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Crack detection at the pixel level across complex scenarios (structural interference and adverse working conditions) is a critical
consideration in the maintenance of ballastless track slab (BTS). Although existing deep learning models achieve acceptable
accuracy on cracks with a monotonous background, the ground truth with high labor cost is inevitable and their performance in
complex scenarios may fall far below their theoretical bounds or even cause “all-black images.” A hybrid algorithm based on
synthetic data from digital twin model and weakly supervised style transfer is proposed in this paper for addressing the above
challenges. Te algorithm uses a region-attention strategy to enable the uncontrolled generative adversarial network (GAN)
focusing its attention on weak labels containing crack regions, directly obtaining segmentation results with the same style as the
ground truth of the crack forest dataset. In addition, a digital twin model that can simulate the real inspection working conditions
is established to generate a synthetic crack dataset, enabling the hybrid algorithm to extract the most discriminative features. Te
results show that the performance of the hybrid algorithm on inspection images across complex scenarios is nearly 25% higher
than that of the DeepLabv3+ network, while the time cost consumed is only 0.5% of the latter. Te deployment of the region
attention strategy also enables the hybrid algorithm to achieve a mean intersection of union (MIoU) of 79.38%, which is nearly
twice as much as that of GAN. It not only eliminates the oversegmentation caused by structures such as rails and fastener systems
but also overcomes “all-black images.” In addition, synthetic data can greatly enlarge the range, type, and number of dis-
criminative crack features compared with data augmentation based on limited real data, thus enhancing the performance of the
hybrid algorithm for uncertain inspection data. Particularly, the fully trained hybrid algorithm based on the synthetic dataset
shows good adaptability and generalization to adverse working conditions such as uneven lighting, noise, and blur.

1. Introduction

Ballastless track slab (BTS) of high-speed railway (HSR) is
the important concrete structure that bears the dynamic load
of rail, which deteriorates with service time increases [1, 2].

Distresses such as cracks not only reduce the strength of the
track structure and shorten the service life of the BTS but
may also cause the fastener falling of and the rail shifting,
which threatens the operation safety of HSR [3–5]. Con-
ventionally, experienced engineers conduct periodic visual
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inspections to detect surface cracks of infrastructures and
propose maintenance and rehabilitation strategies [6, 7].
However, manual inspection whose reliability depends on
the experience of engineers and can only be performed at
limited time windows (e.g., midnight), which is susceptible
to missed or incorrect inspections due to complex envi-
ronmental conditions (poor light, ambient interference,
etc.). Terefore, there is an urgent need to achieve accurate
and efcient pixel-level detection for cracks in BTS across
complex backgrounds, which is also a key foundation for
maintenance decisions.

Conventional machine vision-based solutions for au-
tomated pixel level crack detection have been proposed to
replace the manual visual inspection, which obtain appre-
ciable crack detection accuracy with only low computational
cost by extracting and analyzing shallow or perceptible
image features (color, grayscale, shape, edges, entropy,
texture, histogram of oriented gradients, scale-invariant
feature transform, etc.) [8–13]. Tang et al. [14] used fuzzy
set theory and boundary histogram to determine the optimal
threshold for distinguishing crack pixels and background
pixels by maximizing the fuzzy index entropy. Oliveira and
Correia [15] proposed a regional growth strategy capable of
segmenting pavement cracks with complex shapes. Te seed
pixels obtained from the smoothed image through an ef-
fective segmentation procedure can minimize the prediction
results of false positives. Xu et al. [16] frst divided the binary
image of the crack into subimages and extracted the pa-
rameters representing the crack characteristics from each
subimage and then manually selected subimages with rep-
resentative parameters to train the artifcial neural network.
Oliveira and Correia [17] characterized cracks based on
image processing and pattern identifcation techniques to
train KNN classifers. However, noise and uneven lighting
can adversely afect the computation of shallow features such
as color and grayscale, resulting in blurred or discontinuous
crack boundaries. In addition, the efectiveness of optimal
thresholds and seed pixels relies on manual intervention,
which is susceptible to less or oversegmentation results in
detecting cracks with complex topology and low-contrast
backgrounds [18].

Deep learning solutions represented by convolutional
neural networks (CNNs) eliminate manual intervention in
feature processing, which revolutionize the accuracy
boundaries of traditional pixel-level crack detection solutions
based on machine vision [19–22]. Te CNNs rely on the
convolutional layer (a large number of convolution kernels)
inside the networks to perform a convolution operation with
a neighborhood of the input crack image, which slides from
the upper left to the lower right of the image with a certain
step and outputs the deep abstract feature map for crack
detection [23, 24]. Dorafshan et al. [25] compared the per-
formance of DCNN-based pixel segmentation network with
six commonly used edge detection methods (Roberts, Pre-
witt, Sobel, Laplacian of Gaussian, Butterworth, and
Gaussian) for the detection of concrete cracks. Te results
show that these edge detection methods based on heuristic

feature extraction can only detect 53–79% of the crack edge
pixels, but DCNN can detect about 86% of the crack images
through automatic feature extraction and has the fastest
processing time. Liu et al. [26] used the U-Net full convo-
lution network to identify the shape and location information
of concrete cracks for the frst time, which can achieve higher
accuracy when using a smaller data set compared with
DCNN and FCN-based methods. Zhang et al. [27] estab-
lished a fve-layer CNN-based pixel segmentation network
(CrackNet) to detect cracks on 3D asphalt pavement and
compared with 3D shadow modeling and SVM method
based on HOG features in detection accuracy, which dem-
onstrated the superiority of data-driven deep learning-based
methods for crack detection at the pixel level. In addition, the
limitations of convolutional flters in contextual information
extraction from images prone to generate rough or dis-
continuous crack boundaries, especially for thin cracks. Ding
et al. [28] proposed a visual transformer model with global
self-attention mechanism, named IBR-Former, where
boundary pixel information was applied to refne the seg-
mentation, which improved the boundary location accuracy
of thin cracks with complex shapes.

Although various pixel-level deep learning models have
achieved extremely high theoretical accuracy on generic
crack datasets (concrete structures such as building facades,
pavements, bridges, track slabs, etc.) [29–32], three chal-
lenges posed by inspection images of BTS across complex
scenarios cause these models to be deployed with accuracy
far below their theoretical limits.

(1) Te complex scenarios of actual inspection images
include structural interferences that are highly
similar to cracks and adverse working conditions, as
shown in Figure 1. Structures such as rails, fastener
systems, and precracks can signifcantly disturb the
identifcation of cracks resulting in oversegmentation
compared with the monotonous concrete back-
ground of generic crack datasets. Moreover, adverse
working conditions such as uneven lighting, noise,
and blur can greatly reduce the diferentiation of
cracks from the background, which causes failure to
extract the most discriminative features [33]. In
addition, Kang et al. [34] also pointed out that there is
almost no optimal pixel-level model that can fnely
segment cracks from such complex scenarios.

