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The birth of new neurons from unspecialized neural stem and progenitor cells surrounding the lateral ventricles occurs throughout
postnatal life. This process, termed neurogenesis, is complex and multistepped, encompassing several types of cellular behaviours,
such as proliferation, differentiation, and migration. These behaviours are influenced by numerous factors present in the unique,
permissive microenvironment. A major cellular mechanism for sensing the plethora of environmental cues directing this process
is the presence of different channel forming proteins spanning the plasma membrane. So-called large pore membrane channels,
which are selective for the passage of specific types of small molecules and ions, are emerging as an important subgroup of channel
proteins. Here, we focus on the roles of three such large pore channels, aquaporin 4, connexin 43, and pannexin 1. We highlight
both their independent functions as well as the accumulating evidence for crosstalk between them.

1. Introduction

New neurons are produced in the ventricular zone (VZ) of
the lateral ventricles throughout postnatal life [1]. This is a
remarkable developmental process, in which unspecialized
neural stem and progenitor cells (NSC/NPCs) pass through
a complex gauntlet of cell behaviours, such as prolifera-
tion, differentiation, and migration. It is now becoming
increasingly clear that the highly controlled movement of
several ions and small molecules trigger numerous, complex
signaling pathways that underscore the regulation of these
behaviours (recently reviewed in [2, 3]). As follows, there is a
growing body of evidence implicating “large pore” channels
in the control of postnatal VZ neurogenesis. In contrast
to typical ion channels, which are selective for small ions,
large pore channels can additionally (or exclusively) allow
passage of small molecules (neutral or charged). Aquaporin
4 (AQP4) connexin 43 (Cx43), and pannexin 1 (Panx1) are
three such large pore channels that are expressed in postnatal

VZ. Perhaps not surprisingly the roles of these channels
appear to be closely linked with one another and also with the
functions of other ion channels in the regulation of postnatal
VZ NSC/NPC biology.

2. AQP4

There are thirteen known types of AQPs in mammals
(AQP0-12; recently reviewed in [4]). These are categorized
into two primary subgroups based on function: those selec-
tive solely for water (AQP0, AQP1, AQP2, AQP4, AQP5), and
those permeable to water as well as small nonpolar solutes
such as glycerol and urea (AQP3, AQP7, AQP9, and AQP10).
Additional types can conduct ions (AQP6, AQP8), while so-
called “unorthodox” members (AQP11, AQP12) are more
distantly related to the other aquaporins and are expressed
on intracellular membranes [5]. In general, AQP proteins are
comprised of about 300 amino acids with six transmembrane
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α-helices arranged in a right-handed bundle with intracellu-
lar N- and the C-termini [6, 7]. AQP monomers oligomerize
to form tetramers, generating four aqueous pores [8, 9].
Specific motifs within the interhelical loop regions form the
water conduit and selectivity filter [10]. Slight variations
in peptide sequence between different AQPs have generated
variability in the size of the pore. This is part of the basis for
water selectivity (small pore) versus simultaneous water and
nonpolar solute permeability (larger pore) [8].

AQPs 1, 4, and 9 are present in the central nervous system
(CNS), largely in epithelial cells, ependymal cells, and/or
astroglia ([11–14], reviewed in [15, 16]), where they facilitate
movement of water between blood and brain, and between
brain and cerebrospinal fluid compartments. Dysregulation
of cell volume in the brain underlies clinical conditions such
as edema and hypoxia. Water balance also plays a crucial
role in neurogenesis, as NSC/NPCs must move consider-
able amounts of water into or out of the cell to rapidly
change their volume during proliferation, differentiation,
and migration.

The major AQP found in brain, AQP4, is highly enriched
in the neurogenic regions [11, 14, 17], particularly the VZ,
and is the main isoform expressed in adult NSC/NPCs and
ependymal cells [17, 18]. As described above, AQP4 is a
member of the water-only permeable subgroup. Consider-
able AQP8 (water plus small nonpolar solutes) and AQP9
(water plus ions) have also been detected in NSC/NPCs in
culture [18]. In contrast to AQP4, which is more ubiquitous
in the VZ, AQP9 is mainly localized in NSC/NPCs in
the dorsolateral corner [17]; however, its exact functional
significance in NSC/NPC biology remains to be determined.
AQP8 is detected primarily in the mitochondria-enriched
fraction, although whether it is present in neurogenic regions
in situ has not yet been reported [18].

