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Compared with conventional linear viscous damping (LVD), rate-independent linear damping (RILD) mitigates foor response
acceleration in low-frequency structures more efectively without compromising the control performance of displacement re-
sponses during long-period or low-frequency earthquakes. Although theoretical and experimental attempts have been made to
overcome the noncausality of RILD devices and realize RILD using passive or semiactive devices, only a few studies have
highlighted the impulse-response precursor and modal analysis method of multistory structures incorporated into RILD devices.
Tis study investigated the impulse-response precursor of a noncausal RILD system and proposed a novel modal decomposition
method for the structures equipped with nonproportionally distributed RILD devices. Additionally, real-time hybrid simulation
was conducted to validate the efectiveness of the proposed modal analysis method and the feasibility of realizing ideal RILD using
mechanical devices. Tis study is the frst to demonstrate the diferences between RILD and LVD devices in terms of controlling
the modal responses of low-frequency structures and how RILD can lower the foor response acceleration more efectively
compared to LVD.

1. Introduction

Te earthquake that occurred in the Tohoku region of East
Japan in 2011 resulted in many high-rise and base-isolated
buildings experiencing long-duration and large-amplitude
shaking, causing destructive damage to their surroundings
and internal equipment. Terefore, those excessive dis-
placements should be investigated and avoided. Low-
frequency buildings can be made more seismically re-
silient through rate-independent linear damping (RILD) [1].
However, RILD has not been implemented in actual projects
because of its noncausality, as explained by Crandall [2, 3]
and Inaudi and Kelly [4].

RILD, also referred to as structural damping, complex
damping, complex stifness, and hysteretic damping, has

been studied since the mid-20th century. According to
Myklestad [5], one of the biggest advantages of complex
damping is that it enables numerical calculations of forced
vibrations in engine crankshafts, airplane wings, and similar
structures. Bishop [6] argued that free vibrations cannot be
treated satisfactorily unless hysteretic damping can cover
nonharmonic motions. Te frst causal model resembling
RILD was proposed by Biot [7]. However, Caughey [8]
demonstrated that Biot’s model and RILD are not identical
at low frequencies. Makris and Constantinou [9] employed
the fractional-derivative Maxwell model of viscous dampers
for seismic isolation of buildings. Muravskii [10] in-
vestigated three nonlinear models with frequency-
independent characteristics. Nakamura [11] developed
a causal model for hysteretic damping. Spanos and
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Tsavachidis [12] performed analyses of a nonlinear system
with a Biot viscoelastic element. Makris [13] used an ad-
justable term to satisfy the causality requirements. In ad-
dition, studies have proposed mathematical models to
approximate the behavior of RILD [14, 15]. Muravskii [16]
reported that Biot’s model and three hereditary models can
ensure the practical constancy for damping properties but
are limited to the storage stifness as the frequency grows.
Huang et al. [17] proposed a frequency-insensitive damping
model that exhibits constant energy dissipation over an
interest-frequency range; however, this model still lacks
experimental verifcation.

An RILD model was developed by Genta and Amanti
[18] by placing several Maxwell elements in parallel. Reggio
and De Angelis [19] employed the Maxwell–Wiechert kernel
function to propose a viscoelastic model to realize RILD.
Deastra et al. [20] introduced two inerter-based dampers to
capture the behavior of RILD. Sarlis et al. [21, 22] developed
physical devices to achieve negative stifness, which is
a signifcant component for some causal RILD models.
Nagarajaiah et al. [23] investigated the multimode response
mitigation efects of dampers with negative stifness and
inerter systems. Luo et al. [24] used a Maxwell negative-
stifness damper to causally realize RILD. Keivan et al.
[25, 26] approximated the RILD storage stifness using
a digital flter. Keivan et al. [27] then incorporated the
proposed flter into the interstory isolated structure without
considering the impact of vertical vibrations. Liu and Ikago
[28] proposed a modifed RILD model that could achieve
better performance in terms of mimicking the loss stifness.
Liu et al. [29] developed three models to realize an ideal
RILD and improve the performance of a higher-order flter
[28]. Liu and Ikago [30–33] were the frst to conduct real-
time hybrid testing using mechanical devices to passively
realize a noncausal RILD device. Recently, Liu and Liu [34]
conducted the frst experiment to realize a modifed RILD
model [29] using a small-scale MR damper. Liu et al. [35]
further developed two causal RILD models and proposed
both the optimal and direct design methods for these two
devices.

Inaudi and Makris [36] investigated a time-domain
method for numerical analysis of the RILD system using
the characteristics of the Hilbert transform. Tsai and Lee [37]
developed a method for obtaining the transient response of
oscillators using RILD. Studies have also used the integral
contour method to study the impulse-response precursor of
a building containing a hysteretic damper [38, 39].

Te existing literature shows several existing modal
analysis methods for classically damped systems [40, 41].
Chopra [42] presented the physical interpretation of the
modal analysis of linear systems. Ewins [43] showed the
modal testing of structures based onmodal analysis. William
et al. [44] systematically presented the matrix structural
analysis method. However, the above literature mainly fo-
cused on the classically damped systems. Veletsos and
Ventura [45] proposed a method for the modal de-
composition of nonclassically damped systems, which was
then adopted in textbooks [46]. Igusa and Kiureghian [47]
derived solutions for the mode shapes and frequencies. Yang

et al. [48] proposed a response spectrum method. Several
other techniques have been widely used to assess the
maximum responses of damped structures [49]. Gupta et al.
[50] assessed the performance of nonclassically damped
systems for diferent frequency ranges. Oliveto et al. [51]
proposed a complex mode superposition method for ana-
lyzing the dynamic behavior of a beam supported by and
attached to two rotational dampers. Lorenzo et al. [52]
proposed a method for analyzing the vibration response of
beams with Kelvin–Voigt viscoelastic translational supports
and rotational joints under moving loads. Hirzinger et al.
[53] developed a semianalytical method to determine the
dynamic response of an Euler–Bernoulli beam under general
boundary conditions. Chen et al. [54] suggested a general-
ized mode superposition method that could be applied to
damping at undercritical, critical, and overcritical levels.
Qiao and Rahmatalla [55] devised a novel method to de-
termine the viscoelastic boundary conditions and dynamic
responses of Euler–Bernoulli beams under changing loads.
Chen et al. [56] proposed a complex-model truncation
approach. However, the aforementioned modal analysis
method cannot be applied to the noncausal RILD systems.

