with large deformation.
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where ε is the in-plane strain array of the midplane, which
can be expressed as follows:

ε0 �

ε011

ε022

2ε012

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
2

rT0,xr0,x − 1􏼐 􏼑

1
2

rT0,yr0,y − 1􏼐 􏼑

rT0,xr0,y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

κ is the curvature array of the midplane:

κ �

κ11
κ22
κ12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

rT0,xxn0

rT0,yyn0

2rT0,xyn0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Te relationship between the stress σ � [σ11σ22σ12]
T and

the strain of the plate element is

σ � Dε, (22)

where

D �
1

1 − v12v21

E1 v21E1 0

v12E2 E2 0

0 0 1 − v12v21( 􏼁G12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where E1 and E2 are the elastic moduli along the principal
axis direction, G12 is the in-plane shear modulus, v12 and v21
are Poisson’s ratios, which satisfy the relation v21E1 � v12E2.

2.1. Generalized Mass Matrix. When calculating the virtual
work of the inertial force, the change of the absolute co-
ordinates along the ze direction of the element coordinate
system can be ignored. By applying the principle of virtual
work, the virtual work performed by the inertial force of the
plate element e on the virtual displacement δr0 is calculated
as

δWie � − 􏽚
Ve

ρδrT€rdVe � − 􏽚
Ve

ρδrT0€r0dVe. (24)

By substituting equation (4) into equation (24), we can
obtain that

δWie � − δqTe Me€qe, (25)

where Me is an element mass matrix, which is a 48 × 48
square matrix, and its expression is

Me � h 􏽚
ae

0
􏽚

be

0
ρSTSdydx. (26)

Finally, the virtual work performed by the inertial force
of the overall rectangular thin plate is

δWi � − 􏽘

Ni

e�1
􏽚

Ve

ρδrT€r dVe � − δqTM€q, (27)

where Ni is the number of plate elements and M is the
generalized mass matrix of the overall rectangular thin plate,
and its expression is as follows:

M � 􏽘

Ni

e�1
BT

e MeBe. (28)

2.2. Generalized External Force Array of Concentrated Force.
Suppose a concentrated force acts on point P on the mid-
plane, the concentrated force is expressed as F in the inertial
coordinate system, and the relationship between the absolute
position vector of point P and the absolute node coordinate
array of the overall thin plate is r0p � Spq. Ten, the virtual
work performed by concentration is

δWF � rT0pF � δqTQF. (29)

Finally, the generalized external force matrix corre-
sponding to the concentrated force can be obtained as
QF � STpF, where Sp � SBp and Bp is the Boolean matrix of
the element where the point P is located.

2.3. Generalized Elastic Force Matrix for Tin Plate.
According to the principle of virtual displacement, both real
and virtual displacements satisfy the geometric equation (14)
between displacement and strain. Since the virtual dis-
placement (the variation of the displacement) causes the
corresponding virtual strain (the variation of the strain),
using equation (19), we can obtain the following equation:

δε � δε0 − zδκ. (30)

First, we solve the midplane’s in-plane strain variation
δε0 caused by the displacement variation δqe, which can be
obtained by equation (20) as

δε0 � Hδqe, (31)

where

H �

rT0,xS,x

rT0,yS,y

rT0,xS,y + rT0,yS,x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

Ten, the variation of equation (21) is obtained as
follows:
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δκ � δ

rT0,xxn0

rT0,yyn0

2rT0,xyn0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� Gδqe, (33)

where it is necessary to calculate the variation of equations
(11)–(13) to obtain the following expressions:

δn � δ􏽥r0,xr0,y + 􏽥r0,xδr0,y � − 􏽥r0,yδr0,x + 􏽥r0,xδr0,y � Bδqe, (34)

δn �
nTδn

n
�
nTB

n
δqe.

(35)

Ten, we obtain

G � G1 + G2 + G3,

G1 �
1
n

rT0,xxB

rT0,yyB

2rT0,xyB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2 �
1
n

nTS,xx,

nTS,yy,

2nTS,xy,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G3 � −
1
n
2 κn

TB.

(36)

B � − 􏽥r0,yS,x + 􏽥r0,xS,y. (37)

Te virtual work performed by the elastic force of the
plate element is

δWfe � −
1
2
􏽚

Ve

δεTσdV � −
1
2

􏽚
ae

0
􏽚

be

0
􏽚

h/2

− h/2
δεTσdzdydx.

(38)

We then substitute equation (30) into equation (38) to
obtain

δWfe � −
1
2
􏽚

V
δεT0 − zδκT􏼐 􏼑D ε0 − zκ( 􏼁dV. (39)

Te expression of the virtual work performed by the
elastic force of the plate element is detailed in the Appendix.

