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Constraints for the application of MSCs for bone reconstruction include restricted self-renewal and limited cell amounts. iPSC
technology presents advantages over MSCs, providing homogeneous cellular populations with prolonged self-renewal and higher
plasticity. However, it is unknown if the osteogenic potential of iPSCs differs from that of MSCs and if it depends on the
iPSCs originating cellular source. Here, we compared the in vitro osteogenesis between stem cells from human deciduous teeth
(SHED) and MSC-like cells from iPSCs from SHED (iPS-SHED) and from human dermal fibroblasts (iPS-FIB). MSC-like cells
from iPS-SHED and iPS-FIB displayed fibroblast-like morphology, downregulation of pluripotency markers and upregulation of
mesenchymal markers. Comparative in vitro osteogenesis analysis showed higher osteogenic potential in MSC-like cells from iPS-
SHED followed by MSC-like cells from iPS-FIB and SHED. CD105 expression, reported to be inversely correlated with osteogenic
potential in MSCs, did not display this pattern, considering that SHED presented lower CD105 expression. Higher osteogenic
potential of MSC-like cells from iPS-SHED may be due to cellular homogeneity and/or to donor tissue epigenetic memory. Our
findings strengthen the rationale for the use of iPSCs in bone bioengineering. Unveiling themolecular basis behind these differences
is important for a thorough use of iPSCs in clinical scenarios.

1. Introduction

Clinical demand for bone tissue is evident to supplant bony
structures lost due to trauma, disease, or congenital mal-
formation. Cell replacement therapies represent a promising
strategy for bone engineering, and human mesenchymal
stem cells (MSCs) isolated from various adult tissues have
been extensively investigated as a potential cell source for
bone regenerative treatments [1, 2]. However, large-scale
applications are constrained since MSCs are found in limited
amounts, are highly heterogeneous, and their long-term
in vitro expansion can lead to senescence and sponta-
neous differentiation [3, 4]. Additionally, the differentiation

potential ofMSCsmay vary depending on the tissue of origin
[5].

Generation of human induced pluripotent stem cells
(hiPSCs) was first achieved using dermal fibroblasts [6,
7]. Thereafter, hiPSCs have been derived from an ample
variety of starting cells, including MSCs. Reprogramming
MSCs to hiPSC is an attractive approach to circumvent
issues associated with the direct use of MSCs since it allows
the production of cells with robust in vitro self-renewal
capacity and with differentiation multipotential. Controlling
differentiation cues in vivo is a significant challenge and direct
transplantation of pluripotent stem cells may result in tumor
formation [8]. Therefore, derivation of MSC-like cells from
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pluripotent stem cells has been pursued by a number of
researchers [9–11].

Most types of MSCs are not easily obtained using min-
imally invasive procedures. Stem cells from human exfoli-
ated deciduous teeth (SHED) can be easily isolated from
a readily accessible tissue source, expanded under simple
culture conditions, and banked. Even though SHED have
been reported to be especially useful to restore bone [12, 13],
as mentioned above, their inherent population heterogeneity
and limited expansion capacity restrict their use for thera-
peutic purposes. While hiPSCs have been generated from
SHED (iPS-SHED) [14], there is no report exploring the in
vitro osteogenic potential of MSC-like cells derived from
iPS-SHED populations. Therefore, the goal of this study is
threefold: (1) to verify if MSC-like cells from iPS-SHED
and SHED isolated from the same donors exhibit similar
in vitro osteogenic potential; (2) to compare the osteogenic
potential of MSC-like cells from iPS-SHED with MSC-like
cells from hiPSCs derived from mature dermal fibroblasts
(iPS-FIB), considered the most accessible cell source for
iPSC generation; (3) to compare the expression of CD105
between these cellular populations, which has been inversely
correlated with an increased osteogenic potential [15].