Most of what is currently known about the role of
AQPs in NSC/NPCs comes from recent work on AQP4 [19–
21]. Using AQP4 knockout (KO) mice, Kong et al. [19]
demonstrated that it controls proliferation, survival, migra-
tion, and neuronal differentiation of VZ NSC/NPCs. An
observed impairment in neurosphere formation in AQP4
KO mice was attributed to both increased cell apoptosis and
decreased cell proliferation due to cell cycle arrest in G2/M
phase. Furthermore, upon neurosphere differentiation, the
proportion of immature neurons in the AQP4 KO popula-
tion was significantly lower than in the wildtype population,
whereas there was no significant difference in the proportion
of astrocytes. To help elucidate the underlying mechanism,
the authors investigated the effects of AQP4 loss on Ca2+

oscillations. In NSC/NPCs, L-type Ca2+ channel mediated
Ca2+ fluxes [22, 23] and purinergic receptor- (P2R-) depen-
dent Ca2+ oscillations [24–27] play major roles in directing
neurogenesis (recently reviewed in [2, 3]), in part through
Ca2+-dependent transcription [23]. Interestingly, these P2R-
mediated Ca2+ oscillations can even occur spontaneously
without exogenous stimulation in NSC/NPCs [25, 26]. AQP4
KO increased the frequency but decreased the amplitude
of spontaneous Ca2+ oscillations and suppressed high K+-
induced Ca2+ influx. Given its demonstrated effects on
intracellular Ca2+, it is not surprising that AQP4 KO also

affected the expression of other channels: the expression of
both Cx43 and the L-type voltage-gated Ca2+ channel Cav1.2
subtype were reduced.

3. Cx43

Cxs are a family of vertebrate four-pass transmembrane pro-
teins with intracellular N- and C-termini, that oligomerize
into hexameric channels known as connexons (hemichan-
nels), which, in turn, can connect neighboring cells across the
extracellular space by formation of gap junctions [28]. These
junctions provide a physical link between cells through which
ions, metabolites, and other messengers of up to 1 kDa in
size can diffuse, thereby mediating cell-cell communication
through passage of signaling molecules such as ATP [29],
IP3, and Ca2+ ([30] reviewed in [31, 32]). Gap junction-
independent functions of hemichannels have also recently
been identified, in which similar exchanges between the cell
and its extracellular environment are facilitated (reviewed
in [33]). Furthermore, the variable C-terminal domains of
individual Cxs can exert intrinsic functionality independent
from channel activity (reviewed in [34]), that appears to be
regulated by signaling/adaptor proteins like protein kinases,
phosphatases, and structural proteins (reviewed in [35]).
Cxs have been shown to widely influence physiological
and pathological processes and are key in coordinating
metabolic and electrical activities as well as cell growth and
proliferation (reviewed in [36]), cytoskeletal dynamics [37],
and transcriptional regulation [38–40].

Over twenty mammalian members of the Cx family
have been identified, with each respective isoform originally
named for its molecular weight (reviewed in [41]). Cx43
(gap-junction protein alpha-1, Gja1) is the most widely and
highly expressed Cx in almost every tissue [42], and it is the
predominant isoform within the CNS. Within the developing
CNS, Cx43 is detected in several cell types including astro-
cytes, NSC/NPCs, cortical neurons, and dopaminergic neu-
rons of the developing midbrain [43–49]. Cx43 is critical for
proper CNS formation and organization, likely through its
role in the neurogenic processes of NSC/NPC proliferation
[50], differentiation [47, 51], and migration [52–54] during
development. Interestingly, studies in human and murine
embryonic stem cells have found transcriptional regulatory
elements controlled by the NSC transcription factor SOX2
within the Cx43 gene region [55] and have identified Cx43
as necessary for both neuroectodermal specification [56] and
stem cell proliferation [57].