We substitute equations (31) and (33) into equation (39)
to obtain

δWfe � δqTe Qfe, (40)

where Qfe is the element generalized elastic force matrix,
and its expression is given in Appendix

Ten, the virtual work performed by the elastic force of
the overall thin plate is

δWf � 􏽘

Ni

e�1
δWfe � δqTQf. (41)

Finally, the generalized elastic force matrix of the overall
thin plate is obtained as

Qf � 􏽘

Ni

e�1
BT

e Qfe. (42)

2.4. Piezoelectric Constitutive Equation of MFC P1-Type
Patch. Piezoelectric ceramics have a wide range of appli-
cations in the vibration suppression of cantilever beams, but
piezoelectric ceramics have high rigidity and small de-
formation, which makes it difcult to apply to large de-
formations or curved surfaces [49]. Terefore, NASA
designed a new composite material based on piezoelectric
ceramics, namely, MFCs. Since MFCs are piezoelectric ce-
ramics in essence, MFCs also have positive and negative
piezoelectric efects. Te MFC itself has a certain degree of
fexibility, and the stress generated by the MFC of the same
area is approximately ten times that of piezoelectric ce-
ramics. In this paper, based on the positive and negative
piezoelectric efects, MFCs are used as actuators and sensors.
Te internal structure of the MFC is relatively complicated
[50]. Te MFC is made up of 3 parts, and its structure and
working mode are shown in Figure 2.

When the thin plate vibrates, it can be thought of as
a small strain, with a large deformation motion. Terefore,
the MFC pasted at the root of the cantilevered thin plate is
regarded as subjected to small strain, and its electrome-
chanical coupling characteristics can be described by the
linear piezoelectric eigenstructure equation. Tere are four
piezoelectric equations, depending on the boundary con-
ditions; the second type of piezoelectric equation is used
here, taking strain εk(k � 1, 2, . . . , 6) and electric feld
strength Ej(j � 1, 2, 3) as independent variables and stress
σi and electric displacement Dl as dependent variables. In
reality, the electric feld distribution of MFC is very com-
plicated [51]. In order to simplify the model, the following
assumptions are made [52]: (a) the electric feld between the
electrodes is a uniformly distributed strong electric feld; (b)
the deformation of the MFC lies within its elastic de-
formation; and (c) the MFC is an orthotropic anisotropic
material. d33 mode is obtained with the electric feld di-
rection parallel to the fber direction, and the strength of the
remaining two directions is zero. Te electric feld direction
of the MFC of type d33 is parallel to the fber direction, and
the strength of the electric feld in the remaining 2 directions
is 0. Based on the abovementioned assumptions, the sim-
plifed piezoelectric constitutive equation of the MFC is
obtained as follows:

σi � C
E
ikεk − ejiEj(i � 1, 2, . . . , 6),

Dl � elkεk + εE
ljEj(l � 1, 2, 3).

(43)

Structural Control and Health Monitoring 7



where CE
ik � (zσi/zεk)E is the short-circuit elastic stifness

coefcient, where the superscript E represents the parameter
obtained under the condition of constant electric feld or

zero electric feld, and the unit is N/mm2. eji �

(zσi/zEj)E, elk � (zDl/zεk)E is the piezoelectric stress con-
stant, which is the ratio of the stress change caused by the
change of electric feld intensity to the change of electric feld
intensity under constant strain, or the ratio of the change in
electrical displacement caused by the change in strain to the
change in strain under a constant electric feld. εE

lj is the
mechanical clamping dielectric constant, that is, the di-
electric constant under constant strain.

Ten, the matrix expression of the piezoelectric equation
is

σ1
σ2
σ3
σ4
σ5
σ6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

C
E
11 C

E
12 C

E
13 C

E
14 C

E
15 C

E
16

C
E
21 C

E
22 C

E
23 C

E
24 C

E
25 C

E
26

C
E
31 C

E
32 C

E
33 C

E
34 C

E
35 C

E
36

C
E
41 C

E
42 C

E
43 C

E
44 C

E
45 C

E
46

C
E
51 C

E
52 C

E
53 C

E
54 C

E
55 C

E
56

C
E
61 C

E
62 C

E
63 C

E
64 C

E
65 C

E
66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ε1
ε2
ε3
ε4
ε5
ε6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

e11 e12 e13

e21 e22 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

e61 e62 e63

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

E2

E3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D1

D2

D3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ε1
ε2
ε3
ε4
ε5
ε6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

εE
11 εE

12 εE
13

εE
21 εE

22 εE
23

εE
31 εE

32 εE
33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

E2

E3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(44)

Te abovementioned equation can be abbreviated as
follows:

σ � CEε − eTE,

D � eε + εEE,
(45)

where e is the piezoelectric stress constant matrix, εE is the
dielectric constant matrix under constant strain, and CE is
the stifness matrix under constant electric feld strength.