(2) Te extremely low proportion of crack pixels to the
whole image, or even single-pixel skeleton, is also
a key characteristic of inspection images across
complex scenarios. Tese extremely low percentages
of cracks are more likely to be misclassifed as
background, resulting in “all black images,” com-
pared with the cracks across the whole image in
generic crack datasets. Overftting caused by the
extreme imbalance of pixel proportions is also
a signifcant factor for the poor accuracy of pixel-
level deep learning models on inspection images
across complex scenarios.
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(3) Te inspection for BTS can only be performed at
midnight window period, which is not only time-
consuming but almost impossible to capture enough
valid datasets for training and testing pixel-level deep
learning models in the limited time. Te preparation
of reliable pixel-level ground truth is time-consuming
and laborious. Kang et al. [34] noted that it took
30–40minutes to prepare refned ground truth for
each crack image across complex scenarios. More-
over, subjective annotation that relies on the prior
knowledge and experience of engineers can lead to
low consistency of ground truth.

To address the above challenges, a hybrid algorithm based
on synthetic data from digital twin and weakly supervised
style transfer is proposed in this paper, which segments cracks
accurately and efciently from inspection images of BTS
across complex scenarios. Te hybrid algorithm consists of
three modules, namely, a synthetic data generation module,
a region of concern extraction module, and a weakly su-
pervised crack segmentation module. First, a digital twin
model that can simulate real ballast track inspection scenarios
is developed, which is used to synthesize crack datasets of BTS
across complex scenarios for training deep learning models to

extract the most discriminative features. Ten, a region
attention-based style transfer algorithm is proposed, which
uses a deep object detection network to rapidly screen and
locate the region of interest for style transfer, i.e., the crack
region, while removing structures and adverse work condi-
tions that interfere in segmentation results. Finally, a cycle-
consistent-based generative adversarial network is used for
directly transforming weak labels containing crack regions
into segmentation results with the same style as the ground
truth at the pixel level.

Te contributions of the hybrid algorithm proposed in
this paper can be summarized as follows:

(1) Te hybrid algorithm proposed in this paper ef-
fectively addresses the three challenges posed by
inspection images of BTS across complex scenarios.
It not only eliminates oversegmentation caused by
similar structures such as rails, fastener systems,
and precracks thoroughly but also extracts more
discriminative features from adverse working
conditions such as uneven lighting, noise, and blur
for segmenting cracks in a refned manner, com-
pared with existing pixel-level deep learning
models.
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Ballastless track slabConcrete bridge
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Figure 1: Comparison of inspection images of BTS across complex scenarios with generic crack datasets having a monotonous concrete
background.
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(2) An improved style transfer algorithm based on the
region attention mechanism is proposed, which
focuses the attention of the random, uncontrollable
generative adversarial network on small crack re-
gions, overcoming the “all-black image” caused by
the low proportion of cracks in inspection images
across complex scenarios.

(3) A synthetic crack dataset that can simulate realistic
and complex inspection scenarios of BTS is built for
the frst time for adequately training deep learning
models. Te region-based weak supervision is used
to replace the pixel-level supervised pattern, which
allows pixel-level crack segmentation results to be
obtained without using the corresponding ground
truth, greatly reducing the time cost of data prepa-
ration while overcoming the adverse efects of low
consistency of manual annotation.

Te remainder of the paper is organized as follows:
Section 2 critically reviews the techniques associated with the
proposed approach. Section 3 systematically presents the
framework and network structure of the proposed hybrid
algorithm. Section 4 explains the dataset and evaluation
metrics and discusses the experimental results. Section 5
compares and evaluates with existing approaches. Section 6
concludes the paper.

2. Related Works

Tis section critically reviews the works associated with the
proposed hybrid algorithms, including pixel-level deep
learning models with customized network structures,
physics-based virtual models for generating labeled data,
and unsupervised deep learning solutions. Te imple-
mentation of these related works is dedicated to address
three major issues that are faced by existing pixel-level deep
learning models when deployed in practice.

2.1. Developing Deep Learning Models with Customized
Network Structures. Several researchers have improved the
adaptability of deep learning solutions to complex environ-
mental conditions by customizing feature extraction strate-
gies. Zhao et al. [35] proposed a novel crack feature pyramid
network (crack-FPN), which exhibited more robust feature
extraction capability for crack images afected by lighting
conditions and complex backgrounds. Shu et al. [36] in-
tegrated the nonforgetting learning method into a 34-layer
deep residual network, which avoided feature forgetting in
traditional CNNs in processing multitype damage detection
for complex structural scenes. Liu et al. [37] proposed a two-
stream boundary-aware crack segmentation (BACS) network
for high-resolution characterization of cracks against complex
backgrounds through the combination of semantic image
segmentation and edge detection. Song et al. [38] designed
a novel multiscale dilated convolutionmodule that can extract
more discriminative crack features under the interference of
poor light, noise, and blur.Te hierarchical texture-perceiving

generative adversarial network (HTP-GAN) proposed by Gu
et al. [39] improved the adaptability to complex environ-
mental conditions by capturing spatially invariant repre-
sentations of images. Te CrackNet-R proposed by Zhang
et al. [40] used the mean of a sequence of pixels instead of
individual pixel, which can efectively distinguish cracks from
noise with higher F-measure. Xiang et al. [41] proposed an
improved pixel-level detection model using a combination of
channel and spatial attention, which increased the segmen-
tation accuracy by 7% compared with the traditional SOTA
model for cracks with complex topological features in low
contrast. Zhang et al. [42] designed a ShuttleNet withmemory
connection to enhance the characterization of asphalt pave-
ment cracks under complex environmental conditions, which
obtained 92.54% of F-measure and 86.57% of MIoU.

Although such customized network structures greatly
improve the efectiveness and adaptability of pixel-level deep
learning models to deployment scenarios, repeated experi-
mentation and tuning based on large amounts of data are
indispensable. Whenever the detection scenario changes, the
parameters need to be adjusted or even the network
structure must be redesigned. Ensemble learning enables
combining the scores of multiple deep learning models in
a certain way (e.g., fuzzy integrals) to form a fnal prediction,
resulting in better performance than a single model [43].
However, ensemble-based methods still inherit the high
specifcity of individual models to the detection scenario,
which is difcult to obtain satisfying results under the
limitations of the image background and training samples.
In addition, the low consistency of ground truth based on
manual annotation also brings great uncertainty to crack
detection by customized models.