It has been reported that RILD can more efectively
suppress the acceleration responses of low-frequency struc-
tures without or only slightly compromising the mitigation of
displacement responses. However, limited research has been
found so far to investigate the diferences in seismic responses
between the RILD and linear viscous damping (LVD) systems
based on modal analysis. Furthermore, no study has focused
on the performance of the nonproportionally distributed
RILD systems. Tis study obtained the impulse-response
precursor of a noncausal RILD system and frst revealed
diferences in the modal responses of structures containing
RILD and LVD. Furthermore, a novel modal decomposition
method is proposed to obtain the modal responses of
structures equipped with nonproportionally distributed RILD
devices, thereby providing a novel approach for time-domain
analysis of the RILD system. Tis study frst creates a link
between the modal analysis of the LVD and RILD systems.
Upon employing the proposed method, the diferences in
dynamic responses between the LVD and RILD systems can
be clearly observed, thus demonstrating the advantages of
RILD for the seismic protection of low-frequency structures.
To validate the observation of numerical analysis, real-time
hybrid simulations were also conducted by employing
physical devices, including a coil spring and an oil damper.

Te remainder of this paper is structured as follows:
Section 2 derives the expression of the impulse-response
precursor and presents a modal decomposition technique
for a nonproportionally distributed multi-degree-of-
freedom (MDOF) RILD system. Section 3 describes the
application of the proposed method for conducting nu-
merical analyses to investigate the diferences between the
control efects of the two diferent damping devices. Section
4 describes the fabrication of a coil spring and an oil damper
for physically realizing noncausal RILD and experimentally
verifying the proposed modal decomposition method. Fi-
nally, Section 5 presents the conclusions of this study and
discusses the potential challenges and future scopes.
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2. Modal Decomposition Method of the
RILD System

Owing to the well-known noncausality of RILD, the con-
ventional modal superposition technique discussed in
[45, 46] for nonclassically damped systems cannot be used
on a structure containing RILD elements. Causality requires
the response to follow the application of excitation. As
shown in Figure 1, the RILD system responded before the
excitation was applied, which violated the causality re-
quirement. Tis study proposes a modal decomposition
method to approximate the responses of a noncausal RILD
system.

When an ideal RILD device with loss stifness ηk is
subjected to harmonic load, its damping force can be cal-
culated as follows [57]:

FRILD � iηksgn[Re(ω)]X(iω), (1)

where FRILD, i, sgn(·), Re(·), and X(iω) denote the damping
force amplitude, imaginary unit, signum function, the real
part of the complex number, and displacement response
amplitude, respectively.

2.1. Impulse-Response Precursor. As mentioned above, when
the structure is incorporated with noncausal RILD and
subjected to impulse excitation, the response advances the
application of impulsive excitation. Terefore, the RILD
system has nonzero displacements in the negative time
region (t< 0), which is referred to as the impulse-response

precursor in this study. To date, no studies have been
conducted on the impulse-response precursors of multistory
RILD systems. Tus, the expression of the impulse-response
precursor must be deduced before investigating the modal
decomposition method of the RILD system.

Te base-isolated shear MDOF system is assumed to be
incorporated with nonproportional RILD, and the loss
factors of the RILD are ηj(j � 1, 2, · · · , n. n≥ 2) for the j −

th foor. η1 and ηn are the base-isolation layer and roof foor
loss factor, respectively. Te equation of motion that con-
trols the nonproportional RILD system is given as follows:

M€X + C _X + KX � −Mr€xg, (2)

where M, C, K, €X, _X, and X are the matrices for mass,
inherent damping, complex stifness, foor response accel-
eration, relative velocity, and relative displacement, re-
spectively. r and €xg represent the infuence vector and
ground acceleration, respectively.

Equation (2) can be converted as follows:

−ω2M + iωC + K􏼐 􏼑X(iω) � −Mr€xg (iω). (3)

Ten,

X(iω)

− €xg(iω)
�

Mr
−ω2M + iωC + K

�
Ir

−ω2I + iωM−1C + M−1K
,

(4)

where I is the identity matrix. Te symbols in equation (4)
can be expressed as follows:

M �

m1 0 · · · 0 0

0 m2 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · mn−1 0

0 0 · · · 0 mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,C �

c1 + c2 −c2 · · · 0 0

−c2 c2 + c3 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · cn−1 + cn −cn

0 0 · · · −cn cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K � K0 + isgn(ω)K′,

K0 �

k1 + k2 −k2 · · · 0 0

−k2 k2 + k3 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · kn−1 + kn −kn

0 0 · · · −kn kn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K′ �

η1k1 + η2k2 −η2k2 · · · 0 0

−η2k2 η2k2 + η3k3 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · ηn−1kn−1 + ηnkn −ηnkn

0 0 · · · −ηnkn ηnkn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

r � 1 1 · · · 1 1􏼂 􏼃
T
.

(5)
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Here, η1, η2, . . . , ηn are the loss factors (double the
damping ratio) of the base-isolation layer, frst foor, . . ., and
roof-foor, respectively.

In principle, the RILD system’s impulse-response
function is stated as follows:

h(t) �
1
2π

􏽚
+∞

−∞

X(iω)

− €xg(iω)
e

iωt
dω �

1
2π

􏽚
+∞

−∞

Ireiωt

−ω2I + iωM−1C + M−1K
dω. (6)

Terefore,

h(t) �
1
2π

􏽚
+∞

−∞

Ireiωt

−ω2I + iωM−1C + M−1K
dω

�
1
2π

􏽚
+∞

−∞

Ireiωt

−ω2I + M−1K0 + i ωM−1C + sgn(ω)M−1K′􏼔 􏼕
dω

�
1
2π

􏽚
+∞

−∞

−ω2I + M− 1K0 − i ωM− 1C + sgn(ω)M− 1K′􏼔 􏼕􏼒 􏼓Ireiωt

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C + sgn(ω)M−1K′􏼔 􏼕
2 dω

�
1
2π

􏽚
+∞

−∞

−ω2I + M− 1K0 − i ωM− 1C + sgn(ω)M− 1K′􏼔 􏼕􏼒 􏼓Ireiωt

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω.