Te polarization direction of the piezoelectric layer of the
MFC P1-type is parallel to the x-axis direction in the element
coordinate system, and an external electric feld is only
applied in the x-axis direction. So, the piezoelectric con-
stitutive equation can be simplifed as follows:

σ1
σ2
σ6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

C
E
11 C

E
12 0

C
E
21 C

E
22 0

0 0 C
E
66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ε1
ε2
ε6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

e11

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦E1,

D1 � e11 0 0􏼂 􏼃

ε1
ε2
ε6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + εE
11E1,

(46)

where

CE
�

C
E
11 C

E
12 0

C
E
21 C

E
22 0

0 0 C
E
66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Em1

1 − μ12μ21

μ12Em2

1 − μ12μ21
0

μ21Em1

1 − μ12μ21

Em2

1 − μ12μ21
0

0 0 Gm12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

where Em1 and Em2 are the elastic moduli of the MFC along
the fber and electrode directions, respectively, Gm12 is the
in-plane shear modulus of the MFC, and μ12 and μ21 are
Poisson’s ratios. If σ1 � σ11, σ2 � σ22, σ6 � σ12, ε1 � ε11,
ε2 � ε22, ε6 � ε12, and eni � dnjC

E
ji , then e11 � d11C

E
11; in MFC

P1-type patch, E1 � V1/d, where V1 is the voltage applied in
the x-axis direction and d is the distance between two ad-
jacent cross electrodes. When the shape and size of the
piezoelectric material are certain, the dielectric constant can
be determined by measuring the inherent capacitance C of
the piezoelectric material, so we have εE

11 � Cd/S �

(Cd/behs).

+

+-

-

-

-

z1

x1

y1

O1 3

2

1

PZT Fiber
Electrode

Expoxy resin

Figure 2: Te working principle of MFC material.

8 Structural Control and Health Monitoring



Te adjacent cross electrodes of the MFC P1-type patch
are equivalent to a capacitor, and V � Q/C, where Q is the
amount of charge. Q � Qse � 􏽒

Vs
DdV is the amount of

charge generated by the sensor element without an external
electric feld, so Vse � Qse/C.

Tus, the voltage generated by the sensor element is

Vse �
􏽒

Vse
eεdV

C
�

􏽒
Vse
e ε0 − zκ( 􏼁dV

C
� Qouteqe,

(48)

where Qoute is the output matrix of the sensor element, and
its expression is as follows:

Qoute �
􏽒

Vse
e(H − zG)dV

C
� 􏽚

ae

0
􏽚

be

0
􏽚

− h/2

− h/2− hs

e(H − zG)

C
dzdydx.

(49)

Ultimately, the output equation for the overall sensor
patch is as follows:

Vs � Qoutq, (50)

where Qout is the output matrix of the overall sensor, and its
expression is as follows:

Qout � 􏽘

Ns

e�1
QouteBse. (51)

Te research on the MFC paste position is mostly based
on the mathematical model of the cantilever plate estab-
lished by fnite element analysis, which is used as a theo-
retical basis to determine theMFC paste position [53–55]. In
this paper, through Ansys analysis, it is determined based on
the maximum strain energy theory. Te structure and
material parameters of the solar array are shown in Table 1.

Te size of the solar array model used in this paper is the
actual size of the solar array of the “sunfower” satellite.
Using Ansys software to carry out vibration modal analysis
of the solar array model, the frst-order strain energy analysis
of the solar array is shown in Figure 3. By applying the
maximum strain energy theory and setting the software,

Figure 3 shows that the maximum strain energy is at the end
of the fxed position and the hinge connection position,
which are the best positions for applying the MFC. Table 2
shows the modal analysis table of the frst 2 modes of the
solar array through modal analysis, including the specifc
vibration frequency value of each mode. Te corresponding
mode shapes are shown in Figures 4 and 5, respectively.

2.5. Generalized Elastic Force of Piezoelectric Layer. From the
constitutive equations, the elastic potential energy expres-
sions of the sensor elements can be obtained as

δWse � −
1
2
􏽚

Vs

δεTσdV � −
1
2

􏽚
ae

0
􏽚

be

0
􏽚

− h/2

− h/2− hs

δεTσdzdydx, (52)

δWse � −
1
2
􏽚

Vs

δεT CEε − eTE􏼐 􏼑dV. (53)

Since no voltage is applied to the sensor, so we have

δWse � −
1
2
􏽚

Vs

δεTCEεdV, (54)

By substituting equation (19) into equation (53), we
obtain

δWse � −
1
2
􏽚

Vs

δεT0 − zδκT􏼐 􏼑CE ε0 − zκ( 􏼁dV. (55)

Similarly, the elastic potential energy of the driver ele-
ments can be expressed as

δWae � −
1
2
􏽚

Va

δεT CEε − eTE􏼐 􏼑dV

� −
1
2
􏽚

Va

δεT0 − zδκT􏼐 􏼑CE ε0 − zκ( 􏼁dV +
1
2
􏽚

Va

δεT0 − zδκT􏼐 􏼑eTEdV.

(56)

Te virtual work performed by the elastic force of the
sensor element and the actuator element is detailed in
Appendix A. We substitute equations (31) and (33) into
equation (55) to obtain

δWse � δqTe Qse, (57)

whereQse is the generalized elastic force matrix of the sensor
element, and its expression is

Qse � −
1
2

􏽚
ae

0
􏽚

be

0
HTAsε0dydx +

1
2

􏽚
ae

0
􏽚

be

0
HTBsκdydx

+
1
2

􏽚
ae

0
􏽚

be

0
GTBsε0dydx −

1
2

􏽚
ae

0
􏽚

be

0
GTCsκdydx.

(58)

Ten, the virtual work performed by the generalized
elastic force of the overall sensor is

Table 1: Material parameters of the components of the vibration
suppression system.