In the postnatal and adult brain, Cx43 expression
becomes much more highly restricted to astrocytes [58–60].
However, Cx43 remains present in cortical neurons [61],
ependymal cells [44], NSC/NPCs, and migratory neuroblasts
[62–65]. Within the neurogenic VZ and subsequent rostral
migratory stream (RMS), a dramatic increase in Cx43 is
noted between neonatal periods and adulthood [66] in
the astrocytes, NSC/NPCs, and ependymal cells, all of
which exhibit gap-junction-dependent coupling [63, 64, 67].
Within this stem cell environment, Cx43 is further thought to
be involved in hemichannel mediated ATP uptake and release



Stem Cells International 3

[68, 69], contributing to propagation of Ca2+ waves from
intracellular IP3-dependent stores [70, 71]. This Ca2+ release
regulates NSC/NPC cell cycle entry and thus proliferation
[72]. Cx43 hemichannels are also permeable to Ca2+ and
controlled by Ca2+ (for recent studies see [73, 74]).

The data on the role of Cx43 in postnatal VZ neurogen-
esis is somewhat conflicting, and studies have been hindered
by the lethality of the full Cx43 knock-out due to severe
neonatal heart defects [75]. Some lines of evidence point
to a negative regulation of proliferation by Cx43. Within
the subependymal layers and RMS, levels of Cx43 were
inversely correlated with lower levels of DNA synthesis [66].
Intriguingly, this correlation was only mimicked in a primary
cell culture model upon high levels of confluence, indicating
a potential role for Cx43 in contact inhibition. Furthermore,
in vitro studies in mouse Neuro2a neuroblastoma cells, a
commonly used NPC model, demonstrated an increased
doubling-time upon Cx43 overexpression under nongap
junction forming conditions. Interestingly, only the C-
terminal tail was required for this reduced proliferation,
possibly through transcriptional regulatory mechanisms, as
this domain contains a putative nuclear localization signal
[76]. Additional work in Neuro2a cells identified Cx43 as a
Ca2+-dependent regulator of cell volume [77]. Murine PC12
cells, a well-studied pheochromocytoma-derived cell model
for neurite outgrowth, exhibited enhanced NGF-induced
neurite outgrowth when overexpressing Cx43. Interestingly,
untransfected cells within the same dish as those overexpress-
ing Cx43 also demonstrated enhanced neuritogenesis due
to Cx43 hemi-channel-mediated ATP release [78]. Similarly,
using murine embryonal carcinoma P19 cell line, Cx43
(and Gjb2) inhibition resulted in decreased astrocytic and
neuronal differentiation of these cells [79]. In contrast to
these results pointing to a role for Cx43 in negative regulation
of proliferation, other studies suggest Cx43 is a positive
regulator of proliferation. In developing and early postnatal
hippocampus, conditional Cx43 knockout in radial glia
and astrocytes causes severe inhibition of hippocampal
NSC/NPC proliferation [80]. Moreover, embryonic cortical
neurospheres were dependent on Cx43 gap junctional cou-
pling to maintain cells in proliferative state [50], but whether
this is conserved in the postnatal VZ is unknown.

Still, the functional relevance of Cx43 in NSC/NPCs of
the postnatal VZ in vivo remains to be discovered. Currently,
much is assumed from the previously mentioned cell culture
experiments, as well as developmental and postnatal hip-
pocampal studies. Together, it appears a role for Cx43 may
be emerging in VZ NSC/NPC self-renewal, differentiation
and migration, thereby contributing to the regulation of the
postnatal process of neurogenesis.