2.2. Generating TrainingData Based on Physics-Based Virtual
Models. Developing physics-based virtual models to gen-
erate cracks across complex scenarios is an efective way for
driving pixel-level deep learning models to extract more
discriminative features when deployed in practice. Hoskere
et al. [44] developed parametric fnite element models for the
infrastructure of multiple sizes andmaterials, using hot spots
in the fnite element models to automatically synthesize
labeled data for defects such as cracks to adequately train and
evaluate deep learning models. Te study by Hoskere et al.
[45] also pointed out that virtual cracks synthesized based on
nonlinear fnite element models lead to a 10% improvement
in IoU of pixel-level deep learning models compared with
using only real data. Pyle et al. [46] used efcient hybrid
fnite elements (FE) and ray-based simulation to train CNNs
for characterizing real cracks in a refned manner. Hakim
et al. [47] used 3D fnite element model simulation data
obtained from a commercial software package to adequately
train the neural network for identifying cracks in structures
with good adaptability to light. Siu et al. [48] used the game
engine to generate sewer pipe damage in virtual environ-
ments that can simulate diferent lighting and camera angles,
which allowed an average improvement of 5.8% in AP of
faster RCNN compared with using only real data.
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However, adequate training on virtual data generated by
fnite element models does not directly mean good gener-
alization to real data in complex scenarios [49]. Although
various fnite element models enable accurate simulation of
an arbitrary number of various crack types of diferent
material properties with almost no acquisition cost, the
diference between virtual and real crack features is also a key
factor that results in the reduced robustness of deep learning
when deployed in practice. Digital twin models based on
physical entities, virtual entities, and the interaction between
them enable 3D dynamic perception for infrastructure
damage states with a higher degree of simulation [50–52].
Te generated data based on digital twinmodels can not only
reproduce the actual damage characteristics realistically but
also simulate a variety of structural scenarios compared with
fnite element models set up in specifc boundary conditions.
Terefore, a digital twin model integrating real crack fea-
tures of monotonic scenarios and virtual BIM models of
complex scenarios is established in this paper. Te generated
cracks with real topological features across complex sce-
narios can minimize the diference between virtual and real
data for eliminating the uncertainty of practical deployment.

2.3. Unsupervised Deep Learning Models. Developing un-
supervised deep learning-based solutions enables to over-
come the low consistency of manual annotation under
complex environmental conditions while greatly reducing
the cost of data preparation. Convolutional autoencoder
(CAE) automatically extracts the compact representations
from the input unlabeled images through the encoder
module, and only the normal images are reconstructed by
the decoder for distinguishing abnormal regions such as
cracks [53, 54]. Tese compact representations are also
defned as descriptors by several researchers, and cracks and
background are distinguished by comparing the diferences
in the descriptors learned from each image [55, 56]. Notably,
the validity and reliability of these compact descriptors
require adequate training by large-scale data and poor for
representing fne cracks across complex scenarios.

Generative adversarial networks (GANs) add discrimi-
nator structures to judge the efectiveness of image recovery
and continuously optimize the parameter settings based on
discriminator results, which can extract more compact
features to reduce the diferences between reconstructed and
input images, thus directly transforming cracks into ground
truth with similar structural patterns [57–59]. Zhang et al.
[60] frst employed a cycle-consistent generative adversarial
network for unsupervised crack detection, which achieved
comparable performance of supervised learning methods
without the need of pixel-level ground truth. However, the
detection results of such unsupervised GANs are random
and uncontrollable, of which they are naturally more con-
cerned with the reconstruction of the whole image. Since the
crack region only accounts for a small portion of the whole
image, GAN tends to emphasize the reconstruction of
background thus outputting an “all-black image.” In addi-
tion, backgrounds that are highly similar to cracks such as
uneven lighting, random noise, and blur can adversely afect

the distinction between normal and crack regions in image
reconstruction, which is a general limitation of unsupervised
crack detection.

Terefore, this paper proposes a region attention-based
weakly supervised style transfer algorithm, which rapidly
captures crack regions in advance using deep object de-
tection networks and uses them as inputs for style transfer.
Te region-based extraction allows better diferentiation
between cracks and similar backgrounds and greatly reduces
annotation costs compared with segmentation pixel by pixel.

3. Methodology

To address the abovementioned three key issues of existing
pixel-level deep learning models in practical deployment
under complex environments, this paper proposes a hybrid
algorithm of synthetic data by using the digital twin model
and weakly supervised style transfer. As shown in Figure 2,
the hybrid algorithm consists of three modules: synthetic
data generation module, crack region extraction of concern,
and weakly supervised crack segmentation. First, the
building information model (BIM) for BTS is built, and the
lightweight physical engine is used to randomly deploy the
collected real BTS cracks of a specifc scenario and adverse
conditions (uneven lighting, noise, and blur) on the BIM, by
which the obtained digital twin model fusing real crack
features and virtual BIM is used to synthesize the low-quality
rich data required for training deep learningmodels. Second,
a deep object detection network is used to rapidly capture
the smallest outer rectangle containing the crack region,
which overcomes the “all-black image” while removing the
interference of complex backgrounds that are highly similar
to cracks. Finally, region-based weak labels are used to train
the generative adversarial network for focusing its adver-
sarial loss of attention on the crack regions of interest and
directly transferring the crack regions to segmentation re-
sults with the same style as the ground truth based on cycle-
consistency loss without manual labeling.

3.1. Digital Twin Model-Based Synthetic Data Generation.
Digital twin is a technological tool that enables the in-
teraction and integration of the physical and virtual worlds
by integrating multiphysical, multiscale, and multidisci-
plinary attributes, having real-time synchronization, faithful
mapping, and high-fdelity characteristics. A digital twin
model, defned as a fully parametric, three-dimensional,
interactive virtual model built in computer systems, is used
to simulate the properties, states, and responses of physical
entities in various setting scenarios. In this paper, the digital
twin model of BTS is established with the characteristics of
real fracture data-driven, virtual-reality interaction and
dynamic update. It can reproduce the railway inspection
behaviors of real world with high simulation in virtual space
to make up for the defciencies of on-site tests and static
BIM. Te digital twin model is completely data-driven,
which not only realistically reproduces the actual crack
features but also simulates any complex inspection scenarios
(uneven lighting, background noise, focusing blur, etc.)
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compared with fnite element simulation in a single setup
state, thereby providing training data with good general-
ization for deep learning methods.

Moreover, the digital twin model not only provides the
training data required for deep learning methods but also
presents an intuitive and visualized dynamic perception
platform for inspection results. One-dimensional moni-
toring data (mechanical response, mileage information, etc.)
captured by various static or dynamic sensors can be loaded
into the virtual space, and the 2D boundary texture of cracks
identifed by deep learning methods projected into the
digital twin model by UV mapping pixel-by-pixel [61],
which are continuously updated with the changes of working
conditions and service time, enabling the recording, ana-
lyzing, and presenting of the state of health of the BTS
throughout its lifecycle. Terefore, the digital twin model
established in this paper can dynamically reproduce the
service state of BTS in high simulation and continuously
update it according to the actual working conditions,
compared with the static BIM in the ideal setting state.