(7)

Considering the numerator part of the integral function
of equation (7) yields

Numerator � −ω2I + M− 1K0 − i ωM− 1C + sgn(ω)M− 1K′􏼔 􏼕􏼒 􏼓Ireiωt

� −ω2I + M− 1K0 − i ωM− 1C + sgn(ω)M− 1K′􏼔 􏼕􏼒 􏼓Ir(cosωt + i sinωt)

� e1(t) + e2(t),

(8)
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Figure 1: Impulse response of the rate-independent linear damping (RILD) system with a single degree of freedom (natural period of 4 s).
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where

e1(t) � −ω2I + M− 1K0􏼐 􏼑cosωt + ωM− 1C sinωt + sgn(ω) sinωtM− 1K′􏼔 􏼕Ir,

e2(t) � i −ω2I + M− 1K0􏼐 􏼑sinωt − ωM− 1C cosωt − sgn(ω) cosωtM− 1K′􏼔 􏼕Ir.
(9)

It is obvious that e1(t) and e2(t) are even and odd
functions, respectively. Terefore,

h(t) �
1
2π

􏽚
+∞

−∞

−ω2I + M− 1K0 − i ωM− 1C + sgn(ω)M− 1K′􏼔 􏼕􏼒 􏼓Ireiωt

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω

�
1
2π

􏽚
+∞

−∞

e1(t)

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω

+
1
2π

􏽚
+∞

−∞

e2(t)

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω

�
1
2π

􏽚
+∞

−∞

e1(t)

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω + 0

�
1
π

􏽚
+∞

0

−ω2I + M− 1K0􏼐 􏼑cosωt + ωM− 1C sinωt + sgn(ω) sinωtM− 1K′􏼔 􏼕Ir

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω

�
1
π

􏽚
+∞

0

−ω2I + M− 1K0􏼐 􏼑cosωt + ωM− 1C sinωt + sinωtM− 1K′􏼔 􏼕Ir

−ω2I + M−1K0􏼐 􏼑
2

+ ωM−1C􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2

+ 2|ω|M−1CM−1K′
dω.

(10)

As shown in equation (10), the derived impulse-response
expression h(t) can be employed to obtain the impulse-
response precursors in both structures with or without
inherent viscous damping. However, for comparison and
simplicity, a simpler expression can be obtained as follows
while neglecting inherent viscous damping (i.e., C � 0):

h(t) �
1
π

􏽚
+∞

0

−ω2I + M− 1K0􏼐 􏼑cosωt + sinωtM− 1K′􏼔 􏼕Ir

−ω2I + M−1K0􏼐 􏼑
2

+ M−1K′􏼒 􏼓
2 dω.

(11)

When the system only has one degree of freedom, h(t) is
reduced to

h(t) �
1
π

􏽚
+∞

0

−ω2
+ ω2

1􏼐 􏼑cosωt + η1ω
2
1 sinωt

−ω2
+ ω2

1􏼐 􏼑
2

+ η1ω
2
1􏼐 􏼑

2 dω, (12)

where ω1 is the frst natural frequency.
Equation (12) is identical to that obtained by Inaudi and

Kelly [4] who employed the inverse Fourier transform to
calculate the response history of the RILD system with only
one degree of freedom and without inherent damping. Fi-
nally, equations (10) or (11) can be used to retrieve the
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impulse-response precursors of the RILD system that have
more than one degree of freedom with or without consid-
ering inherent damping, respectively.

A single-story base-isolated shear structure was used as
the building model, and three types of damping systems
were considered, as shown in Figure 2. Te LVD and RILD
systems were nonproportionally damped, and the damping
ratios of the supplemental damping devices were assumed to
be identical.

Te modal analysis method presented in [45, 46] can be
applied directly to undamped LVD systems. In the following
phase, a modal decomposition method is developed for an
RILD system that is not proportionally damped.

2.2. Free Vibration Response. Te homogeneous form of
equation (2) yields [45, 46]

X(t) � ψe
λt

. (13)

Equation (14) can be obtained by converting equation
(13) into the homogeneous form of equation (2) as follows:

λ2M + λC + K􏼐 􏼑ψ � 0. (14)

Reducing the N-dimensional second-order diferential
equation (equation (2)) to the 2N-dimensional frst-order
diferential equations, we obtain as follows [58]:

M _X − M _X � 0

M€X + C _X + KX � −Mr€xg

. (15)

Terefore,

L _Z + SZ � p(t), (16)

where

L �
0 M

M C
􏼢 􏼣, S �

−M 0

0 K
􏼢 􏼣,Z �

_X

X
⎡⎣ ⎤⎦,p(t) �

0

−Mr€xg

⎡⎣ ⎤⎦.

(17)

Regarding the RILD system shown in Figure 2(c), we
obtain

M �
m 0

0 m
􏼢 􏼣, (18)

K+
�

k1 + k2 + i η1k1 + η2k2( 􏼁 − 1 + iη2( 􏼁k2

− 1 + iη2( 􏼁k2 1 + iη2( 􏼁k2
􏼢 􏼣,ω> 0,

(19)

K−
�

k1 + k2 − i η1k1 + η2k2( 􏼁 − 1 − iη2( 􏼁k2

− 1 − iη2( 􏼁k2 1 − iη2( 􏼁k2
􏼢 􏼣,ω< 0.

(20)

As shown in equations (19) and (20), the stifness matrix
was divided into two cases owing to the presence of the
signum function (sgn(ω)> 0, for ω> 0  and  sgn(ω)< 0, for
ω< 0).

Substituting equations (18) and (20) into the homoge-
neous forms of equation (16) yields

L _Z + S±Z � 0, (21)

S± �
−M O
O K±

􏼢 􏼣, (22)

where superscripts “+” and “−” denote positive (ω> 0) and
negative (ω< 0) excitation frequencies, respectively.

Te eigenvalues and eigenvectors are given as follows:

λ± � λ±1 λ±2 􏽢λ
±
1

􏽢λ
±
2􏽨 􏽩

T
, (23)

ψ± � ψ±1 ψ±2 􏽢ψ±1 􏽢ψ±2􏽨 􏽩, (24)

where the hat symbol denotes the modes related to the
unstable poles (where the real parts of the related eigenvalues
are positive). It is worth mentioning that equations (23) and
(24) are only applicable to the 2DOF system. Te related
eigenvalues and eigenvectors for the n-DOF structure can be
obtained in a similar manner.

Terefore, four (2N) sets of eigenvalues and eigenvectors
for the stable and unstable poles exist. In the following
section, we prove that the conjugate eigenvalues and ei-
genvectors for ω> 0 can be determined from the case of
ω< 0.

Regarding the nth pair of eigenvalue and eigenvector, we
obtain

λ+
nL + S+

( 􏼁υ+
n � 0, υ+

n �
λ+

nψ
+
n

ψ+
n

􏼢 􏼣

T

. (25)

Considering S+
� S− (which can be proved by

employing equations (18), (19), and (22)) and the complex
conjugate on both sides of the frst part of equation (25), we
obtain

λ
+

nL + S−
􏼐 􏼑υ+

n � 0. (26)

Te complex conjugates of the eigenvalues and eigen-
vectors for ω> 0 are similar to those for ω< 0 and the
following relationships hold:

λ
±
n � λ∓n , 􏽢λ

±

n � 􏽢λ
∓
n , 􏽢λ
±
n � −λ±n . (27)

Te eigenvalues and eigenvectors in equations (25) and
(26) satisfy the orthogonality requirements [45, 46] as
follows:

λn + λr( 􏼁ψT
nMψr + ψT

nCψr � 0,

ψT
nKψr − λnλrψ

T
nMψr � 0,

(28)
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where ψn and ψr are the eigenvectors associated with ei-
genvalues λn and λr, respectively.