4. Panx1

Panx1 is part of a three-membered family of proteins with
homology to the invertebrate gap junction forming innex-
ins [81]. However, little concrete evidence exists pointing
towards gap junction functions for Panxs, which are instead
widely considered single-membrane channels (reviewed in

[82–84]). Panx1 monomers have a predicted four-pass
transmembrane sequence, with a conserved intracellular
N-terminus and much longer, variable intracellular C-
terminus. These monomers oligomerize into large hexameric
pores [85] that may be opened by depolarization [86, 87],
increased extracellular K+ (independent of depolarization)
[88, 89], mechanical stimulation [90], NMDAR activation
[91], intracellular Ca2+ [92], or low oxygen and glucose
conditions [93, 94]. Recently, it has been demonstrated that
the C-terminal domain of Panx1 is autoinhibitory, and can
be removed by caspase-dependent cleavage, resulting in con-
stitutive activation of this channel [95, 96]. Furthermore,
Panx1 activation can be inhibited by dramatically increased
extracellular ATP [97] or upon cytoplasmic acidification
[92], as well as through mimetic peptides [98] and channel
blockers [99, 100]. Once activated, the Panx1 pore may
nonselectively pass ions, metabolites, and other signaling
molecules up to 1 kDa in size (reviewed in [82–84]); however,
recent evidence has pointed towards Panx1 as being selective
for anions (e.g., Cl−) and anionic small molecules [101].
These channels are involved in several physiological and
pathological processes, largely by mediating ATP release in
several cell types (reviewed in [82–84]).

Panx1 is found in a wide range of rodent tissues, with
an expression profile similar to that of Cx43 [100]. It is
abundantly expressed in the brain [102, 103]. Importantly,
this relatively newly discovered large pore channel has
recently been identified in postnatal VZ NSC/NPCs and their
immature neuronal progeny [27]. Using Neuro2a murine
neuroblastoma cells and primary postnatal VZ neurosphere
cultures, Panx1 overexpression and inhibition dramatically
increased and decreased NSC/NPC proliferation, respec-
tively. Furthermore, this regulation was partly due to the
ability of Panx1 to release ATP (reviewed in [82, 83, 100,
104]), a potent signalling metabolite, which is released
in sporadic bursts from NSC/NPCs [25]. Released ATP
triggers intracellular Ca2+ mobilization via activation of
P2R signaling [24–27]. Ongoing studies will likely uncover
additional regulatory roles of Panx1 in neurogenesis, as well
as underlying mechanisms.

5. Crosstalk between “Large” Pore Channels and
Convergence of Signaling Mechanisms

Figure 1 summarizes the roles of AQP4, Cx43 and Panx1 in
postnatal VZ NSC/NPCs. Interestingly, there appears to be
multiple levels of crosstalk between each of these large pore
channels. Here, we outline three primary interconnected
ways in which the regulation and function of these large pore
channels converge: solute gradient regulation, cytoskeletal
signaling related to cell volume changes, and nucleotide
signaling.

5.1. Gradient Regulation. The movement of ions and met-
abolites is often dependent on the ability to tightly control
concentration gradients. These gradients cannot be gen-
erated and/or maintained without concomitant control of
water volume. The mechanism underlying the effects of
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Figure 1: Schematic illustration of the interplay between AQP4, Cx43 and Panx1 large pore channels as they mediate cytoskeletal interac-
tions, Ca2+ signaling, transcriptional regulation, ATP flux, and cell-cell communication between VZ NSC/NPCs.

AQP4 loss on Ca2+ oscillations and changes in L-type and
Cx43 channel expression have not been fully elucidated;
however, it is conceivable that these changes could result, in
part, from alterations in ion concentration gradients. Cx43
has also been implicated in volume control (for review see
[105]), perhaps through reciprocal relationships with AQP4,
as described above. Thus, the ion fluxes through Cx43 and
Panx1 are dependent on the capacity of AQP4 to regulate
solute concentration gradients.