As shown in Figure 3, a digital twin model is built to
synthesize the training data containing a lightweight BIM,
realistic texture and crack features, and virtual inspection
scenarios. First, a lightweight BIM for the whole BTS is con-
structed. Ten, the captured realistic crack features and the
virtual model are integrated in the physical engine for con-
verting the original BIM into a realistic digital twin model.
Finally, the digital twin model is rendered by texturing and
lighting for minimizing the diferences from the real BTS while
obtaining synthetic data that most closely approximates the
inspection conditions during the midnight window period.

3.1.1. Digital Twin Model for Portraying BTS Cracking.
Tis section proposes a lightweight construction solution for
railway structure BIM, which can generate 3D BIM on the
web side by directly reading the layout rules from 2D CAD
drawings using an open element engine, i.e., Tree.js, in
three steps. Firstly, the center of the inner profle width and
centerline of BTS are used as the origin and x-axis, re-
spectively, to establish a plane coordinate system, and the
coordinates of the feature points of BTS are determined
based on the structural characteristics and interrelationship
of each component (rail, fastener system, etc.) of BTS parsed
from 2D CAD drawings. Ten, the parametric sections of
each component are drawn based on the extracted feature
points, and the built-in functions are used to perform
stretching and sampling for obtaining the parametric
components of BTS. Finally, these parametric components
are combined in arrays to form the completed BIM of BTS,
and step-by-step loading and masking processes are used to
achieve a balance between lightweight loading and detailed
model presentation. Tis lightweighting solution not only
overcomes the shortcomings of high specifcity, low level of
automation, and large errors of traditional modeling
strategies that rely on manual assembly but also enables to
obtain BIM with greater reality and readability.

Te constructed virtual BIM is imported into Unreal
Engine 5 (UE5) and integrated with captured images of real
cracks with monotonous backgrounds for converting the
original BIM into a realistic digital twin model. Te blue-
print editor in UE5 was used to instantiate real crack features
of BTS for generating texture subclasses with diferent levels
of detail and graphical parameters. Tese textures well
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Figure 2: Overall framework of the hybrid algorithm.
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inherit the geometric topology information of cracks in
monotonic scenarios, which are randomly deployed on
virtual BIMs while maintaining temporal superresolution
for obtaining digital twin models that integrate real crack
features and virtual scenarios.

3.1.2. Synthetic Data Simulating Real Inspection Working
Conditions. Tis section performs texture and lighting
rendering on the digital twin model of BTS in UE5 for
minimizing the diference between the virtual model and the
real BTS entity and generating synthetic data that can
simulate the real inspection conditions during the midnight
window. Firstly, texture maps, bump maps, and refection
maps based on real BTS images are made and attributed to

the digital twin model for simulating the real BTS texture,
roughness, and metallic shine while making the lighting
interaction on the surface of the digital twin model more
realistic. Ten, a virtual camera was added in UE5, the line
orientation of the virtual camera was calibrated by deploying
control points, and lighting assets were added and made to
keep pace with the camera movement, which simulates the
lighting source installed on the railway inspection vehicle.
Te range and intensity of the lighting source is adjusted so
that the region away from the sides of the rails grows dark for
simulating the uneven lighting during the midnight window
period. Finally, the salt and pepper noise and Gaussian blur
were added to the output of virtual camera for simulating
adverse inspection conditions. Salt and pepper noise is
implemented by randomly replacing normal pixel points
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Figure 3: Digital twin model-based synthetic dataset preparation.
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with black or white noise pixel points in the output synthetic
image. A Gaussian function with normal distribution is used
to convolve the output image for simulating the blurred
image obtained due to camera focus error.

A synthetic crack dataset across complex scenarios is
obtained based on the above rendering operations, con-
taining structural interference such as rails, fastener systems,
precracks, and adverse inspection conditions with uneven
lighting, noise, and blur (Figure 4).

3.2. Crack Region Extraction of Concern. Tis paper presents
a novel region attention-based weakly supervised style
transfer scheme, which uses a deep object detection network
to precapture the crack regions of interest from the output
virtual BTS inspection images. Tese region-based weak
labels are used to focus the attention of random generative
adversarial networks on generating the ground truth of the
crack pixels, which overcomes the “all-black image” caused
by the underrepresentation of crack pixels. A two-stage
object detection network, faster R-CNN, is used to extract
crack regions of interest, which consists of three compo-
nents, namely, backbone, region proposal network (RPN),
and fast region-based convolutional network (fast R-CNN),
as shown in Figure 5. First, multiscale features are extracted
from the input virtual inspection images using a feature
pyramid network (FPN). Ten, these features are used as
input to both RPN and fast R-CNN for generating regions of
interest. Finally, fast R-CNN is used to classify the region of
interest and bounding box regression for distinguishing
cracks from the background.

3.2.1. Backbone Network. FPN with a residual network is
used as the backbone of faster RCNN, which extracts fea-
tures with both bottom-level visual information and top-
level semantic information from the input image by
downsampling, upsampling, and cross-layer fusion. First,
a residual network (C2–C5) is used to extract features from
input images in a bottom-up manner, and the features
obtained from the low level to the high level are used as
inputs for successive upsampling. Ten, the high-level
features are scaled up to the same size as the low-level
features by successive upsampling from top to bottom,
which are fused with the bottom-up captured features by
lateral concatenation for outputting fused feature maps
(M2–M5) containing multiscale semantic information. Te
1× 1 convolutional layer is used to perform a scale-invariant
spatial transformation of the features captured by down-
sampling to accommodate upsampling, and the 3× 3 con-
volutional layer is used to eliminate the feature aliasing due
to upsampling for obtaining the feature maps (P2–P5) re-
quired by the region proposal network. Te general archi-
tecture of FPN is shown in Figure 6.

3.2.2. Region Proposal Network. Te region proposal net-
work takes the feature maps output by FPN as input and
outputs rectangular candidate regions (anchor boxes) of
multiple scales and aspect ratios for regions of interest (ROI).

RPN predefnes nine benchmark anchor boxes for each
sliding window andmodifes the benchmark anchor boxes for
predicting the proposed region by the four correction pa-
rameters obtained from deploying the sliding window on the
feature map. As for each input image, the anchor box is
marked as a positive sample (crack) if the overlap ratio is
greater than 0.7 between the anchor box and the ground truth
box and as background if this ratio is less than 0.3.

