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In recent years, induced pluripotent stem cells (iPSCs) were widely used for investigating the mechanisms of Parkinson’s disease
(PD). Somatic cells from patients with SNCA (𝛼-synuclein), LRRK2 (leucine-rich repeat kinase 2), PINK1 (PTEN induced putative
kinase 1), Parkinmutations, and at-risk individuals carryingGBA (𝛽-glucocerebrosidase)mutations have been successfully induced
to iPSCs and subsequently differentiated into dopaminergic (DA) neurons. Importantly, somePD-related cell phenotypes, including
𝛼-synuclein aggregation, mitophagy, damaged mitochondrial DNA, and mitochondrial dysfunction, have been described in these
iPSCs models, which further investigated the pathogenesis of PD. In 2007, Takahashi et al. and Vodyanik et al. generated iPSCs
from human somatic cells for the first time. Since then, patients derived iPSCs were applied for disease modeling, drug discovery
and screening, autologous cell replacement therapy, and other biological applications. iPSC research has now become a hot topic in
a wide range of fields. This review summarizes the recent progress of PD patients derived iPSC models in pathogenic mechanism
investigation and potential clinical applications, especially their promising strategy in pharmacological study and DA neurons
transplantation therapy. However, the challenges of iPSC transplantation still exist, and it has a long way to go before it can be used
in clinical application.

1. Introduction

Induced pluripotent stem cells (iPSCs) are similar to human
embryonic stem cells in their morphology, self-renewing
capacity, and differentiation potential to any cell types. In
2007, Takahashi et al. and Vodyanik et al. induced adult
human somatic cells into iPSCs by transferring a series of
specific transcript factors (Oct4, Sox2, Klf4, c-Myc or Oct4,
Sox2, Nanog, Lin28) [1, 2], which represented a new method
to generate disease-specific pluripotent stem cells from the
patients. From then on, the researches of iPSCs have come
into a new milestone. Takahashi and Vodyanik generated
iPSCs with retroviruses carrying transcription factors and
oncogene c-Myc, which raise the risk of tumorigenicity and
other side effects. Also, low efficiency of vector expression
may limit the differentiation potential of the iPSCs. To over-
come the potential safety risk and low efficiency, the protocols
of iPSCs reprogramming and DA neuron generation have

constantly been refined. Safer and more effective methods
using nonintegrating vectors, synthetic modifiedmRNA, and
small molecules (for SB431542, PD0325901, andThiazovivin)
instead of transgene integration have been attempted in
many studies, which can directly activate the expression of
transcription factors in iPSC generation through different
ways. Furthermore, the course of generation can be con-
trolled in a strict way and reduce the uncertainty risk of
genetic alteration and transformation to the greatest extent.
The new methods not only saved time but also improved
reprogramming efficiency and safety [3–7], which provided
an alternative strategy for diseasemodeling and clinical study.

2. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common late-
onset neurodegenerative disorder, clinically characterized
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by a series of motor symptoms such as bradykinesia, rest-
ing tremor, rigidity, and postural instability as a result of
dopaminergic (DA) neuron degeneration in the substantia
nigra pars compacta (SNpc), accompanied with sleep disor-
ders, cognitive decline and other nonmotor symptoms [8].
PD is a complex disease with the combination of environ-
mental exposures and genetic factors. About 10% of PD
patients have a positive family history and a series of genes
such as SNCA, LRRK2, VPS35, Parkin, PINK1,DJ-1, PLA2G6,
and ATP13A2 were cloned in familial PD patients [9]. The
pathogenesis of PD is still elusive; mitochondria dysfunction,
𝛼-synuclein accumulation, mitophagy, and oxidative stress
were thought to play an important role in the occurrence of
PD [8].

Over the past hundred years, the therapeutic methods
for PD were gradually and steadily developed. Dopaminergic
therapy is the most effective symptomatic treatment drug
for PD, while deep brain stimulation (DBS), entering into
a new era of human neural-network modulation, improved
the life quality of patients greatly [10]. Since the discovery
by Takahashi and Vodyanik, iPSCs generated from patient’s
somatic cells have opened up a new avenue to exploring
the mechanisms of PD and developing the stem cell-based
personalized therapeutic strategy.