Components Size (mm) Density (kg/m3)
Elastic modules

(GPa)
Canvas model 660 ∗ 480 1865 64.64
M4312-P1 42 ∗ 12 5440 30.34
M5628-P1 56 ∗ 28 5440 30.34
Hinge structure M6 7930 —
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δWs � 􏽘

Ns

e�1
δWse � δqTQs. (59)

Te generalized elastic force matrix of the sensor is
Qs � 􏽐

Ns

e�1BT
seQse, where Ns is the number of sensor elements

and Bse is the Boolean matrix of the sensor element.

We substitute equations (31) and (33) into equation (56)
to obtain

δWae � δqTe Qae (60)

where Qae is the generalized elastic force matrix of the
actuator element, and the expression is given in Appendix.

1.164E-03
1.035E-03
9.057E-04
7.766E-04
6.474E-04
5.182E-04
3.890E-04
2.598E-04
1.306E-04
1.377E-06

(a)

1.175E+01
1.044E+01
9.137E+00
7.832E+00
6.528E+00
5.223E+00
3.918E+00
2.614E+00
1.309E+00
4.333E-03

(b)

Figure 3: Te strain energy distribution of the frst-order vibration mode of the solar array. (a) Te strain energy distribution of the frst-
order vibration mode of the single-board solar array. (b)Te strain energy distribution of the frst-order vibration mode of the double-board
solar array.

Table 2: Modal analysis table of the solar array model.

Board structure type Order of frequency Frequency (Hz)
Single board First-order 2.360480E+ 00
Single board Second-order 7.698756E+ 00
Double board First-order 7.745260E − 01
Double board Second-order 4.352426E+ 00

6.722E+01
5.975E+01
5.228E+01
4.481E+01
3.734E+01
2.987E+01
2.241E+01
1.494E+01
7.469E+00
0.000E+00

(a)

9.370E+01
8.328E+01
7.287E+01
6.246E+01
5.205E+01
4.164E+01
3.123E+01
2.082E+01
1.041E+01
0.000E+00

(b)

Figure 4: Te mode shapes of the single-board solar array. (a) First-order mode shape of the single-board solar array. (b) Second-order
mode shape of the single-board solar array.

4.045E+01
3.596E+01
3.146E+01
2.697E+01
2.247E+01
1.798E+01
1.348E+01
8.989E+00
4.495E+00
0.000E+00

(a)

5.144E+01
4.573E+01
4.001E+01
3.430E+01
2.858E+01
2.286E+01
1.715E+01
1.143E+01
5.716E+00
0.000E+00

(b)

Figure 5: Te mode shapes of the double-board solar array. (a) First-order mode shape of the double-board solar array. (b) Second-order
mode shape of the double-board solar array.
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Ten, the virtual work performed by the generalized
elastic force of the overall driver is

δWa � 􏽘

Na

e�1
δWae � δqTQa. (61)

Te actuator generalized elastic force matrix is
Qa � 􏽐

Ns

e�1BT
aeQae, where Na is the number of actuator el-

ements and Bae is the Boolean matrix of the actuator
element.

2.6. Piezoelectric Laminate Dynamics Equation. According
to the principle of virtual work, the dynamic variational
equation is

δWi + δWF + δWf + δWs + δWa � 0. (62)

Substituting equations (27), (29), (41), (59), and (61) into
equation (62) to obtain

δqT − M€q + QF + Qf + Qs + Qa) � 0.􏼐 (63)

Let the constraint equation of the piezoelectric laminate
be

Φ(q, t) � 0. (64)

Ten, the Lagrangian dynamics equation of the frst kind
with Lagrangian multipliers is

M€q +ΦTqλ � QF + Qf + Qs + Qa, (65)

Qc � − ΦTqλ is the generalized constraint force, Φq is the
Jacobian matrix of the constraint equation, and λ is the array
of Lagrange multipliers.

We combine equations (64) and (65) to form a difer-
ential-algebraic hybrid equation as follows:

Φ(q, λ) �
ψ(q) +ΦTqλ

Φ
⎡⎣ ⎤⎦ � 0, (66)

where ψ(q) � M€q − (QF + Qf + Qs + Qa).

3. Experimental Research on Active
Vibration Control

3.1. Introduction to the Experimental System. Te active
vibration control experiment includes the vibration sup-
pression experiment on single and double boards. Te active
vibration suppression system consists of fve parts: the host
computer control system, the signal acquisition system, the
data conversion system, the signal drive system, and the
actuator.

LabVIEW was used to develop the host computer
control system, and the host computer was mainly re-
sponsible for signal processing.Te upper computer receives
the USB-6002 signal, and the information is the 0–10V
voltage signal output by the laser displacement sensor. Te
MFC is calibrated by the laser displacement sensor, so that
the signal processed by LabVIEW can match the signal
simulated by Simulink, and the PID control parameters

calculated in Simulink can also be used in the actual control
system. To ensure the identity of the initial vibration, a fxed
initial excitation signal needs to be given.