Given the initial condition, the modal parameters (ωn,
ωnD, ζn, SR±

n , and 􏽢S
R±
n ) can be obtained as follows:

λ±n � λ∓n � −ζR
nω

R
n ± iωR

nD, 􏽢λ
±
n � 􏽢λ
∓

n � ζR
nω

R
n ∓ iωR

nD,

ωR
nD � ωR

n

��������

1 − ζR
n􏼐 􏼑

2
􏽲

,ωR
n � λ±n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽢λ
±
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ζ
R
n � −

Re λ±n( 􏼁

λ±n
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
Re 􏽢λ
±
n􏼒 􏼓

􏽢λ
±
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

S
R±
n � S

R∓
n �

υ±n( 􏼁
TLZ0

υ±n( 􏼁
TLυ±n

�
λ±n ψ±n( 􏼁

TMX0 + ψ±n( 􏼁
TCX0 + ψ±n( 􏼁

TM _X0

2λ±n ψ±n( 􏼁
TMψ±n + ψ±n( 􏼁

TCψ±n
,

􏽢S
R±
n � 􏽢S

R∓
n �

􏽢υ±n( 􏼁
TLZ0

􏽢υ±n( 􏼁
TL􏽢υ±n

,

(29)

where superscript R denotes RILD and Z0 � _X0 X0􏽨 􏽩
T
.

Te governing equations of motion for the nth mode are
decomposed using equation (21) (see Appendix for details).

iω − λ+
n( 􏼁Z

R+
n (iω) − S

R+
n � 0,

iω − 􏽢λ
+

n􏼐 􏼑􏽢Z
R+

n (iω) − 􏽢S
R+

n � 0,

⎧⎪⎨

⎪⎩
(ω> 0),

iω − λ−
n( 􏼁Z

R−
n (iω) − S

R−
n � 0,

iω − 􏽢λ
−

n􏼐 􏼑􏽢Z
R−

n (iω) − 􏽢S
R−

n � 0,

⎧⎪⎨

⎪⎩
(ω< 0),

(30)

where ZR±
n (iω) and 􏽢Z

R±
n (iω) are the Fourier transforms of

modal coordinates zR+
n (t) and 􏽢zR+

n (t), respectively.
On the basis of the model analysis presented by Chopra

[46], and referred to in Appendix, the nth modal response in
the time domain is given as follows:

XR
n (t) � S

R+
n ψ+

n z
R+
n (t) + 􏽢S

R+

n
􏽢ψ+

n 􏽢z
R+
n (t) + S

R−
n ψ−

n z
R−
n (t)

+ 􏽢S
R−

n
􏽢ψ−

n 􏽢z
R−
n (t),

(31)
where

z
R+
n (t) � 􏽚

+∞

0

1
iω − λ+

n

e
iωt

dω, 􏽢z
R+
n (t) � 􏽚

+∞

0

1
iω − 􏽢λ

+

n

e
iωt

dω,

z
R−
n (t) � 􏽚

0

−∞

1
iω − λ−

n

e
iωt

dω, 􏽢z
R−
n (t) � 􏽚

0

−∞

1
iω − 􏽢λ

−

n

e
iωt

dω.

(32)

Temethods proposed in [1, 4, 36] can be used to obtain
zR+

n (t) and 􏽢zR+
n (t). zR±

n (t) and 􏽢zR±
n (t) are noncausal, i.e.,

zR±
n (t< 0)≠ 0 and 􏽢zR∓

n (t< 0)≠ 0, respectively.

2.3. Seismic Response. When a multistory building system
containing RILD is subjected to impulse ground excitation,
that is, δ(t), we obtain

hR
n (t) � U

R+
n ψ+

n z
R+
n (t) + 􏽢U

R+

n
􏽢ψ+

n 􏽢z
R+
n (t) + U

R−
n ψ−

n z
R−
n (t)

+ 􏽢U
R−

n
􏽢ψ−

n 􏽢z
R−
n (t),

(33)

where

1
2 k1

1
2 k2

1
2 k1

1
2 k2

m

m

(a)

1
2 k1

1
2 k2

1
2 k1

1
2 k2

m

m

c2 ω2

η2k2=

c1 ω1

η1k1=

(b)

1
2 k1

1
2 k2

1
2 k1

1
2 k2

m

m

RILD

RILD

iη1k1sgn (ω)

iη2k2sgn (ω)

(c)

Figure 2: Base-isolated two-degree-of-freedom (2DOF) structure: (a) undamped system, (b) linear viscous damping (LVD) system, and (c)
rate-independent linear damping (RILD) system.
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U
R±
n �

1

υ±n( 􏼁
TLυ±n

υ±n( 􏼁
TL

−r

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � −

ψ±n( 􏼁
TMr

2λ±n ψ±n( 􏼁
TMψ±n + ψ±n( 􏼁

TCψ±n
,

􏽢U
R±
n �

1
􏽢υ±n( 􏼁

TL􏽢υ±n
􏽢υ±n( 􏼁

TL
−r

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � −

􏽢ψ±n( 􏼁
TMr

2􏽢λ
±
n

􏽢ψ±n( 􏼁
TM􏽢ψ±n + 􏽢ψ±n( 􏼁

TC􏽢ψ±n
.

(34)

Note that

z
R+
n (t) � z

R−
n (t); (35)

similarly,

􏽢z
R+

n (t) � 􏽢z
R−
n (t). (36)

Using equations (27) and (35), and UR±
n ψ±n �

U
R∓
n ψ∓n � − 􏽢U

R±
n

􏽢ψ±n � − 􏽢U
R∓
n ψ∓n , the imaginary part of

equation (33) vanishes, resulting in

XR
n (t) � 2Re U

R+
n ψ+

n z
R+
n (t) − 􏽢z

R+
n (t)􏽮 􏽯􏽨 􏽩. (37)

Te impulse response in the time domain is given as
follows:

hR
(t) � 􏽘

N

n�1
2Re U

R+
n ψ+

n z
R+
n (t) − 􏽢z

R+
n (t)􏽮 􏽯􏽨 􏽩. (38)

βR
n and γR

n are defned as follows:

2U
R+
n ψ+

n � βR
n + iγR

n , (39)

where

βR
n � Re 2U

R+
n ψ+

n􏼐 􏼑, γR+
n � Im 2U

R+
n ψ+

n􏼐 􏼑. (40)

Finally, an alternative expression of the impulse response
is given as follows:

hR
(t) � 􏽘

N

n�1
βR

n z
Re
n (t) − γR

n z
Im
n (t)􏽨 􏽩,

z
Re
n (t) � Re z

R+
n (t) − 􏽢z

R+
n (t)􏽨 􏽩,

z
Im
n (t) � Im z

R+
n (t) − 􏽢z

R+
n (t)􏽨 􏽩.