2. Materials and Methods

2.1. Isolation of Stem Cells from Human Exfoliated Dental
Tissue (SHED), HumanDermal Fibroblasts, and Generation of
Human Induced Pluripotent Stem Cells (hiPSCs). SHEDwere
obtained from teeth of 6 independent subjects by enzymatic
digestion of pulp from deciduous teeth as described inMiura
et al., 2003 [12]. Human adult dermal fibroblasts, the most
accessible and feasible cell source for iPSC generation [14],
were obtained according to the protocol detailed inAasen and
Belmonte 2010, adapted for fibroblast isolation [16]. hiPSCs
were obtained from SHED from 2 independent subjects (3
clones derived from each) and fibroblast cell populations
from 3 independent subjects (2 clones each). SOX2, c-MYC,
OCT4, and KLF4 ectopic expression were induced through
retroviral transduction, as originally reported in Takahashi
et al., 2007 [6]. Two days after transduction, SHED and
fibroblasts were cocultivated with irradiated murine embry-
onic fibroblasts (Millipore) in embryonic stem cell medium
Dulbecco’s modified Eagle/F12 medium (DMEM/F12) sup-
plemented with 2mM GlutaMAX-I, 0.1mM nonessential
amino acids, 55 uM 2-mercaptoethanol, 30 ng/mL of bFGF,
and 20% of knockout serum replacement all provided by Life
Technologies. Typical hiPSC colonies formed on feeder cells
were transferred to matrigel (BD-Biosciences) coated plates
and expanded inEssential 8Medium (Life Technologies) sup-
plemented with 100 ug/mL of normocin (Invivogen). hiPSCs
displayed embryonic stem cell-like morphology, expressed
pluripotency markers (NANOG, OCT3, OCT4), and dis-
played trilineage differentiation potential after embryoid
body differentiation and in vivo teratoma formation (see
Supplementary Figure 1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/249098). This project
was approved by the local ethical committee (Protocol num-
ber 121/2001-FR. 435054).

2.2. Derivation of MSC-Like Cells from iPS-SHED and
iPS-FIB. iPS-SHED and iPS-FIB colonies from confluent
plates were detached with accutase (Life Technologies).
hiPSC colonies were partially dissociated via manual pipet-
ting and the cells were plated onto matrigel-coated tissue
culture dishes at 1 × 104 cells/cm2 in MSC differentia-
tion culture medium (Dulbecco’s modified Eagle medium
High Glucose—DMEM with 10% fetal bovine serum, 1%
penicillin/streptomycin, 1% nonessential amino acids, and
5 ng/mL of bFGF) for 14 days with media changes every 3
days. For subsequent passages, single-cell suspensions were
prepared using TrypLE reagent (Life Technologies) and cells
were passaged with a 1 : 3 split ratio in standard culture flasks
(Corning) without matrigel coating.

2.3. Characterization of MSC-Like Cells from iPS-SHED and
from iPS-FIB. SHED and MSC-like cells from iPS-SHED
and from iPS-FIB were harvested and resuspended to 105
cells in 100 uL of PBS containing 1% BSA. Cells were sep-
arately labeled with FITC, PE, PE-Cy5, PERCP-Cy5.5, or
APC-H7 conjugated rat anti-human antibodies CD29, CD31
(Biolegend), CD34, CD45, CD73, CD90 CD105, and CD166
(Becton Dickinson) on ice and protected from light for
40min. An isotype-matched mAb was used as a control
(Becton Dickinson). Data were acquired and analyzed with
the FACSAria II cytometer and CellQuest software (Becton
Dickinson). Multipotential differentiations of MSC-like cells
from iPS-SHED and from iPS-FIB were performed as pre-
viously described by de Mendonça Costa et al., 2008 [13],
and representative pictures of adipogenesis, osteogenesis, and
chondrogenesis were included as supplementary Figure 2.