Te signal acquisition system includes two kinds of
sensors: MFC sensors and laser displacement sensors. Te
main purpose of doing so is to use the laser displacement
sensor to calibrate the MFC sensor. Spatially, it is unrealistic
to use laser displacement sensors to measure the vibration
displacement of solar arrays. When the MFC is used as
a sensor, the directly measured voltage will be distorted due
to the input resistance, so two 1MΩ resistors are used to
divide the voltage collected by the MFC. Te highest voltage
tested for USB-6002 is 10V.We input the divided signal into
USB-6002, so that the distortion can be avoided.

Te data conversion system adopts the digital board
USB-6002 of NI Company, which can collect 8 channels of
analog signals with a resolution of 16 bits, and the maximum
sampling rate can reach 50KS/s. Te board has two 16-bit
D/A conversion outputs, which meets the requirements in
this experiment.

Te signal driving system adopts a MFC-compatible
driver, which is an AMD2012 − CE2/3 driver board pro-
duced by Smart Material.Temaximum output power of the
driver board can reach 4W, and the output voltage is
− 500V − +1500V.

Te actuator is an MFC actuator. Tere are two types of
MFCs used in this subject, M-5628-P1 and M-4312-P1, and
their ultimate output forces are 340N and 120N, re-
spectively.Te single-board experimental system is shown in
Figure 6, where the pasting position of theMFC actuator and
sensor and the installation position of the laser displacement
sensor are marked in detail in the fgure. Te equipment
installation position of the double-board vibration experi-
mental system is shown in Figure 7, and the structure of the
entire system can be observed in more detail in conjunction
with Figure 6. Te control fowchart of the whole system is
shown in Figure 8.

3.2. Active Control Algorithm Based on PID Self-Tuning.
Without considering the nonlinearity of the board structure,
the vibration of the solar array can be approximated as
a second-order system [56].Te transfer function of a typical
second-order system is

H(s) �
ω2

n

s
2

+ 2ζωns + ω2
n

, (67)

where ζ is the damping ratio and ωn is the free vibration
frequency.

Using the idea of system identifcation, the free vibration
waveform of the solar array is measured by the laser dis-
placement sensor. Te experimental prototype of the solar
array is shown in Figure 9, and the single arrays are con-
nected by hinges. Since the starting range of the laser dis-
placement sensor, ZLDS103-250 is 65mm and the range is
250mm, and the vibration of the solar array is reciprocating
near the equilibrium position, and the distance between the
solar array and the laser displacement sensor is 190mm.
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Te free vibration waveform of the solar array is mea-
sured by the laser displacement sensor. Te free vibration
waveform of the single board is shown in Figure 10, and the

free vibration waveform of the double board is shown in
Figure 11. LabVIEW was used as the host computer for data
acquisition. According to the vibration shape of the solar

Back 

MFC as sensor

AMD Driver MFC bending
actuator

Measuring point of laser
displacement sensor

MFC torque
actuator

usb-6002

Figure 6: Single-board experimental system.

Reverse side of
plate

Vibration control
equipment

Exciter control
equipment

Vibration exciter

Figure 7: Double-board experimental system.

Computer

D/A conversion
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Figure 8: Control fowchart of the experimental system.
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array obtained through ANSYS analysis, the vibration fre-
quency of the solar array is very low, so the sampling rate is
set to 1KS/s, that is, the sampling period is Tc � 0.001s,
which is sufcient to meet the requirements. In the fgure,
the abscissa represents the number of sampling points,
representing time, and the ordinate represents the amplitude
of vibration, and its unit is mm.

It is known that when the second-order system works
under the condition of underdamping, its vibration response
is

y(t) � e
− ζωnt sin ωdt + arc tan

�����

1 − ζ2
􏽱

ζ
⎛⎜⎜⎝ ⎞⎟⎟⎠, (68)

where ωd �

�����

1 − ζ2
􏽱

ωn is the damped natural frequency.
In the free vibration waveforms with a period of T as

shown in Figures 10 and 11, we take the peak values y1 and
y2 at the two moments t1 and t2, the diference between the
two moments is k periods, and the corresponding sampling
points are n1 and n2, respectively. From equation (68), we
can obtain that

y1

y2
�

e
− ζωnt1

e
− ζωn t1+kT( )

� e
kζωnT

, (69)

where

ωnT � ωn

2π
ωd

�
2π

�����

1 − ζ2
􏽱 , (70)

Substituting equation (70) into equation (69), we obtain

ζ �
(1/k) ln y1/y2( 􏼁

��������������������

4π2 + (1/k) ln y1/y2( 􏼁􏼂 􏼃
2

􏽱 . (71)

We selected two points in the Figure 10: (nS1, yS1) and
(nS2, yS2), nS1 � 415, yS1 � 38.9894, nS2 � 5624, yS2 � 5.2310,
kS � 14, and the subscript S represents the single board. By
substituting the abovementioned points into equation (71), the
damping ratio obtained is ζS � 0.023.