3.2.3. Fast Region-Based Convolutional Network. Fast
R-CNN is used to perform bounding box regression and
classifcation of the proposed regions from RPN. A ROI
pooling layer is frst used to transform the proposed regions
of diferent shapes and sizes into feature maps of the same
size. Ten, these feature maps are input to two fully con-
nected layers for bounding box regression and classifcation,
respectively, for predicting the location of the region of
interest and determining the class it belongs to. Te smooth
L1 loss between the prediction box and the labeled box is
used as the bounding box regression loss. Te crossentropy
loss that distinguishes the cracks from the background is
used as the classifcation loss. Te loss function of fast
R-CNN is shown in the following equation:

L �
1

Ncls


i

Lcls pi, p
∗
i(  + λ

1
Nreg


i

p
∗
i Lreg ti, t

∗
i( , (1)

where pi is the probability that the object is included in the
prediction box, p∗i is the labeled box, and ti and t∗i are the
four parameterized coordinates of the predicted box and the
labeled box, respectively.

3.3. Weakly Supervised Crack Segmentation. Te proposed
region attention-based style transfer only employs weak
labels from faster RCNN without manual annotation, which
directly converts the crack images into pixel-level seg-
mentation results with the same style as the ground truth of
the generic crack forest dataset (CFD). As shown in Figure 7,
domain A is derived from the crack region detection results
output by faster RCNN, and domain B is derived from the
ground truth of CFD. Te cycle-consistent-based generative
adversarial network consists of two end-to-end GANs that
share two generators (G and F) and each takes one dis-
criminator (DA and DB). A forward generator G is used to
convert A to B, while a reverse generator F is used to convert
B to A. Te discriminator DB is used to distinguish the real B

from the fake B (B) generated by A based on the forward
adversarial loss, which encourages the conversion of A to an
output indistinguishable from the domain B and vice versa
for DA. Te original A is passed through the forward and
reverse generators to obtain the reconstructed A. Te dif-
ference between the reconstructed A and the original A is
defned as a cycle consistency loss for preventing the
overftting of G and F.

3.3.1. Structure of Generators and Discriminators. Generator G

is used to convert the input crack image directly into ground
truth with the same structural pattern, which consists of

8 Structural Control and Health Monitoring



three modules: encoder, converter, and decoder. Tere are
three convolutional layers used in the encoder to extract
features from the input domain A image (256× 256× 3) and
compares them into 256 64× 64 feature vectors. Te con-
verter converts the feature vectors in the domain A to those
in the domain B using a 6-layer Resnet module, which
enables the style transfer to be performed while preserving
the features of the original image. Te decoder uses the
deconvolution layer to recover the low-level features from
the feature vectors output by converter, which generates the
fake domain B image, namely, ground truth.

A discriminator consists of fve convolutional layers. Te
four convolutional layers are used to extract features from
the input image, which are fed into the convolutional layer

that produces a 1-dimensional output (Decision [0, 1]) for
determining the classes to which the features belong.

3.3.2. Overall Loss. Te goal of the cycle-consistent-based
generation adversarial network is to learn two mapping
functions (G and F) between domain A (data distribution is
a ∼ pdata(a)) and domain B (data distribution is b ∼ pdata
(b)). Te adversarial loss is used to match the data distri-
bution generated by G or F with the real data distribution.
Te cycle consistency loss is used to prevent G and F from
contradicting each other. For the mapping function G (A
⟶ B) and the discriminator DB, the adversarial loss is
shown in the following equation:

LGAN G, DB, A, B(  � Eb∼pdata(b) logDB(b)  + Ea∼pdata(a) log 1 − DB(G(a))( . (2)

In addition, the cycle consistency loss is used to ensure
that a⟶G(a)⟶F(G(a)) ≈ a and b⟶F(b)⟶G

(F(b))≈ b, as shown in equation (3). In summary, the total

loss of the cycle-consistent-based generative adversarial
network is shown in equation (4).

Lcyc(G, F) � Ea∼pdata(a) ‖F(G(a)) − a‖1  + Eb∼pdata(b) ‖G(F(b)) − b‖1 , (3)

L G, F, DA, DB(  � LGAN G, DB, A, B(  + LGAN F, DA, B, A(  + λLcyc(G, F), (4)

(a) (b) (c)

Figure 4: Synthetic image with adverse inspection conditions: (a) uneven lighting, (b) noise, and (c) blur.
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where G is to generate the similar G(a) that is in-
distinguishable from the domain B, while DB aims to dis-
tinguish the generated G(a) from the real domain B. Tus, G
and F aim to minimize the objective against the maximi-
zation of DB and DA, i.e., argminG,F maxDA,DB

L(G, F,

DA, DB). λ is used to control the relative importance of these
two objectives.

4. Case Study

4.1.DataPreparation. A total of three types of crack datasets
with diferent image backgrounds have been created for
verifying and analyzing the performance of the hybrid al-
gorithm: control group (real crack dataset with monotonous
background, No. A), training group (synthetic crack dataset
across complex scenarios, No. B), and test group (real crack
dataset across complex scenarios, No. C).

HD cameras and drones are used to acquire cracks from
damaged ballastless track slabs in the high-speed railway
laboratory at Central South University (CSU).Te real crack
images captured by these high-precision devices are char-
acterized by monotonous background, uniform imaging,
and high resolution. More than 1000 cropped crack images
(400 pixels× 400 pixels) are selected in this paper for
establishing the real crack dataset (control group, No. A)
with a monotonous background, of which 200 are used as
the testing set and the remaining 800 are used as the training
set. In addition, the real topological features contained in
these crack images are used to produce texture maps with
diferent detailing properties, which are randomly deployed
on the virtual BIMmodel for generating a digital twin model
simulating damage of BTS. Virtual crack images (1920
pixels× 1080 pixels) across complex backgrounds synthe-
sized from the digital twin model, including structural
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interference, uneven lighting, noise, and blur. Tese images
with complex backgrounds are used to build a synthetic
crack dataset (training group, No. B) for training and val-
idating the performance of the hybrid algorithm.

Furthermore, an HD image acquisition system is used to
perform on-site experiments for real inspection data, aiming
at testing the generalization of the hybrid algorithm to real-
world images of cracks. As shown in Figure 8, an electric
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Â Â
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inspection vehicle, an in-vehicle intelligent inspection host,
and an undervehicle image acquisition device are included
in the system. Te electric inspection vehicle adopts 4-wheel
drive design and can travel on the track at a speed of
20 km/h. Te intelligent inspection host is used to receive
high-defnition image data captured from the acquisition
end and transfer the results to the control center in real time
through the wireless communication module. Te image
acquisition equipment is 3 sets of 1000GB Ethernet line
array cameras in the bottom part of the vehicle with an
infrared strobe laser light source, which can cover the entire
BTS surface in a lateral range of 2.4m.