(41)

Te impulse-response functions of an LVD system with
eigenvalue λR+

n � −ζR
nω

R
n + iωR

nD are defned as follows:

􏽥h
R

n (t) �

0, (t< 0),

−
1

ωR
nD

e
−ζR

nω
R
n t sinωR

nDt, (t≥ 0).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(42)

Ten,

_􏽥h
R

n (t)≃
0, (t< 0),

−e
−ζR

nωR
n t cosωR

nDt − ζR
nω

R
n

􏽥h
R

n (t), (t≥ 0).

⎧⎨

⎩ (43)

Terefore, the causal approximation of the impulse re-
sponse is given as follows:

hR
(t)≃ 􏽥hR

(t) � − 􏽘
N

n�1
αR

nω
R
n

􏽥h
R

n (t) + βR
n

_􏽥h
R

n (t)􏼔 􏼕, αR
n � ζR

nβ
R
n −

��������

1 − ζR
n􏼐 􏼑

2
􏽲

γR
n . (44)

Employing Duhamel’s integral, the causally approxi-
mated displacement response of the noncausal RILD system
is given as follows:

XR
(t)≃ 􏽥XR

(t) � 􏽚
+∞

−∞
€xg (τ)􏽥hR

(t − τ)dτ, (45)

where 􏽥hR
(t) can be obtained using equation (44), resulting

in

􏽥XR
(t) � − 􏽘

N

n�1
αR

nω
R
n D

R
n (t) + βR

n
_D

R

n (t)􏼔 􏼕, (46)

where

D
R
n (t) � 􏽚

t

0
€xg(τ)􏽥h

R

n (t − τ)dτ,

_D
R

n (t) � 􏽚
t

0
€xg(τ)

_􏽥h
R

n (t − τ)dτ.

(47)

Tis enabled us to use response spectrum approaches to
obtain the maximum dynamic responses of systems con-
taining proportionally or nonproportionally
distributed RILD.
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3. Numerical Verification

3.1. Structural Model. A single-story base-isolated shear
building serves as a structural model that represents low-
frequency structures. Following the Japanese design code of
the base-isolation structure [59], the fundamental natural
period of the base-isolated system when undamped and the
superstructure is assumed to be a rigid body is designed to be
approximately 4.0 s. Te loss factors were η1 � 0.40 and
η2 � 0.04. Te stifness of the second foor was changed to
ensure that the second natural period of the 2DOF systems
was in the range of 0.2–1.2 s. Table 1 summarizes the pa-
rameters of the 2DOF systems.

3.2. Results of Impulse-Response Precursors. Using the data
presented in Table 1 and equation (10), we calculated the
impulse response of the RILD system. As indicated in the
literature [38, 39, 57], an impulsive reaction is maximum at
t � 0 in the nonpositive time region. Terefore, it is only
necessary to set t � 0 to obtain the maximum impulse-
response precursor (i.e., maximum absolute value).

Table 2 presents the maximum impulse-response pre-
cursors in the nonpositive time region (IRPnon−positive),
maximum values of impulse responses in the positive time
region (IRPpositive), and their ratios (IRPnon−positive/
IRPpositive). Te IRP values of the undamped and LVD
systems are both zero and not shown here.

As shown in Table 2, the ratios of IRPnon−positive/IRPpositive
are approximately 0.2 for the 2DOF systems. Te maximum
impulse response of the isolation layer is at time t � 0 in the
nonpositive time region. However, the maximum impulse
response of the roof foor moved to negative around t � 0,
and the roof foor responded behind the isolation layer in the
positive time region as the upper structure became softer
owing to the modal characteristics.

3.3. Earthquake Response

3.3.1. Input Ground Motion. Six earthquake records [60, 61]
were used for modal analysis. Low-frequency records in-
cluded Sakishima, Tohoku, Hachinohe, and Tomakomai.
Te essential ground motion information is listed in Table 3.
Figures 3 and 4 show the time histories and spectral features,
respectively.

3.3.2. Dynamic Responses. Te 2DOF base-isolated systems
were used as structural models to evaluate the performance
of the proposed modal decomposition technique.Te results
of the RILD systems obtained from the fast Fourier trans-
form (FFT) [31] were compared with those obtained using
the proposed approximation method discussed before. In
addition, the dynamic responses of LVD systems with
identical loss factors are presented in this section.

Figure 5 shows a comparison of the peak relative dis-
placement values of the isolation layer. Te results show that
compared with the FFTapproach, the proposed method can
provide an excellent approximation. When the super-
structure changes from rigid to soft, the errors between the

results obtained from the approximated method and FFTare
acceptable and in the range of −11.11%–3.26%. Further-
more, the displacement responses can be controlled similarly
using the RILD and LVD devices, and the RILD device is
only slightly compromised in some cases.

Figure 6 shows the peak relative velocity values of the
isolator. No discernible diferences were observed between
RILD and LVD groups. Te errors between the approxi-
mated method and FFT analysis were in the range of
−6.44%–6.68%, indicating that relative velocities of the
2DOF system were correctly predicted by the proposed
method. However, the proposed method is somewhat
compromised when the second natural period of the
structure reaches the predominant frequency of the ground
motions. For instance, when the second period of the 2DOF
system was 0.8 s, close to the dominant frequency of the
Kobe record (1.45Hz), the error between the approximated
and FFTmethods was up to 6.68%, the largest among the six
ground motions.

Figure 7 shows the peak roof foor acceleration values of
the 2DOF systems. Except for the Tomakomai and
Sakishima records, the LVD system foor response accel-
erations were signifcantly greater than those with RILD.Te
errors between the proposed and FFT methods were small
and in the range of −8.24%–1.91%. Te largest error
(−8.24%) was observed in the Hachinohe record, when the
second natural period was 1.2 s. Te second largest error
occurred in the Kobe record when the second natural period
was 0.8 s, which was relatively close to the dominant fre-
quency of the ground motion.

Consequently, the proposed causal method ofers an
excellent approximation of the peak response of the
structure, thereby providing a new approach for conducting
time-domain analysis of noncausal RILD structures. Te
aforementioned observation indicates that the diferences
between the results of FFT and proposed method tend to
increase when the dominant frequency of the ground mo-
tions near the second natural period of the 2DOF systems.
Tis was because of the excitation of the high mode of the
structure by the ground motion, exacerbating the in-
efciency of the proposed method.