According to the sampling point and the sampling pe-
riod, the vibration period and frequency of the single-board
solar array can be calculated as follows:

TS �
nS2 − nS1( 􏼁Tc

kS

� 0.372s, (72)

fS �
1

TS

� 2.688Hz. (73)

From equation (70), we can obtain that

ωnS �
2π

�����

1 − ζ2S
􏽱

TS

� 16.936. (74)

Substituting damping ratio ζS and free vibration fre-
quency ωnS into equation (67), the transfer function of the
system can be obtained as follows:

HS(s) �
286.828

s
2

+ 0.779s + 286.828
. (75)

We selected two points in the Figure 11: (nD1, yD1) and
(nD2, yD2), nD1 � 1034, yD1 � 112.588, nD2 � 31808,

yD2 � 2.742, kD � 18, and the subscript D represents the
double boards. By substituting the abovementioned points
into equation (71), the damping ratio obtained is ζD � 0.033.

Paste position of
MFC

Laser measuring
point

(a)

Paste position of MFC Laser measuring point

(b)

Figure 9: Installation position of the solar array boards. (a) Single-board model. (b) Double-board model.
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Figure 10: Te free vibration waveform of the single-board
experiment.
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According to the sampling point and sampling period,
the vibration period and frequency of the double-board solar
array can be calculated as follows:

TD �
nD2 − nD1( 􏼁Tc

kD

� 1.710s, (76)

fD �
1

TD

� 0.584Hz. (77)

From equation (70), we can get the following:

ωnD �
2π

������

1 − ζ2D
􏽱

TD

� 3.678. (78)

Substituting damping ratio ζD and free vibration fre-
quency ωnD into (67), the transfer function of the system can
be obtained as follows:

HD(s) �
13.528

s
2

+ 0.241s + 13.528
. (79)

PID control is the most mature and widely used control
algorithm. It can also be combined with various control
concepts to solve practical problems [57–59]. Te PID
control parameters in this paper are obtained using the
MATLAB optimization toolbox in conjunction with
Simulink simulation, resulting in a relatively reliable set of
control parameters in a very short period of time. What is
used here is the PID self-tuning method, which can quickly
obtain the PID control parameters. Since the control time of
the double-board experiment is longer, the double-board
experiment is taken as an example here. In the vibration
control experiments, four actuators are used in this paper, of
which the two pasted on the root are bending actuators and
the remaining two are torque actuators. Te MFC torsional
actuator is mainly used in the double-board system, whose
frst-order vibration modes are mainly the bending strain at
the root and the torsional strain at the joint of the two
boards, so it is reasonable to drive these two actuators using
the PID control law that controls the frst-order mode. Te

control efect of the control experiment also verifes the
feasibility and efectiveness of the scheme.

In Simulink, we add the free vibration model of the solar
array and the PID control module.Te overall block diagram
is shown in Figure 12.

As shown in Figure 12, the input signal is a step signal,
and its value is

r(t) �
0, t< 0,

125, t≥ 0.
􏼨 (80)

Te fnal value of 125 in the formula is 1/2 of the
measurement limit range of the laser displacement sensor,
which is set as the position of the zero point in the ex-
periment. To facilitate observation and understanding, we
subtract 125 before the result is input to the oscilloscope
module, so that we can observe in the Simulink oscilloscope
that the measurement data change based on y � 0.

Temain basis of the PID control is the control deviation
e(t) obtained through the input signal r(t) and the output
signal y(t), that is,

e(t) � r(t) − y(t). (81)

Te PID controller is a kind of linear controller that
carries on the linear combination of the deviation pro-
portion, integral, and derivative, and uses it as the control
quantity to control the controlled object. Te control law is
as follows:

u(t) � Kp e(t) +
1
T

􏽚
1

0
e(t)dt + Td

de(t)

dt
􏼢 􏼣. (82)

Its transfer function is

G(s) �
U(s)

E(s)
� Kp 1 +

1
Tis

+ Tds􏼠 􏼡, (83)

where Kp is the proportional coefcient, Ti is the integral
time constant, and Td is the diferential time constant.

In the PID module of Simulink, the control formula is
represented as follows:

G(s) � P + I
1
s

+ D
N

1 + N(1/s)
, (84)

where P is the proportional parameter, I is the integral
parameter, D is the diferential parameter, and N is the flter
coefcient. By comparing equations (83) and (84), we can
see the diference between Simulink’s PID parameters and
the coefcients of the transfer function. Of course, what we
need is the PID parameters. We input the coefcients of
equation (79) in the controlled object module in the form of
an array.

To observe the control efect of the control input, it is
necessary to introduce two sets of the same transfer function,
one of which does not introduce the PID control output.

After setting the parameters of the input module, PID
module, and controlled object module, Simulink can be used
for parameter self-tuning, to obtain a set of more appropriate
PID control parameters. In MATLAB 2020a, it is convenient
to use the Simulink toolkit to obtain the desired parameters.
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Figure 11: Te free vibration waveform of the double-board
experiment.