2.4. Real-Time Quantitative PCR. Total RNA was obtained
from cell populations with the use of Nucleospin RNA II
extraction kit (Macherey-Nagel) following manufacturer’s
recommendations. Briefly, one microgram of total RNA
was converted into cDNA using Superscript II (Life Tech-
nologies), according to the manufacturer’s recommenda-
tions. Real-time quantitative PCR reactions were performed
with 2x SYBR Green PCR Master Mix (Life Technolo-
gies) and 25 nM–200 nM of each primer. Fluorescence was
detected using ABI Prism 7500 Sequence Detection Sys-
tem, under standard temperature protocol. Primer pairs
were designed with Primer-BLAST (http://www.ncbi.nlm
.nih.gov/tools/primer-blast/; primer sequences are listed in
Table 1, and their amplification efficiencies (𝐸) were deter-
mined by serial cDNA dilutions log

10
-plotted against Ct

values, in which𝐸 = 10−1/slope. Expression of target genes was
assessed relative to a calibrator cDNA (ΔCt). Finally, GeNorm
v3.4 [17] was used to determine the most stable endogenous
controls (among ACTB, TBP, and HMBS) and calculate
normalization factors for each sample. The final expression
values were determined based on a previous method [18],
dividing 𝐸−ΔCt by the corresponding normalization factor.

2.5. In Vitro Osteogenic Induction. For osteogenic induction,
MSC-like cells from iPS-SHED and from iPS-FIB were
plated in 12-well plates (4 × 104 cells per well) and after
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Table 1: Primers used for real-time quantitative PCR experiments.

Target NM Forward primer Reverse primer
OCT3 (pluripotency) NM 001173531.1 gtggtcagccaactcgtca ccaaaaaccctggcacaaact
OCT4 (pluripotency) NM 002701.3 cctcacttcactgcactgta caggttttctttccctagct
NANOG (pluripotency) NM 024865 tggacactggctgaatccttc cgttgattaggctccaaccat
RUNX2 NM 001024630.3 agtggacgaggcaagagtttc gttcccgaggtccatctactg
ALP NM 000478.4 gatacaagcactcccacttcatctg ctgttcagctcgtactgcatgtc
BGLAP NM 199173 ggcgctacctgtatcaatgg gtggtcagccaactcgtca
COL1A1 NM 000088.3 gggccaagacgaagacat caacacccttgccgttgtcg
DLX5 NM 005221 accagccagaagaagtgac ccttctctgtaatgcggcca
CD105 (ENG) NM 001144950 tgcacttggcctacaattcca agctgcccactcaaggatct
ACTB (endogenous control) NM 001101 tgaagtgtgacgtggacatc ggaggagcaatgatcttgat
TBP (endogenous control) NM 001172085 gtgacccagcatcactgtttc gcaaaccagaaacccttgcg
HMBS (endogenous control) NM 001024382 agcttgctcgcatacagacg agctccttggtaaacaggctt

3 days, medium was replaced with osteogenic induction
medium (Stem Pro Osteogenesis Kit-Life Technologies).
Culture medium was changed every 2-3 days and cultures
weremaintained for 21 days. After 9 days of osteogenic induc-
tion, alkaline phosphatase activity was quantified through
a biochemical assay: cells were treated with phosphatase
substrate (Sigma-Aldrich), and the resulting p-nitrophenol
was quantified colorimetrically using a Multiskan EX ELISA
plate reader (Thermo Scientific) at 405 nm. After 21 days
mineralization of extracellular matrix was assessed through
alizarin red staining. Briefly, cells were washed three times
with PBS, fixed with a 70% ethanol solution for 30 minutes at
room temperature, followed by three distilled water washes,
and finally stained with a 0.2% alizarin red S solution (Sigma-
Aldrich) for 30 minutes at room temperature. After three
washes with PBS, plates were air-dried at room tempera-
ture; pictures were taken. Staining was removed with 20%
methanol/10% acetic acid solution and measured colorimet-
rically using a Multiskan EX ELISA plate reader (Thermo
Scientific) at 450 nm. von Kossa staining was also performed
after 14 and 21 days of osteogenic induction: cell cultures were
washed once with PBS, a 1% silver nitrate solution was added,
and the plate was exposed to UV light for 40 minutes. After
UV light exposure the plate was rinsed with distilled water.
Sodium thiosulfate (3%) was added for 5 minutes, the plates
were then rinsed inwater, andVanGieson solutionwas added
for 5 minutes. Plates were washed with 100% ethanol and air-
dried for image analysis.