3.3.3. Responses of Separated Modes. To reveal the difer-
ences between the single-mode responses of the 2DOF
nonproportionally distributed RILD and LVD systems, we
obtained the separated-mode responses of the RILD system
using the proposed modal decomposition approach and
compared to those of the LVD system.

Figure 8 shows the displacement responses of the RILD
and LVD systems belonging to the frst and second modes.
Te modal displacements of the frst mode of both systems
were almost identical in all cases. Because the vibration of
the base-isolated structure was dominated in the frst mode,
both systems exhibited similar displacement responses. In
the second mode, the RILD system had smaller displace-
ments compared to the LVD system for all selected earth-
quakes. Te diferences between the modal displacement
responses of the second mode increased as the
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superstructure softened, thus demonstrating the benefts of
RILD in controlling high-mode responses of low-frequency
structures.

Figure 9 shows the modal velocity responses. Te results
for the frst mode did not show any signifcant diferences.
As the second natural period of the 2DOF systems increased,
the velocity responses of the frst mode decreased for all
selected ground motions. In contrast, the velocity response
of the second mode increased as the superstructure became
softer. Furthermore, the diference between the velocity
responses of the second mode of both systems was greater
than those of the frst mode because RILD outperforms LVD

in controlling higher mode responses. Furthermore, the
velocity response for the second mode in the Kobe record
was signifcantly larger than that of the other fve earthquake
records, owing to the large number of high-frequency
components.

Figure 10 shows the modal acceleration responses. Te
acceleration responses of both the frst and second modes of
the system containing RILD were smaller than those of the
system containing LVD. Te acceleration responses of the
frst mode indicated that the RILD device exhibited a con-
stant performance in controlling the foor acceleration re-
sponses and was generally unafected by changes in the

Table 1: Parameters of the two-degree-of-freedom (2DOF) systems.

Cases Floor Mass (tons) Stifness (kN/m) LVD (kN · s/m) RILD (kN/m) First
natural period (s)

Second
natural period (s)

1 2 1.0 492.00 0.6266 19.6800i 3.99 0.201 1.0 4.97 1.2632 1.9896i

2 2 1.0 122.12 0.3110 4.8848i 4.00 0.401 1.0 4.97 1.2681 1.9896i

3 2 1.0 53.55 0.2046 2.4120i 4.03 0.601 1.0 4.97 1.2766 1.9896i

4 2 1.0 29.55 0.1505 1.1820i 4.07 0.801 1.0 4.97 1.2890 1.9896i

5 2 1.0 18.41 0.1172 0.7365i 4.13 1.001 1.0 4.97 1.3063 1.9896i

6 2 1.0 12.34 0.0943 0.4936i 4.20 1.201 1.0 4.97 1.3297 1.9896i

Table 2: Impulse responses of the rate-independent linear damping (RILD) systems.

Cases Floor IRPnon−positive (m) IRPpositive (m) IRPnon−positive/IRPpositive

1 2 −0.0729 0.3669 −0.1988
1 −0.0725 0.3645 −0.1989

2 2 −0.0739 0.3700 −0.1998
1 −0.0722 0.3652 −0.1976

3 2 −0.0758 0.3844 −0.1971
1 −0.0714 0.3598 −0.1985

4 2 −0.0787 0.3755 −0.2097
1 −0.0702 0.3749 −0.1872

5 2 −0.0831 0.4175 −0.1990
1 −0.0683 0.3674 −0.1858

6 2 −0.0891 0.4600 −0.1937
1 −0.0700 0.3362 −0.2083

Table 3: Earthquake records (North-South component).

Records Duration (s) Magnitude (Mw) Peak
ground acceleration (g) Date of occurrence

El Centro 53.74 6.9 0.342 1940/05/18
Tohoku 321.03 9.0 0.333 2011/03/11
Kobe 19.98 6.9 0.818 1995/01/17
Tomakomai 290.00 8.0 0.087 2003/09/26
Hachinohe 234.00 7.9 0.230 1968/05/16
Sakishima 220.00 9.0 0.034 2011/03/11
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Figure 3: Time histories of earthquake records.
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Figure 5: Peak relative displacement values of the isolator. (a) El Centro. (b) Tohoku. (c) Kobe. (d) Tomakomai. (e) Hachinohe.
(f ) Sakishima.
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Figure 7: Peak roof-foor response acceleration values. (a) El Centro. (b) Tohoku. (c) Kobe. (d) Tomakomai. (e) Hachinohe. (f ) Sakishima.
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superstructure stifness. However, the impact of control on
the second mode of both systems difered, considering the
second natural period of the 2DOF systems increased from
0.2 s to 1.2 s.

For the Kobe record, the second mode played a more
signifcant role, thereby indicating that the response accel-
eration was dominated by the second mode. For the

Sakishima record, the amplitude of the acceleration re-
sponses of the second mode was very small, owing to its
inherent characteristics.

Table 4 lists the modal damping ratios of the 2DOF
systems containing RILD and LVD. Evidently, the damping
ratios for the frst mode decrease as the second natural
period increases. However, the damping ratios of the second
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Figure 8: Displacement responses of separated modes. (a) El Centro. (b) Tohoku. (c) Kobe. (d) Tomakomai. (e) Hachinohe. (f ) Sakishima.
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mode increased with the period. In addition, the modal
damping ratios of the RILD system were lower than those of
the LVD system. Larger damping ratios would compromise
the structural acceleration responses. Terefore, although
the loss factors of the RILD and LVD devices were identical,
modal acceleration responses of the RILD systems were
lesser; this was caused by the diferences in modal damping
ratios.

3.4. Application in a High-Rise Building. To further in-
vestigate the feasibility of the proposed modal de-
composition method for a system with more degrees of

freedom, a 10-story shear-fexural building [62] (the pa-
rameters of which are listed in Table 5) is utilized as
a benchmark example, and Table 6 shows the periods and
frequencies of this undamped model.

3.4.1. Displacement Responses of the Multistory Structure.
Te records of Kobe and Tomakomai were used to in-
vestigate the performance of the developed modal analysis
method. Figure 11 shows the relative displacements of the
isolator and 5th and 10th foors. Te proposed method ob-
tained satisfactory results in contrast to the frequency-
domain analysis. Furthermore, the peak relative
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Figure 9: Velocity responses of separated modes. (a) El Centro. (b) Tohoku. (c) Kobe. (d) Tomakomai. (e) Hachinohe. (f ) Sakishima.
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Figure 10: Acceleration responses of separated modes. (a) El Centro. (b) Tohoku. (c) Kobe. (d) Tomakomai. (e) Hachinohe. (f ) Sakishima.