14 Structural Control and Health Monitoring



3.3. Model Validation. Te time and frequency domain
results of the solar panel free vibration experiment and
model simulation are shown in Figures 13 and 14. Com-
paring the results of the simulation calculation using
MATLAB and the data collected from the free vibration
experiment, the frst-order natural frequency and corre-
sponding amplitude obtained by the simulation calculation
are basically consistent with the experimental measurement
results. Terefore, the modeling accuracy of the absolute
nodal coordinate method can be guaranteed in the low-
frequency range, which can meet the needs of active control
research.

3.4. Evaluation of the Vibration Suppression Efect of Solar
Arrays. Te previous experimental waveform shows that the
frst-order natural frequency of the solar array is 0.584Hz. To
ensure that the initial excitation signal of the system vi-
bration remains consistent, the excitation frequency is set in
the host computer to be the same as the frst-order natural
frequency. Te excitation signal is a sine signal with an
amplitude of 5V and a frequency of 0.584Hz.

Te host computer can obtain three groups of vibration
signals, of which two groups are collected by MFC sensors,
and the other group is collected by laser displacement
sensors. Te signal collected by the laser displacement
sensor is mainly used for parameter calibration and to
judge whether the data collected by the MFC sensor are
reliable.

Te initial control parameters obtained through Simu-
link based on the transfer function are as follows:
Kp � 2.962, Kd � 1.064, and Ki � 0.869, which have poor
control efects on steady-state low amplitude vibration as
shown in the line “initial PID” in Figure 15. Terefore, it is
necessary to obtain more suitable control parameters based
on the fnite element model obtained above. Based on the
initial control parameter values, corresponding control
parameter ranges were set, namely, Kp, Kd, and Ki belonging
to [0.001, 10], and the control output voltage range was set to
[− 1000V, +1000V]. A genetic algorithm was applied based
on the abovementioned fnite element model to fnally
obtain the tuned PID control parameters as follows:
Kp � 0.424, Kd � 0.512, and Ki � 0.724.Te specifc process
is shown in Figure 16, and the control efect is shown by the
line “tuned PID” in Figure 15.

In the experiment, single-board and double-board ex-
periments were conducted. Te experimental results are
shown in Figure 15, comparing the vibration attenuation of
solar cell arrays with initial and tuned PID control and

without control.Te stable time is defned as the time it takes
for the amplitude to decay to less than 3% of the initial
amplitude. From Figure 15, it can be seen that the initial PID
controller obtained based on the transfer function can
quickly attenuate large vibrations, and the stable times of the
single-board experiment and double-board experiment were
4.7 s and 5 s, respectively. However, there is persistent low-
amplitude vibration, and the control efect is not satisfactory.
After applying tuned PID control, the stable times of the
single-board experiment and double-board experiment were
2.5 s and 5 s, respectively, which were reduced by 85% and
75% compared to the stable time in the uncontrolled state.
Te tuned PID controller obtained based on the ANCF fnite
element model ensures fast attenuation of vibration while
suppressing low amplitude vibration, achieving satisfactory
control results.

To verify the active vibration suppression efect of solar
arrays in interference environments, sinusoidal in-
terference and white noise interference were introduced.
Sinusoidal interference is a sine signal with an amplitude of
5 V and a frequency of 0.584Hz. Figure 17 shows the
comparison of the vibration of solar arrays with or without
control under the condition of introducing sinusoidal
interference. After the control is applied, the stabilization
times of the single-board experiment and the two-board
experiment are 3.5 s and 6 s, respectively. In the un-
controlled state, the stabilization times of the single-board
experiment and the double-board experiment are 8 s and
11 s, respectively, and there are residual vibrations with
relatively large amplitudes after stabilization. In this case,
the active control algorithm’s ability to attenuate the re-
sidual vibration amplitude is more important.Tis ability is
measured by the vibration suppression stabilization am-
plitude defned as the stabilization amplitude of the con-
trolled object under continuous excitation by sinusoidal
and white noise disturbances. After stabilization, the vi-
bration amplitudes of the solar arrays in the single-board
experiment and the double-board experiment are 1.5mm
and 4mm, respectively, which are decreased by 83.7% and
75%, respectively, compared with the vibration amplitudes
under the uncontrolled state. Tis control efect can be
more intuitively felt in Figure 18. Figure 19 shows the
comparison of the vibration of solar arrays with and
without control under the condition of introducing white
noise interference. After the introduction of white noise,
the control efect of the active control algorithm is similar
to that before the introduction of white noise, as shown in
Figure 15, which further verifes the efectiveness of the
tuned PID algorithm.

It can be seen from the experimental data that the free
vibration decays negatively when there is no active vibration
suppression, which matches the established mathematical
model. In the three vibration cycles after PID control was
introduced, the vibration was efectively suppressed and
maintained in a relatively stable range.

After the initial excitation is applied, interference is
introduced, and the vibration state of the solar array
changes. On this basis, by observing the vibration waveform
of the solar array with or without control, it can be seen that

+ - PID (s)

13.528
s2 + 0.241 s + 13.528

13.528
s2 + 0.241 s + 13.528

125

125

+ -

+ -

Figure 12: Block diagram of the Simulink parameter setting
system.
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the same PID parameters still have a good vibration sup-
pression efect on the solar array after interference has been
introduced.