3. iPSCs Models for PD

Over the years, iPSCs derived from the patients and then dif-
ferentiated into disease-relevant cell types have been widely
used to mimic the phenotype of diseases and have achieved
great progress in pathogenic mechanism studies. In terms of
nervous system disorders, patient-derived iPSCs have been
used to differentiate into motor neurons, astrocytes, DA
neurons, or other cell types of the affected diseases. iPSCs
generated from Alzheimer’s disease (AD), Amyotrophic Lat-
eral Sclerosis (ALS), spinal muscular atrophy (SMA), and
PD patients with genetic mutations were successfully differ-
entiated into neuronal cells, and disease-related pathologic
phenotypes have been identified in these cells. Furthermore,
patient iPSC-derived neuronal cells offer a direct insight into
the early-stage and progressive pathologic alternations in
disease, further recapitulating the molecular pathogenesis of
diseases [11–14].

Since PD is a kind of disease with progressive degenera-
tion of dopaminergic (DA) neurons, iPSC differentiated DA
neurons seem to be the appropriate model to decipher physi-
ological and pathological mechanisms of PD. As is described
above, iPSCs can be generated by specific transcription
factors, viral vector, or other small molecules and are then
differentiated into DA neurons. The methods of DA neurons
differentiation include targeted differentiation and direct
lineage conversion. Targeted differentiation strategy is similar
to embryonic stem cell (ESC) induction, which has been
widely used to differentiate DA neurons, and the protocol
has been constantly modified or refined. In 2009, Chambers
and colleagues demonstrated that, with the combination of
Noggin and SB431542, two inhibitors of SMAD signaling in
differentiation and the efficiency of iPSCdifferentiation could
be improved, which allowed for the complete induction into

neuronal cells [15]. The second strategy for obtaining DA
neurons is the direct lineage conversion. Somatic cells can
be first induced into neural precursor cells (iNPCs), which
are then differentiated into astrocytes and DA neurons. More
importantly, as the generation of iNPCs is a gradual process,
the donor transcription factors are silenced over time, which
lowers the risk of tumors. Direct lineage conversion provides
a new source of human cells for stem cell based replacement
therapy and holds promise for application in drug discovery
and screening [16, 17].

In 2009, Soldner et al. generated iPSCs from sporadic
PD patients by using modified lentiviruses carrying loxP
sites flanking the integrated provirus for the first time. This
strategy not only improved the efficiency of reprogramming
but also allowed the removal of the transgene sequences
to generate iPSCs free of reprogramming factors [14]. Over
the past few years, somatic cells from patients with SNCA,
LRRK2, PINK1, and Parkinmutations and at-risk individuals
carrying GBA mutations have been successfully induced to
iPSCs and differentiated into DA neurons. With the help of
these techniques, the pathogenesis of PD has become clearer.

3.1. SNCA. SNCA encodes 𝛼-synuclein protein. Missense
mutations (such as A53T, E46K, and A30P) and genomic
multiplications (duplication and triplication) of SNCA were
reported in many autosomal dominant PD patients. Patients
with SNCA mutations were characterized by a loss of DA
neurons in SNpc and 𝛼-synuclein accumulation in neurons—
the pathological hallmark of PD [8]. However, the definitive
pathogenic mechanism caused by SNCA mutations is still
elusive, although it is widely believed that 𝛼-synuclein aggre-
gation and cellular toxicity may contribute to the course of
neuronal degeneration [18, 19].

In 2011, Soldner et al. generated iPSCs from two early
onset PD patients with A53T and E46K mutations by
combining zinc-finger nuclease- (ZFN-) mediated genome
editing and iPSC technology, but the phenotypic changes
of these cells were not reported [20]. The accumulation
of 𝛼-synuclein in DA neurons is a common pathological
change in PD patients, which also exist in iPSC generated
DA neurons derived from patients with SNCA triplication.
In 2011, Devine and Byers reported that PD patients with 𝛼-
synuclein triplication (AST) and unaffected controls showed
no difference in ectopic expression of 𝛼-synuclein. When
differentiated into DA neurons, the quantity of 𝛼-synuclein
was doubled in AST neurons compared with neurons from
the controls. Furthermore, AST neurons were more sensitive
to peroxide induced oxidative stress, further substantiating
the role of 𝛼-synuclein accumulation and oxidative stress
in PD [21, 22]. Also, their findings were consistent with a
previous study in blood and brain tissue from the patient with
SNCA triplication, which showed higher levels of 𝛼-synuclein
compared with controls [23].