Te output size of the HD image acquisition system is
resized to match the virtual data at 1920 pixels× 1080 pixels,
and over 400 crack samples from the real-world BTS are
obtained. Among them, 200 images are used as the testing
set, and the rest are expanded to 800 images through hor-
izontal fipping and color dithering to be consistent with the
scale of the virtual dataset; thus, a real crack dataset across
complex scenarios is established (testing group, No. C).
Examples and quantities of the three types of crack datasets
are shown in Figure 9 and Table 1.

4.2. Performance Evaluation Metrics. Te mean of average
precision of all classes of detection objects, i.e., MAP is used
to evaluate the performance of faster R-CNN. As only one
class of detection objects, namely, cracks, is set up in this
paper; thus, MAP is AP. Te key to MAP calculation is
Intersection over Union (IoU), which is defned as the
overlap rate between the predicted region and ground truth,
and its mathematical expression is shown in the following
equation:

IoU �
Predicted  region∩Ground  truth
Predicted  region∪Ground  truth

. (5)

Te threshold of IoU is generally predefned (set to 0.5 in
this paper), and the prediction result is defned as a positive
sample when the IoU between the predicted bounding box
and the ground truth is greater than this threshold; other-
wise, it is a negative sample. In addition, the confdence of
the predicted bounding box is also used to distinguish the

true prediction from the false prediction. True positive (TP)
is indicated when the IoU of the predicted result is greater
than 0.5 and the prediction is true; false positive (FP) is
indicated when the IoU of the predicted result is less than 0.5
or the prediction is false; and false negative (FN) is indicated
when there is no IoU with ground truth, which indicates that
the model cannot detect any object labels from the manual
annotation.

Moreover, precision is defned as the ratio of correctly
detected objects to the total number of objects detected.
Recall is defned as the ratio of correctly detected objects to
the total number of real objects. Te mathematical ex-
pressions for precision and recall are shown in equations (6)
and (7). Te P-R curve can be plotted by calculating the
precision and recall at diferent confdence thresholds, and
the value of MAP is obtained by integrating the P-R curve,
which represents the region enclosed by the P-R curve and
the coordinate axis.

Precision �
TP

TP + FP
, (6)

Recall �
TP

TP + FN
. (7)

Te mean of IoU of diferent classes of detected objects,
i.e., MIoU, is used to evaluate the detection results of the
cycle-consistent-based generative adversarial network. MIoU
is used to measure the overlap rate between the predicted
crack pixels belonging to each class and the ground truth, as
shown in the following equation:

MIoU �
IoU

n
, (8)

where n is the class of the detection object.
Peak signal-to-noise ratio (PSNR) and structural simi-

larity (SSIM) are used to measure the diference between the
synthetic images and the real inspection images for assessing
the quality of the synthetic crack dataset. PSNR is designed
to count the mean square error (MSE) between images,
which aims to focus on the diferences at the pixel level, as
shown in the following equation:

(a) (b) (c)

Figure 8: Composition of the HD image acquisition system used to perform on-site tests: (a) Electric inspection vehicle. (b) Intelligent
inspection host. (c) Image acquisition device.
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PSNR � 10 × lg
MaxValue2

MSE
 , (9)

where MSE is the mean square error of the two images.
MaxValue is the maximum value of the image pixels. Te
larger the PSNR, the smaller the diference between the
synthetic image and the real image, and the better the quality
of the synthetic image.

SSIM measures the similarity between two images (x, y)

by comparing their lighting (l(x, y)), contrast (c(x, y)), and
structure (s(x, y)), as shown in the following equation:

SSIM(x, y) � [l(x, y)]
α

· [c(x, y)]
β

· [s(x, y)]
c

l(x, y) �
2μxμy + C1

μ2x + μ2y + C1

c(x, y) �
2σxσy + C2

σ2x + σ2y + C2

s(x, y) �
σxy + C3

σxσy + C3
,

(10)

where μx is the mean of x; μy is the mean of y; σ2x is the
variance of x; σ2y is the variance of y; σxy is the covariance of
x and y; and C1, C2, and C3 denote three constants to avoid
the case where the denominator is zero. Te value domain of
SSIM is 0 to 1. Te larger the SSIM, the higher the structural
similarity between the two images.

Real Dataset (A) Synthetic dataset (B) Real Dataset (C)

HD cameras or 
UAVs Digital twin model Inspection vehicle

400 pixels × 400 pixels

Monotonous 
background Complex scenarios

1920 pixels × 1080 pixels 1920 pixels × 1080 pixels

Figure 9: Examples of the three types of crack datasets for BTS.

Table 1: Composition of the three datasets.

Data type Real dataset/A Synthetic
dataset/B

Real
dataset/C

Characteristics Monotonous
background

Structural interference
Uneven lighting

Noise
Blur

Image size/pixel 400× 400 1920×1080 1920×1080
Training set 800 800 800
Testing set 200 200 200
Total 1000 1000 1000
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4.3. Experimental Results. Te hybrid algorithm for weakly
supervised crack segmentation is fully trained and tested on
synthetic dataset B using GPU (NVIDIA GeForce RTX
3090) as the computational core and relying on PyTorch
1.2.0, the open-source deep learning framework from
Facebook. Te optimal hyperparameters of the faster
R-CNN network and the cyclic consistent-based generative
adversarial network are set as follows: the numbers of epoch
are 1000 and 100, respectively; the learning rates are 0.00125
and 0.0002, respectively; both use the adaptive moment
estimation algorithm (Adam) to update the weights, and the
numbers of images read per update (batch size) are 4.

Te training and testing results of the hybrid algorithm
on synthetic dataset B using optimal hyperparameters are
presented in Figure 10. Te total loss of the faster R-CNN
network reaches convergence over 1000 epochs of full
training, at which time the MAP also reaches stability, in-
dicating that the network has achieved well-ftting state. Te
best MAP (81.86%) of the faster R-CNN network appears at
the 600th epoch, where the output minimum external
rectangles containing cracks are used as the input to the
cycle-consistent-based generative adversarial network. Both
the adversarial loss and the cycle consistency loss of the
cycle-consistent-based generative adversarial network reach
convergence and stabilization after 100 epochs, indicating
that the generator G can excellently convert the output (a) of
faster R-CNN network into the segmentation result (G(a))
with the same structural pattern as the ground truth (b). Te
reconstruction results (F(G(a))) obtained after two con-
versions by generators G and F are maximally similar to the
output of the faster R-CNN network.

Figure 11 shows the output of each stage of the hybrid
algorithm. First, real cracks with the monotone background
are randomly deployed in complex inspection scenarios for

synthetic dataset B. Ten, the faster R-CNN network is used
to capture crack regions accurately and efciently from
inspection images containing complex scenarios. Finally,
these weak labels containing cracks are directly converted
into segmentation results similar to the ground truth of the
CFD dataset. With increasing the number of epochs, the
segmentation results show a change from coarse, discon-
tinuous crack features to topologized, continuous crack
features (Figure 10), and the optimal crack segmentation
results (81.86% MIoU) are reached in the 40th epoch.