2.6. Statistical Analysis. All experiments were performed
in triplicate. Unpaired Student’s 𝑡-test was used for single
comparisons. Error bars in bar graphs represent standard
deviation. The level of statistical significance was set at 𝑃 <
0.05.

3. Results

After 12 days of induction of iPS-SHED and iPS-FIB with
MSC medium under feeder-free conditions, MSC-like cells
derived from iPS-SHED and from iPS-FIB achieved 80%
confluence in 25 cm2 flasks and showed a spindle-shaped

fibroblast-like morphology (Figure 1(a)). OCT3, OCT4,
NANOG, and ALPmRNAs were significantly downregulated
in MSC-like cells from iPS-SHED and from iPS-FIB when
compared with the original hiPSC populations (𝑃 < 0.05,
Figures 1(b󸀠) and 1(b󸀠󸀠)). Moreover MSC-like cells from
iPS-SHED and from iPS-FIB expressed high levels of
mesenchymal markers (CDs 29, 73, 90, and 105 and CD 166)
and low levels of endothelial (CD 31) and hematopoietic
(CDs 34 and 45) markers (Figure 2).

Next, we assessed the in vitro osteogenic potential of
MSC-like cells from iPS-SHED, MSC-like cells from iPS-
FIB and SHED during early in vitro osteogenesis by quan-
tifying gene expression of key osteogenesis markers (DLX5
and RUNX2, two early transcription factors associated with
osteogenesis,ALP andCOL1A1, two early osteoblast markers,
and BGLAP, a late osteoblast marker). ALP gene expression
was upregulated in all cellular populations from day 2 to day
6 but showed higher expression in days 4 and 6 in MSC-
like cells from iPS-SHED and from iPS-FIB in comparison
with SHED (𝑃 < 0.001). DLX5 peaked at day 2 in MSC-like
cells from iPS-SHED and from iPS-FIB and was upregulated
in SHED at all time points (𝑃 < 0.001). RUNX2 was also
upregulated in SHED until day 6 of osteogenic induction, in
comparison with MSC-like cells from iPS-SHED and from
iPS-FIB (𝑃 < 0.001). COL1A1 was upregulated in MSC-
like cells from iPS-SHED and in SHED from day 2 to day 6
(𝑃 < 0.001) but showed no significant upregulation in MSC-
like cells from iPS-FIB during this period. BGLAP was not
upregulated during this early stage of osteoinduction in any
cellular population, as expected for a late osteoblast marker
(Figure 3(a)).

ALP enzymatic activity was higher in MSC-like cells
from iPS-SHED when compared with MSC-like cells from
iPS-FIB (2.3-fold increase, 𝑃 < 0.01) and with SHED
(2.54-fold increase, 𝑃 < 0.001) after 9 days of in vitro
osteoinduction (Figure 3(b)). Alizarin red S staining revealed
more matrix mineralization in MSC-like cells from iPS-
SHED when compared with SHED (4.36- fold increase,
𝑃 < 0.001) and with MSC-like cells from iPS-FIB (1.45-
fold increase, 𝑃 < 0.01) after 21 days of osteoinduction
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Figure 1: (a) Morphology of undifferentiated hiPSC colonies cultured on matrigel and MSC-like cells from iPS-SHED and iPS-FIB after
12 days of in vitro mesenchymal induction. Scale bar = 100 um. (b) Real-time quantitative PCR analysis of pluripotency markers in
undifferentiated hiPSCs ((b󸀠) SHED and (b󸀠󸀠) fibroblasts) and in MSC-like cells from iPS-SHED and from iPS-FIB. ACTB, TBP, and HMBS
were used as endogenous controls. Values represent means +/− SD, 𝑃 < 0.05 (∗), 𝑃 < 0.01 (∗∗), and 𝑃 < 0.001 (∗∗∗).