3.2. LRRK2. LRRK2 is a member of the leucine-rich repeat
kinase family, encoding a protein that has GTPase and kinase
functions. The dysfunction of LRRK2 was reported to be
associatedwith impaired dendritic neuronal arborization and
autophagy [24, 25]. LRRK2mutations are the most common
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cause of familial PD. Mutations including N1437H, R1441C,
and G2019S of LRRK2 were reported in autosomal dominant
PDpatients, andG2019S is by far themost commonmutation,
especially prevalent among Ashkenazi Jews [8, 26].

iPSCs derived from PD patients with G2019S mutation
were generated inmany groups. Oxidative stress, 𝛼-synuclein
accumulation, autophagy, and damaged mitochondrial DNA
were reported in these iPSC-derived DA neurons and the
pathogenesis of PD was further investigated. Compared
with unaffected DA neurons, the G2019S-iPSC-derived DA
neurons were more sensitive to oxidative stress (such as
hydrogen peroxide, MG-132) or proteasomal stress-induced
apoptosis, and they also exhibited an increased 𝛼-synuclein
protein level after long-term cultivation [27, 28]. In addition
to its role in oxidative stress and 𝛼-synuclein protein accu-
mulation, impaired autophagic clearance and morphological
alterations (including reduced numbers of neurites and neu-
rite arborization) can be seen in these DA neurons [29].More
importantly, another study showed damaged mitochondrial
DNA (mtDNA) in G2019S-iPSC-derived DA neurons, and
the damage can be reversed by zinc finger nuclease-mediated
repair. It suggested that mtDNA damage might be induced
by LRRK2mutations, and oxidative stress, 𝛼-synuclein accu-
mulation, and impaired autophagy together with damaged
mtDNA may play interactive roles in the course of PD [30].

3.3. PINK1. PINK1 encodes a mitochondria-targeted kinase,
which can protect neuronal cells from stress-induced mito-
chondrial dysfunction [8]. In 2013, Rakovic et al. demon-
strated that iPSCs derived from PINK1 mutation carriers
showed a deficiency of endogenous Parkin levels to initi-
ate mitophagy upon loss of the mitochondrial membrane
potential due to ubiquitination dysfunction, suggesting that
PINK1mayplay an overlapping rolewithParkin inmitophagy
[31]. In 2011, Seibler et al. reported that mutant PINK1
iPSC-derived DA neurons showed impaired recruitment
of Parkin to mitochondria upon depolarization, increased
mitochondrial copy number, and upregulation of PGC-1𝛼.
More importantly, another study reported that lentiviral over-
expression of wild type PINK1 in these DA neurons was able
to restore the translocation ofParkin tomitochondria, further
validating the association between PINK1 and Parkin [32].
In addition, these cells showed a decreased mitochondrial
membrane potential and mitochondrial complex I activity,
which was consistent with the results of previous studies
from other groups [33, 34]. Therefore, Seibler and Rakovic
generated a valuable cellular model closely resembling the
phenotype reported in PD patients and highlighted the
importance of PINK1 mutation-caused mitochondrial dys-
function in pathogenesis for PD.

3.4. Parkin. Parkin encodes a component of the E3 ubiquitin-
ligase complex, which mediates the targeting of substrate
proteins for proteasomal degradation. Besides a concerted
role with PINK1 in mitophagy and oxidative stress, Parkin is
also associated with dopamine homoeostasis. iPSC-derived
DA neurons from patients with Parkin mutation showed
decreased DA uptake and increased spontaneous DA release.

There was also an increased level of reactive oxygen species
(ROS) in these neurons as a result of mitochondrial dysfunc-
tion, which indicates that Parkin can enhance the precision of
DA neurotransmission and suppress the oxidation of DA [35,
36]. Furthermore, these cells exhibited similar pathological
changes seen in G2019S-iPSC-derived neurons, including the
accumulation of 𝛼-synuclein and its correlation with Lewy
body formation [35].