5.2. Cytoskeletal Signaling. Proliferating, differentiating and
migrating NSC/NPCs and neuroblasts must make specific
and substantial changes in cell volume and morphology
that undoubtedly require the movement of water molecules.
For example, cell proliferation required for neurosphere
formation is inhibited by a hypertonic medium [106]—in
glioma cells this results in sustained cell swelling following
transient cell shrinkage [107, 108]. The precise details of

volume-sensing signaling mechanisms triggered by AQP4-
mediated water movement that are important for neuro-
genesis remain to be further elucidated. An early study in
cultured astrocytes demonstrated that AQP4 knockdown
also induced alterations of the actin cytoskeleton [109].
Therefore, AQP4-mediated changes in cell volume could
directly regulate Cx43 and Panx1 signaling through stretch
activation of the channels and/or the cytoskeletal-associated
signaling pathways to which they are linked. Recent work has
demonstrated that extracellular matrix stiffness modulates
NSC behaviour [110] and that cytoskeletal-regulating Rho
GTPases mediate the lineage commitment of hippocampal
NSCs [111]. For many years, Cxs have been closely linked
to the cytoskeleton in numerous cell types (e.g., see [37,
112–116], for reviews see [105, 117, 118] with actomyosin-
mediated contractility actually inhibiting Cx43 hemichannel
activity [118]).

As described above, we also now know that Panx1 regu-
lates NSC/NPC proliferation [27] which adds another layer
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of complexity. Previous work has shown that these channels
can be activated by mechanical stress [90]. Further sug-
gesting the potential for positive crosstalk between Panx1
and the actin cytoskeleton in NSC/NPCs, Panx1 has been
demonstrated to interact with the actin cytoskeleton [119]
and drive actin remodeling [120]. Moreover, nucleotide-
dependent mechanisms (e.g., ATP flux, P2R signaling) are
implicated in cytoskeletal remodeling in NSC/NPCs [121].
Interestingly, recent work has demonstrated that, in addi-
tion to regulating Cx43 and the actin cytoskeleton, AQP4
knockdown reduces a maxi volume-regulated anion current
of unknown molecular identity [122]. Given the discovery
of the anion selectivity of Panx1 [123], it is tempting to
speculate that Panx1 is the molecular basis of this enigmatic
maxi volume regulated anion channel—which, incidentally,
also mediates ATP release [124].

5.3. Nulceotide Signaling. Purinergic signaling mechanisms
also further link Cx43 and Panx1, albeit somewhat contro-
versially. Prior to the discovery of Panx1, channel-mediated
ATP release was mainly attributed to Cx43 hemichannels.
Interestingly, Cx43 expression also regulates P2R expression
[26] in embryonic VZ NSC/NPCs. Cx43 hemichannel-
mediated ATP release was heavily studied in astrocytes
(e.g., see [68, 125]), however, this role has recently been
challenged in favour of Panx1 [126]. Importantly, while Cx43
did not appear to form hemichannels in Xenopus oocytes
[127], numerous studies in mammalian cells have elucidated
the intricacies of Cx43 hemichannel activity (e.g., see [73,
74]). Furthermore, the cross-inhibition of Cx hemichannels,
Panxs, and volume-activated ion channels by certain phar-
macological tools is now well known [98, 104, 128], adding
further levels of complexity as several previously identified
Cx channel blockers are now known to inhibit Panx1 with
equal or greater efficacy. Whether Cx43 has hemichannel
activity in postnatal VZ NSC/NPCs may thus be more of an
open question than was previously thought and further work
is clearly needed to elucidate its role. Given that we now know
that Panx1 appears to play an important role in purinergic
signaling in NSC/NPCs, likely in part through mediating
ATP release [27], it will be important to determine if and
how Panx1 and Cx43 functionally interact in the postnatal
VZ. Might there be crosstalk between Cx43 and Panx1 in ATP
release and downstream purinergic signaling in the postnatal
VZ? Furthermore, what is the added value of having both
types of channels? Distinctions between Cx43 and Panx1
signaling may potentially lie in differences in regulation by
internal and external Ca2+ concentrations, ion selectivity,
single channel conductance, and/or involvement in separate
protein complexes and signaling pathways (for reviews, see
[83, 84, 117, 118, 129] and also see recent developments
[73]). These and other similar questions will undoubtedly be
the focus of future work.

6. Conclusions and Perspectives

Here, we have reviewed literature on the roles of three large
pore ion channels, AQP4, Cx43, and Panx1 in the regulation

of postnatal VZ neurogenesis. A common thread that has
emerged during this process is that the regulation and
functions of these channels seem to intimately connected
(Figure 1).
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