(Figure 3(c)). In this time point, MSC-like cells from iPS-
FIB showed a 2.99-fold increase (𝑃 < 0.001) in mineralized
matrix production when compared with SHED. These data
were validated by von Kossa staining after 14 and 21 days of in
vitro osteogenesis (Figure 3(e)).

Finally, we compared the expression of CD105 mRNAs
between SHED, MSC-like cells from iPS-SHED and from
iPS-FIB and found a lower expression of this gene in SHED
when compared with the latter cellular populations (𝑃 <
0.001, Figure 3(d)).

4. Discussion

iPSC technology has gained attention to engender cellular
populations to be used in tissue engineering, displaying self-
renewal, pluripotency, and differentiation plasticity similar
to embryonic stem cells. Furthermore, the use of hiPSCs is
not hindered by the ethical issues associated with the use
of human embryos and permits the generation of therapeu-
tically relevant cell types genetically compatible to patients,
evading rejection drawbacks that may follow transplantation
of nonautologous cells [19].
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Figure 2: Representative surface antigen profiling of SHED,MSC-like cells from iPS-SHED and from iPS-FIB labeled with antibodies against
mesenchymal, endothelial, and hematopoietic antigens. White histograms represent isotype controls and grey histograms represent the
fluorescence of conjugated antibodies for each antigen. Mean expression rates are indicated above each graph and displayed as mean +/−
SD.

There is an increasing interest in investigating iPSCs for
bone regenerative therapies and a series of studies have gen-
erated murine iPSCs and assessed their direct differentiation
towards osteoblasts [20–23]. From a safety point of view,

the use of progenitor cells instead of undifferentiated iPSCs
for therapeutic purposes is advantageous since progenitor
cells are already primed for a specific differentiation pathway
and tumor formation risk is reduced [24]. Moreover, recent
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Figure 3: Continued.
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Figure 3: (a) Real-time quantitative PCR analysis of alkaline phosphatase (ALP),DLX5, RUNX2, BGLAP, andCOL1A1 inMSC-like cells from
iPS-SHED, MSC-like cells from iPS-FIB and SHED. ACTB, TBP, and HMBS were used as endogenous controls. (b) Alkaline phosphatase
activity quantification in cells cultured for 9 days in osteogenic medium. Values represent means +/− SD, 𝑃 < 0.01 (∗∗), and 𝑃 < 0.001 (∗∗∗).
(c) Alizarin red S staining quantification in cells cultured for 21 days in osteogenic medium. Values represent means +/− SD, 𝑃 < 0.001 (∗∗∗).
(d) Real-time quantitative PCR analysis of CD105 in undifferentiated SHED and MSCs from iPS-SHED and from iPS-FIB. ACTB, TBP, and
HMBS were used as endogenous controls. Values represent means +/− SD, 𝑃 < 0.001 (∗∗∗). (e) Representative pictures of alizarin red S (after
21 days of in vitro osteoinduction, with 5 and 10x magnification) and von Kossa staining (after 14 and 21 of in vitro osteogenic induction, with
5 and 10x magnification) of mineralized deposits in MSC-like cells from iPS-SHED, MSC-like cells from iPS-FIB and SHED. Basal growth
medium free of osteoinduction factors was used in the control group (with 5x magnification).

reports suggest that some of the reparative effects associated
with MSC transplantation are not mediated by cellular
differentiation per se but by paracrine factors secreted by
them [25]; Fanganiello et al., submitted.