Table 4: Modal damping ratios of the two-degree-of-freedom (2DOF) systems containing rate-independent linear damping (RILD) and
conventional linear viscous damping (LVD) (%).

Second natural period (s) 0.2 0.4 0.6 0.8 1.0 1.2

1st mode RILD 18.87 18.73 18.49 18.14 17.65 16.99
LVD 19.95 19.81 19.57 19.20 18.70 18.01

2nd mode RILD 2.04 2.18 2.43 2.78 3.28 3.95
LVD 3.01 4.04 5.14 6.36 7.75 9.38
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displacements of the three selected foors obtained by the
two diferent methods matched very well, and the dis-
crepancy varied in the ranges of (2.22%–4.89%) and (5.20%–
6.38%) for the Kobe and Tomakomai records, respectively.

3.4.2. Modal Relative Displacements. Figure 12 shows
a comparison of the relative displacements of the isolation
layer of the separated modes of the two systems. Only the
frst three modes are shown here to save space. Evidently,
there is no signifcant diference between the frst modes of
the two damped structures. When the second and third
modes were considered for both the selected records, the
relative displacements of the LVD system were much higher.

3.4.3. Modal Relative Velocities. Figure 13 shows the relative
modal velocities. Te velocity responses of the LVD system
for the frst mode were almost identical to those of the RILD
systems. For the second- and third-order modes, though, the
velocities of the LVD system were signifcantly higher.

3.4.4. Modal Accelerations. Figure 14 shows the modal ac-
celeration responses of the two damping systems to in-
vestigate the actual control efects of the LVD and RILD
devices.Te results clearly demonstrate that the LVD system
experienced a larger acceleration for the frst three modes,
thereby indicating the efciency of the RILD device in re-
ducing the acceleration responses, especially for the high
modes of the multistory structure.

3.4.5. Modal Damping Force. Figure 15 shows the nor-
malized damping forces of the two damping systems (Fd is
the modal damping force and m is the modal mass). Te
results show that the RILD and LVD provide almost
identical damping forces in the isolation layer for the frst
mode. However, the generated control force of LVD is much

larger than that of RILD in the second and third modes,
thereby indicating that maintaining a lower control force is
an advantage of RILD.

3.4.6. Modal Interstory Drift. Figure 16 shows a comparison
of the modal interstory drifts. RILD efectively mitigated the
interstory drift of the frst three modes and the total re-
sponses in the Kobe and Tomakomai records. Te second
mode was dominant in the Kobe record which contained
many high-frequency components. However, the frst mode
was more signifcant in the case of low-frequency ground
motion, that is, the Tomakomai record.

4. Experimental Verification

4.1. Causal Realization of RILD. To overcome the non-
causality of RILD, Keivan et al. [25, 26] proposed a digital
flter to approximate the behavior of RILD (i.e., to ap-
proximate the Hilbert transform (isgn(ω)) using the flter).
Te flter takes the following form:

HC(ω) �
iω − ω1

iω + ω1
. (48)

Terefore, the damping force of RILD is causally realized
by

FR ≃FC � ηk
iω − ω1

iω + ω1
XC(iω). (49)

Equation (49) represents a parallel combination of the
negative stifness (kN � −ηk) and Maxwell elements (con-
structed by connecting a stifness unit kM � 2ηk and a vis-
cous damper cM � 2ηk/ω1 in series) as follows:

FC � −ηk + 2ηk
iω

iω + ω1
􏼠 􏼡XC. (50)

Table 5: Detailed information on the analytical model.

Story
Primary structure

Mass (tons) Stifness (kN/m) Height (m)
10 875 158550 4.0
9 649 180110 4.0
8 656 220250 4.0
7 660 244790 4.0
6 667 291890 4.0
5 670 306160 4.0
4 676 328260 4.0
3 680 383020 4.0
2 682 383550 4.0
1 (isolation layer) 700 20297 2.0

Table 6: Periods and frequencies of the multistory model.

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Periods (s) 4.00 1.00 0.53 0.36 0.28 0.23 0.20 0.18 0.16 0.14
Natural frequencies (Hz) 0.25 1.00 1.88 2.77 3.62 4.31 4.98 5.56 6.25 6.98
Circular frequencies (rad/s) 1.57 6.29 11.83 17.42 22.74 27.10 31.28 34.95 39.27 43.83
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4.2. Experimental Setup. A coil spring unit and oil damper
were designed and fabricated to build a Maxwell-type
damper. Teir characteristics were identifed experimen-
tally, as shown in Figure 17. Te stifness and maximum
frictional force of the coil spring were identifed as 14.50 kN/
m and 163.91N, respectively. Te damping coefcient of the
oil damper is 12.09 kN·s/m.

A ten-story base-isolated building was used as the an-
alytical model, and its parameters are shown in Figure 18.
Te device constructed using the negative stifness and
Maxwell-type damper is called causal rate-independent
linear damping (CRILD) in this section. A viscous

damping element, cc (whose value is 1.83 kN·s/m), was
connected in parallel to kM so as to consider the inherent
friction force of the spring element.

Considering the labor and time costs, the real-time hybrid
simulation (RTHS) [63, 64] was adopted other than con-
ventional shaking table testing. Te entire system was divided
into numerical and physical domains. In the physical
domain, only the Maxwell-type damper was placed on the
shaking table, and the control displacement was applied
using actuators, as shown in Figure 19. Te remainder of
the system was constructed using MATLAB/Simulink.
A negative stifness (kN � −7.25 × 1000 � − 7250 kN/m)

0.4

0.2

0

-0.2

-0.4

Re
l. 

D
is.

 (m
)

(1
0t

h 
Fl

oo
r)

0.4

0.2

0

-0.2

-0.4

Re
l. 

D
is.

 (m
)

(Is
ol

at
io

n 
La

ye
r)

0.4

0.2

0

-0.2

-0.4

Re
l. 

D
is.

 (m
)

(5
th

 F
lo

or
)

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
Time (s)

FFT
Modal Analysis

(a)

0.4

0.2

0

-0.2

-0.4

Re
l. 

D
is.

 (m
)

(1
0t

h 
Fl

oo
r)

0.4

0.2

0

-0.2

-0.4

Re
l. 

D
is.

 (m
)

(5
th

 F
lo

or
)

0.4

0.2

0

-0.2

-0.4

Re
l. 

D
is.

 (m
)

(Is
ol

at
io

n 
La

ye
r)

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300
Time (s)

FFT
Modal Analysis

(b)

Figure 11: Relative displacements of multistory structure. (a) Kobe. (b) Tomakomai.
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Figure 12: Relative displacements of the isolator of separated modes. (a) Kobe. (b) Tomakomai.
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in the CRILD device was achieved by reducing the stifness
of the isolator in the numerical domain rather than using
physical devices.