5. Discussion

5.1. Experimental Results of Various Detection Algorithms.
Tis section systematically compares the crack segmentation
results of the hybrid algorithm, DeepLabv3+ network, and
the original cycle-consistent-based generative adversarial
network. Te MIoU obtained and the time cost required by
various algorithms on dataset A (real cracks with the mo-
notonous background) and dataset C (real cracks across
complex scenarios) are given in Figure 12. Figure 13 care-
fully shows the segmentation examples of various algo-
rithms. Although the DeepLabv3+ network achieves the
highest MIoU of 85.41% for crack detection in the mo-
notonous background, which drops by over 70%when tested
on real crack images across complex scenarios, this indicates
that pixel-level deep learning models pretrained using ge-
neric datasets designed for general tasks cannot maintain
high accuracy on specifc tasks across complex scenarios.
Structures that are highly similar to cracks, such as pre-
cracks, rails, and fastener systems, or even dark image
backgrounds, can most adversely afect the generalization
and efectiveness of the pretrained model, resulting in cat-
astrophic oversegmentation.
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Figure 10: Experimental results of the hybrid algorithm: (a) faster R-CNN network; (b) cycle-consistent-based generative adversarial
network.
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Te DeepLabv3+ network, fully trained from synthetic
dataset B, achieves an MIoU of over 50% when tested on real
crack images across complex scenarios. Also, the over-
segmentation caused by irrelevant structures is greatly
eliminated and fne-grained crack segmentation results are
obtained.Tis shows that the synthetic dataset created in this
paper enables the pixel-level deep learning model to extract
more discriminative features than the real crack dataset with
the monotonic background, which improves its adaptability
to complex scenarios such as structural interference and
uneven lighting. Notably, the too low percentage of cracks in

real inspection images still causes the DeepLabv3+ network
to generate discontinuous crack boundaries or even “all-
black images” leading to missed detection (test results with
zero IoU as shown in Figure 13).

A higher MIoU (79.38%) is obtained by the hybrid al-
gorithm on real crack images across complex scenarios, with
a nearly 25% improvement compared with the DeepLabv3+
network, producingmore fne-grained and continuous crack
segmentation results. Particularly, it requires only 0.5% of
the annotation time of the DeepLabv3+ network, which
overcomes the low consistency of manual annotation pixel
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Figure 11: Pixel-level crack segmentation results of the hybrid algorithm.
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by pixel without the need for one-to-one ground truth,
demonstrating more accurate and efcient segmentation
performance for cracks of BTS.

Furthermore, although the original cycle-consistent-
based generative adversarial network can directly convert
crack images into segmentation results with the same
structural pattern as the ground truth of the CFD dataset
without any manual annotation cost, rails, fastener systems,
and other ground markings can produce signifcant over-
segmentation, resulting in misdetection. Te hybrid algo-
rithm based on region attention enables the original
random, uncontrolled generative adversarial network to
focus its attention on the crack region of interest, eliminating
oversegmentation and obtaining nearly double the MIoU
improvement compared with the original GAN.

5.2. Comparison of Training Efectiveness from Synthetic Data
and Real Data. Te test results on real dataset C of the
hybrid algorithm adequately trained based on synthetic
dataset B exhibit high MIoU, which is compared with the
results of the training relying exclusively on real data in this
section, aiming at exploring the alternative and general-
ization of synthetic data.

Figure 14(a) counts the IoUs on 50 real inspection images
(from the testing set in dataset C) of the hybrid algorithm,
which are acquired by adequate training from synthetic data

and real data, respectively. More than 70% of all IoUs are
obtained by the hybrid algorithm regardless of whether the
training set is synthetic or real data. Te distribution of the 50
points along the diagnostic line clearly shows that the IoUs
obtained from training based on synthetic data are generally
close to the training results of real data, with amean gap of less
than 2%. Tis indicates that the synthetic crack dataset
established in this paper enables the performance of the
hybrid algorithm to be maximally close to the training ef-
fectiveness from the real dataset. In addition, as for the in-
spection images which are more difcult to identify (IoU is at
a lower level, around 70%), the test results of the hybrid
algorithm trained based on synthetic data are even better,
showing the advantage of the synthetic dataset with rich
features over the limited real dataset. Cracks are infrequent,
especially since it is difcult to capture enough training
samples containing a variety of rich features during the
limited midnight window period in a timely manner. Al-
though the size of the training set in real dataset C is expanded
by data augmentation (horizon fipping and color dithering)
to be consistent with that of synthetic dataset B, the number of
efective features that can be used to train deep learning
models remains limited. Synthetic data can greatly enlarge the
range, type, and number of discriminative crack features
compared with data augmentation based on limited real data,
thus enhancing the adaptability and robustness of deep
learning methods for uncertain inspection data.
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Figure 12: MIoU and annotation time of diferent detection algorithms on real datasets (A and C): (a) MIoU. (b) Annotation time.
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Furthermore, fve parallel experiments are implemented
to eliminate the uncertainty and randomness of the single
training results, and the 50 real inspection images used for
testing in each experiment are randomly acquired from the
testing set of dataset C. Figure 14(b) counts the relative error
rates of the training results based on the synthetic data and
those based on the real data. Te relative error rates of the
training results of the two types of data are below 20% in fve
parallel experiments, showing a good prospect of synthetic
data replacing real data as training samples for deep learning
models, enabling a great reduction or even elimination of the
labor cost in data acquisition.

Due to diferences such as texture between synthetic
dataset B and real dataset C, the training results based on
synthetic data are slightly lower than those from real data in
80% of cases. Figure 15 quantitatively evaluates the difer-
ences between the synthetic and real images at each stage of
image generation using two image quality estimators, PSNR
and SSIM. Te synthetic image rendered with real texture
and lighting obtains the highest PSNR and SSIM compared
with the virtual image output directly from the BIM, in-
dicating that both have the lowest texture diference at the
pixel level in this case. SSIM emphasizes environment
perception similar to the human visual system rather than
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PSNR, which focuses on diferences at the pixel level. Te
implementation of the virtual inspection with uneven
lighting results in an improvement of nearly one-half of the

SSIM between the synthetic image and the real image
compared with the original BIM image, which is maximally
close to the real inspection working condition during the

Count 50

70 80 90 10060
IoU (Training set C, %)

60

70

80

90

100
Io

U
 (T

ra
in

in
g 

se
t B

, %
)

(a)

Average value

Abnormal value

25%-75%

1.5 IQR
Median line

-20

-10

0

10

20

30

Re
lat

iv
e e

rr
or

 ra
te

 (%
)

2 3 4 51
Number of training round

(b)

Figure 14: Test results over 50 real inspection images by the hybrid algorithm trained from synthetic and real data, respectively:
(a) scatterplot of the IoUs; (b) relative error rates of fve parallel tests.
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midnight window period. In summary, the continuous re-
duction of texture and environment diferences between the
synthetic image and the real inspection image enables the
synthetic data to be as close as possible to the real inspection
data, which is expected to completely replicate or exceed the
training efect of the real data.