The MSC differentiation from hiPSCs seemed to be
successful as both MSC-like cells from iPS-SHED and from
iPS-FIB displayed typical mesenchymal cell morphology,
downregulation of pluripotency markers and similar cell
surface antigen profiles and multipotential when compared
with SHED. After in vitro osteoinduction, upregulation of
osteogenesis markersDLX5 andRUNX2 in SHED in compar-
ison with MSC-like cells from iPS-SHED and from iPS-FIB
may indicate a previous commitment of this cell population
towards the osteogenic lineage. However, in days 4 and 6

of osteoinduction, MSC-like cells from iPS-SHED and from
iPS-FIB presented upregulation of ALP, a metalloenzyme
known as a key early marker of osteogenesis. MSC-like cells
from iPS-SHED also had more ALP enzymatic activity when
compared with MSC-like cells from iPS-FIB and with SHED
in midstage osteogenesis. MSC-like cells from iPS-SHED
and from iPS-FIB produced significantly more mineralized
extracellular matrix when compared with SHED. Overall,
MSC-like cells from iPS-SHEDwere able to undergo induced
in vitro osteogenesis in a more efficient fashion than MSCs
from iPS-FIB or from the originating SHED populations.

One of the factors that could explain the higher efficiency
of the in vitro osteogenesis in MSC-like cells from iPS-SHED
and iPS-FIB in comparison with SHED might be related to
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the presence of a more homogeneous cellular population
attributed to the direct plating protocol adopted. We have
decided to choose the iPSC direct plating method over the
embryoid body (EB) protocol since EBs are known to contain
a heterogeneous mixture of cells with different degrees of
multipotency that may limit their net osteogenic potential
[26–28]. Accordingly, enhanced osteogenic differentiation
has been associated with direct plating [29–32], and this
method has been proposed to yield uniform batches of
osteoprogenitor cells [31].

We also tested if the difference in osteogenic potential
between the MSC-like cells from iPS-SHED from iPS-FIB
and SHED is related to CD105 expression, as its lower
expression has been associated with a higher osteogenic
potential in MSCs harvested from human adipose tissue
(hASCs) when compared with MSCs with higher CD105
expression [15]. Interestingly we found CD105 expression to
be significantly lower in SHED when compared with both
MSC-like cells from iPS-SHED and from iPS-FIB.Therefore,
the higher osteogenic potential in this case may be due to
other factors.

The difference in osteogenic potential here reported
between MSC-like cells from iPS-SHED and from-iPS-FIB
may possibly be related to a somatic epigenetic memory
of the tissue of origin [33]. Derivation of pure populations
of functionally differentiated cells from iPSCs is still chal-
lenging and different cell types show variable susceptibility
to reprogramming. In fact, MSCs derived from iPSC lines
from different tissues have been shown to exhibit variability
in their differentiation profiles. Hynes et al. 2014 reported
that MSC-like cells from iPSCs generated from periodon-
tal ligament displayed higher osteogenic capacity both in
vitro and in vivo when compared to MSC-like cells from
iPSCs generated from lung and gingival fibroblasts, which
was attributed to epigenetic memory of the donor tissue
[34]. In another study, Sanchez-Freire et al. 2014 reported
higher cardiac differentiation efficiency in MSC-like cells
derived from iPSCs generated from cardiac progenitors in
comparison with dermal fibroblasts from the same donor,
whichwas demonstrated to be due to the retention of residual
methylation signatures of the tissue of origin [35].

5. Conclusions

Our findings provide an important argument towards the use
of iPSCs in tissue bioengineering since MSC-like cells from
iPS-SHED and from iPS-FIB displayed higher osteogenic
potential than SHED. We also suggest that cellular homo-
geneity and tissue of origin are important factors to be
considered when planning to use iPSCs in bone regenerative
medicine. CD105 does not seem to be a main factor involved
in these differences. The dissection of the molecular basis
of osteogenic differentiation in MSC-like cells from iPSC-
derived cells may furnish insights into the clinical usefulness
of iPSCs from different sources.
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