4.3. Experimental Results. Kobe and Tomakomai records
were utilized in the RTHS, with scale factors of 45% and 30%,
respectively. Because the Maxwell-type damper was small-
scale and multiple dampers were usually installed in an
actual building, the target damping ratio (ξ � η/2 � 0.20)
was achieved by multiplying the measured damping force of
theMaxwell-type damper by 1000 and providing feedback to
the RTHS loop.

Figures 20 and 21 show the power spectral density (PSD)
of the relative displacement, relative velocity, absolute ac-
celeration, and damping force of the isolation layer of the
ten-story structure equipped with the CRILD, LVD, and
ideal RILD devices. In the selected records, the ideal RILD
and LVD systems exhibited similar displacement and ve-
locity responses. Regarding the structure incorporated with
the CRILD device, the experimental results showed that the
CRILD system experienced a smaller acceleration response
than the LVD system, and the damping force generated by
the CRILD was lower than that of the LVD. In the high-
frequency-dominant Kobe record, both the experimental
and numerical results demonstrated that the CRILD and
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Figure 13: Relative velocities of separated modes. (a) Kobe. (b) Tomakomai.
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Figure 14: Modal accelerations of separated modes. (a) Kobe. (b) Tomakomai.
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Figure 15: Modal normalized damping force of separated modes. (a) Kobe. (b) Tomakomai.
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ideal RILD outperformed the LVD in reducing the accel-
eration response and damping force, particularly in the high
modes of high-rise buildings. Tis observation is consistent
with the results presented in Section 3.4.

Because the Tomakomai record has a large number of
low-frequency components and its duration exceeds
300 s, environmental and electric noises have some in-
fuence on the results in the low-frequency region, as

shown in Figure 21. Overall, the RTHS proved the fea-
sibility of realizing an ideal RILD using the proposed
CRILD device and demonstrated that RILD-based de-
vices can provide a promising approach to mitigate the
acceleration responses in the high modes of a high-rise
building and maintain a lower damping force than
conventional LVD devices can in the high-frequency
region.
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Figure 16: Modal interstory drift. (a) Kobe. (b) Tomakomai.
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Figure 17: Identifcation of specimens. (a) Coil spring. (b) Maxwell-type damper.
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CRILD
cbase

kbase

kici

mi

Isolation layer
(Height: 1.0 m)

Story height: 3.6 m

Story number Mass (ton)
Linear

stiffness
(kN/m) 

Inherent
damping
(kN·s/m)

9 1260 131200 7590

8 1260 131200 7590

7 1260 131200 7590

6 1260 131200 7590

5 1260 131200 7590

4 1260 131200 7590

3 1260 131200 7590

2 1260 131200 7590

1 1260 131200 7590

Isolation
layer 1260 18130 0

kN

kM
cM

cc

Order 1 2 3 4 5 6 7 8 9 10
Circular
frequency
(rad/s) 

1.19 10.24 19.98 29.34 37.95 45.68 52.21 57.49 61.39 63.77

Natural
frequency
(Hz) 

0.19 1.63 3.18 4.67 6.04 7.27 8.31 9.15 9.77 10.15

Figure 18: Ten-story base-isolated building.

Displacement meter

Load cell Oil damper

Coil spring

Figure 19: Real-time hybrid simulation (RTHS) of the analytical model.
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5. Conclusions and Discussion

In this study, the impulse-response precursor and modal
decomposition method were investigated for a nonpropor-
tionally distributed RILD system. RTHS experiments were
also conducted to validate the proposed modal analysis
method. Te primary contributions and fndings of this
study are as follows:

(1) Owing to the noncausality of RILD, the expression
for the preimpulse response was frst derived to
address the paucity of relevant studies concerning
the nonproportionally distributed RILD system.
Ten, a modal decompositionmethod was developed
for nonproportionally distributed RILD systems to
ofer an innovative method for performing modal
analysis.

(2) To investigate the feasibility of the proposedmethods
for obtaining preimpulse and modal responses of the
nonproportionally distributed RILD systems, a set of
2DOF systems and a ten-story structure were
employed for numerical analysis. Te proposed
method provided a superior approximation of the
peak dynamic responses of the RILD system as
compared with the conventional FFT approach.

(3) Te RILD and LVD systems had nearly equal modal
displacements and velocities in the frst mode.
However, the displacement and velocity responses of
the high modes of the system containing RILD were
generally smaller than those containing LVD for the
selected records. Te RILD system was less
accelerated in terms of modal acceleration. Main-
taining a damping force lower than that of the LVD is
an advantage of the RILD device.

(4) A coil spring and an oil damper were designed and
manufactured to causally realize RILD. Te RTHS
experiments demonstrated the feasibility of realizing
an ideal RILD using the CRILD device, which can
provide a promising approach to mitigate the ac-
celeration responses in the high modes of a high-rise
building andmaintain a lower damping force than in
conventional LVD devices in the high-frequency
region. In addition, the experimental results vali-
dated the efectiveness of the proposed modal
analysis method.

Tis study is the frst to investigate the impulse-response
precursor and separated modal responses of multistory
nonproportionally distributed RILD systems. It provides
a novel approach for time-domain analysis of the noncausal
RILD system. Tis study frst reveals the diferences in the
modal responses between the RILD and LVD systems.
However, the nonlinearity of the structures is ignored at the
present stage owing to the associated complexity, and
a structure containing hybrid types of damping is reserved
for future studies. Furthermore, application of RILD-based
devices in actual buildings remains to be studied.

Appendix

Te modal coordinates can be expressed as follows [46]:

z
R+
n (t) � S

R+
n e

λ+
n t

, 􏽢z
R+
n (t) � 􏽢S

R+

n e
􏽢λ

+

n t
, (ω> 0),

z
R−
n (t) � S

R−
n e

λ−
n t

, 􏽢z
R−
n (t) � 􏽢S

R−

n e
􏽢λ

−

n t
, (ω< 0).

(A.1)

Terefore,
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whereF[·] is the symbol of the Fourier transform. Ten, we
obtain
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For the case of ω< 0, one needs to adopt the integral
method proposed by Inaudi and Makris [36] and calculate

the integration of the diferential equations backwards in
time for the modal coordinates associated with unstable
poles. Terefore,
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Finally,
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Te Fourier transforms of the modal coordinates asso-
ciated with unstable poles (this are zR−

n (t) and 􏽢zR−
n (t)) are

integrated backwards rather than forwards in time. Simi-
larly, we obtain
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