Te result of the fast Fourier transform (hereinafter
referred to as FFT) on the vibration of solar arrays with and
without active control is shown in Figure 20. It can be seen
from the fgure that when the frst-order natural frequency
sinusoidal signal interferes, the vibration suppression at the
resonance frequency is more obvious. Tis shows that the
active vibration suppression based on MFCs gives the solar
array a reaction force of the same frequency to suppress
vibration. Terefore, the natural frequency of solar arrays is
a necessary parameter for the establishment of mathematical

models and experiments in the early stage, and it needs to be
obtained through experiments and simulations.

When the sinusoidal interferes with the input, the FFT
waveform comparison with or without active control is
shown in Figure 18. When white noise interferes with the
input, the FFTwaveform comparison with or without active
control is shown in Figure 21. It can be observed from the
fgures that in the case of diferent interference inputs, the
efect of active control is similar, and the amplitude near the
fundamental frequency can be signifcantly reduced.

Te interference signal we provide in the experiment is
the interference signal that is often encountered in nature.
Under the existing experimental conditions, the M − 4312 −
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Figure 13: Comparison of time domain results on the simulation and experimental vibration of the solar array. (a) Comparison of time
domain results on the simulation and experimental vibration of the single-board solar array. (b) Comparison of time domain results on the
simulation and experimental vibration of the double-board solar array.
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Figure 14: Comparison of FFT on the simulation and experimental vibration of the solar array. (a) Comparison of FFT on the simulation
and experimental vibration of the single-board solar array. (b) Comparison of FFT on the simulation and experimental vibration of the
double-board solar array.
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Figure 15: Comparison of free vibration control of the solar array. (a) Comparison of vibration of the single-board solar array with initial
and tuned PID control and without control. (b) Comparison of vibration of the double-board solar array with initial and tuned PID control
and without control.
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Figure 17: Comparison of vibration of the solar array with and without control under the condition of introducing sinusoidal interference.
(a) Comparison of vibration of the single-board solar array with and without control under the condition of introducing sinusoidal
interference. (b) Comparison of vibration of the double-board solar array with and without control under the condition of introducing
sinusoidal interference.
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Figure 18: Comparison of FFT on the vibration of solar arrays with and without control under the condition of introducing sinusoidal
interference. (a) Comparison of FFT on the vibration of the single-board solar array with and without control under the condition of
introducing sinusoidal interference. (b) Comparison of FFTon the vibration of the double-board solar array with and without control under
the condition of introducing sinusoidal interference.
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Figure 19: Comparison of vibration of the solar array with and without control under the condition of introducing white noise interference.
(a) Comparison of vibration of the single-board solar array with and without control under the condition of introducing white noise
interference. (b) Comparison of vibration of the double-board solar array with and without control under the condition of introducing white
noise interference.
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Figure 20: Comparison of FFT on the vibration of solar arrays with and without control. (a) Comparison of FFT on the vibration of the
single-board solar array with and without control. (b) Comparison of FFTon the vibration of the double-board solar array with and without
control.
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P1 type MFC is used to output interference excitation. Te
maximum output force provided by this MFC is 120N,
which is smaller than the maximum 340N output force of
the M − 5628 − P1 type MFC. Tis is the reason why the
vibration amplitude has decreased after the introduction of
interference.

4. Conclusion

In this paper, an MFC-based active vibration suppression
system for solar arrays is designed. Te vibration suppres-
sionmechanism ofMFC is analyzed, and the dynamicmodel
of the solar array considering the infuence of MFCmass and
stifness is derived by using the absolute nodal coordinate
method. Te experimental and simulation results show
a high degree of agreement, which verifes the accuracy of

the theoretical modeling and numerical solution in this
paper.Te vibration suppression stability time and vibration
suppression amplitude of free vibration and forced vibration
under sinusoidal and white noise interference signals are
studied through experiments and simulations, and the vi-
bration suppression efect of the PID controller and the
feasibility of using MFC to suppress solar array vibration are
verifed. Te system designed in this paper can provide
a reliable platform for the design of active control algo-
rithms, and play a fundamental role in the research of
aerospace projects.

Appendix

Te expression for the virtual work performed by the
elasticity of the plate element is as follows:
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where
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Figure 21: Comparison of FFT on the vibration of solar arrays with and without control under the condition of introducing white noise
interference. (a) Comparison of FFT on the vibration of the single-board solar array with and without control under the condition of
introducing white noise interference. (b) Comparison of FFT on the vibration of the double-board solar array with and without control
under the condition of introducing white noise interference.
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Qfe is the element generalized elastic force matrix, and its
expression is

Qfe � Qfe1 + Qfe2 + Qfe3 + Qfe4,
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Te expression for the virtual work performed by the
elastic force of the sensor element and the actuator element
is as follows:
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Qae is the generalized elastic force matrix of the actuator
element, and its expression is
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Qae � Qae1 + Qae2u, (A.6)
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