5.3. Testing in Adverse Inspection Conditions. Te excellent
performance of the hybrid algorithm on real inspection
images shows strong generalization to structural in-
terference and uneven lighting. Further, the salt and pepper
noise and Gaussian blur are added proportionally to 200 test
images from the real crack dataset C for analyzing the efect
of environmental noise and focusing blur on the perfor-
mance of the hybrid algorithm. Te intensity of environ-
mental noise is simulated by randomly replacing a certain
percentage of normal pixel points with white or black noise
pixels in inspection images. Gaussian blur uses a Gaussian
function with normal distribution to perform a convolution
operation on inspection images, which simulates the blurred
images acquired due to focusing errors of the image device.
Te mathematical expression is shown in the following
equation:

F(r) �
1

����
2πσ2

√ N
e

− r2/(2σ)2
, (11)

where σ is the standard deviation of the normal distribution,
the larger the value, the more blurred the image is; r is
a Gaussian fuzzy matrix, which is generally taken as (6σ +

1) × (6σ + 1) in two-dimensional image space.

As shown in Figure 16, the three proportions of envi-
ronmental noise have little efect on the crack detection
performance of the hybrid algorithm, where MIoU drops
within 5% overall. Te MIoU of the hybrid algorithm is still
above 75% even under the most adverse working conditions,
where nearly half of the pixels in the image are converted
into noise pixels, showing good adaptability to environ-
mental noise.Te drop of MIoU due to focusing blur is twice
as large as that of environmental noise, which afects the
hybrid algorithm even more adversely. In addition, since
omissions are more harmful and of more concern for in-
spection than errors, the recall of the hybrid algorithm under
diferent working conditions is counted. Te drop of recall
due to focusing blur is higher at 15% compared with en-
vironmental noise, which indicates that blurred images are
more likely to cause false-negative errors in the hybrid al-
gorithm, resulting in crack omissions.

Te actual segmentation results of the hybrid algo-
rithm under the infuence of diferent proportions of noise
and blurring are visualized in Figure 17. Overall, the
hybrid algorithm obtains reliable crack segmentation re-
sults under various adverse conditions, without “all-black
images,” which is far better than the DeepLabv3+ network.
With the increasing proportion of noise and blurring, the
hybrid algorithm outputs discontinuous crack boundaries
and oversegmentation, which is especially serious in
blurred images. Terefore, the deployment state of the
image devices should be concerned to avoid the adverse
efect of blurred images on deep learning methods during
the actual inspection of the BTS in the midnight window
period.
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Figure 16: Crack detection results of hybrid algorithms under the infuence of diferent proportions of environmental noise and focusing
blur. (a) Environmental noise. (b) Focusing blur.
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6. Conclusions

Although the excellent detection performance of existing
pixel-level deep learning models for asphalt or concrete
pavement cracks with monotonous backgrounds is available,
few optimal network structures are available that can seg-
ment cracks fnely from inspection images of BTS across
complex backgrounds. To this end, this paper proposes
a hybrid algorithm based on digital twin synthetic data and
weakly supervised style transfer, which creatively enables
accurate and efcient segmentation of cracks from inspection
images containing structural interference such as rails, fas-
tener systems, and precracks, as well as adverse scenarios
such as uneven lighting, noise, and blur. Te hybrid algo-
rithm achieves the highest MIoU of 79.38% compared with
the existing typical pixel-level deep learning model Deep-
Labv3+ and the original GAN. It not only improves the
original coarse oversegmentation or discontinuous few-
segmentation into continuous refned segmentation results
but also completely overcomes the “all-black image.” In
addition, the time cost of the hybrid algorithm is only 0.5% of

that of the DeepLabv3+ network, and pixel-by-pixel crack
segmentation is achieved with weak labels at the region
level only.

Diferences between backgrounds of experimental data
used for training and real deployment scenarios may lead to
accuracy disasters in deep learning models, which are
reviewed for the frst time in this paper. Te DeepLabv3+
network fully trained with experimental data (similar to the
CFD dataset with the monotonic background, uniform
lighting, and clear imaging) obtains excellent theoretical
accuracy (MIoU of 85.41%), but its performance is only one
eighth of the theoretical accuracy when deployed in real
inspection scenarios. Tis indicates that deep learning
models fully trained with experimental data (designed for
general task requirements) can produce signifcant slippage
in accuracy when deployed directly. Based on this, a syn-
thetic crack dataset of BTS across complex scenarios is
created, which aims to simulate the inspection conditions at
the midnight window period as realistically as possible and
without the cost of acquisition. Te IoUs obtained from
training based on synthetic data are quite close to the
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Figure 17: Actual segmentation results of the hybrid algorithm under various adverse working conditions.
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training results from real data, with an average gap of less
than 2%. Synthetic data can greatly enlarge the range, type,
and number of discriminative crack features compared with
data augmentation based on limited real data, thus en-
hancing the adaptability and robustness of the hybrid al-
gorithm for uncertain inspection data. Furthermore, the
continuous reduction of texture and environment difer-
ences between the synthetic image and the real inspection
image enables the synthetic data to be as close as possible to
the real inspection data, which is expected to completely
replicate or exceed the training efect of the real data.

Tis paper further tests the adaptability and general-
ization of the hybrid algorithm to various inspection con-
ditions of BTS. Te hybrid algorithm obtains reliable crack
segmentation results under various adverse conditions,
without “all-black images,” which is far better than the
DeepLabv3+ network. Te MIoU of the hybrid algorithm is
still above 75% even under the most adverse working
conditions, where nearly half of the pixels in the image are
converted into noise pixels. With the increasing proportion
of noise and blurring, the hybrid algorithm outputs dis-
continuous crack boundaries and oversegmentation, which
is especially serious in blurred images. Terefore, crack
omission from deep learning methods due to blurred images
should be avoided when performing the actual inspection of
the BTS in the midnight window period.

Te hybrid algorithm based on digital twin synthetic data
and weakly supervised style transfer proposed in this paper
provides an accurate and efcient solution for crack de-
tection in BTS of HSR across complex scenarios. It promotes
the advancement from the theoretical experimental level to
the practical deployment level of deep learning methods and
greatly reduces the cost of data collection and manual an-
notation. Te results greatly improve the reliability and
efciency of maintenance, which is signifcant to the safe
operation of high-speed railway.
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