In addition, mutant Parkin iPSC-derived DA neurons
showed a reduced neurite length and complexity due to desta-
bilization of microtubules, which could be rescued by over-
expressing wild type Parkin in these neurons. Their findings
supported that microtubule stabilization maintains the mor-
phological complexity in neurons, and the dysfunction of
Parkin damages not only the morphology of DA neurons but
also neuron survival [37].

3.5. GBA. GBA encodes a lysosomal membrane protein 𝛽-
glucocerebrosidase (also known as acid 𝛽-glucosidase), the
mutation of which results in accumulation of glycolipid sub-
strates in lysosomes, leading to an autosomal recessive lyso-
somal storage disorder—Gaucher disease [38].

Mutations in GBAwere thought to be a risk factor for PD
in different ethnic groups [39, 40]. Glucocerebrosidase defi-
ciency and lysosomal dysfunction were thought to be an
important pathogenic mechanism for PD [41]. In 2012,
Panicker et al. reported that iPSC-derived DA neurons from
patients with Gaucher disease showed a high level of 𝛼-
synuclein protein and decreased clearance ability in macro-
phages due to glucocerebrosidase (GCase) deficiency. On the
contrary, the overexpression of 𝛼-synuclein inhibits the intra-
cellular trafficking of GCase, which can decrease the activity
of lysosomalGCase [42, 43].Thefindings suggested a bidirec-
tional effect between a-synuclein accumulation and GCase
deficiency, further supporting the important role of 𝛼-synu-
clein neurotoxicity and autophagy-lysosomal pathways in the
process of PD occurrence.

Though iPSCs derived from patients with causative or
at-risk mutations have successfully modeled PD and further
illustrated the pathogenic pathway of the disease, the patho-
genesis of neurodegeneration in PD remains elusive. Further
studies of iPSC-derived DA neurons from patients with other
genetic mutations (such as VPS35, DJ-1, and PLA2G6) are
needed to model PD and elucidate the pathogenesis.

4. Potential Clinical Applications of iPSCs

Taking all described above together, patient-derived iPSCs
seem to be an ideal model to recapitulate the disease-related
phenotypes and the pathological changes of diseases, as
these cells are able to differentiate into any cell types of
human body for diseasemodeling andmechanism exploring.
Indeed, iPSCs have served as potential cell tools for clinical
applications, some of which even achieved promising results.
iPSCs derived from PD patients were applied for drug dis-
covery, replacement therapy, or other biological applications,
aiming at realizing personalized treatment and transforming
biomedical research into clinical application.
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4.1. iPSCs Models in Drug Discovery. In 2012, Cooper et
al. generated DA neurons from individuals carrying PINK1
Q456X, LRRK2 G2019S, and R1441C mutations. They found
that these cells were more vulnerable to PD associated chem-
ical toxins valinomycin and concanamycin A. Moreover,
the mutant PINK1 iPSC-derived neurons showed increased
mitochondrial reactive oxygen species (mROS) concentra-
tions when a low concentration of valinomycin was added.
Accompanied with the increased mROS in these neurons,
the level of glutathione (GSH), an important antioxidant
to prevent damage caused by mROS concentrations, was
decreased. Importantly, damage induced by these chemical
toxins could be rescued by coenzyme Q10, rapamycin, and
GW5074 (a kind of LRRK2 kinase inhibitor). Their results
suggested that iPSC-derived cells are an ideal model for
pharmacological study, and that coenzyme Q10, rapamycin,
andGW5074may save the damagedDAneurons and prevent
them from progressive degeneration [44, 45].

4.2. iPSCs for Cell Replacement Therapy. Stem cell based
therapy for PD can be traced back to three decades ago;
from then on, scientists have been striving to advance the
therapy and have got varying results for that. In 2008,
Mendez et al. reported that PD patients who had DA neurons
implanted from fetal midbrain cell suspensions lived 14 years
without pathology. Recently, another group reported long-
term clinical outcomes for fetal mesencephalic tissue (rich
in dopaminergic neuroblasts) transplantation in two PD
patients, showing an improvement of their motor symptoms
free of any pharmacological dopaminergic therapy. Their
findings proved that DA neurons transplantation might offer
a long-term symptomatic relief in PD patients [46, 47]. On
the other hand, some significant side effects, such as graft-
induced dyskinesia and dystonia, occurred in patients who
received fetal nigral transplantation [48, 49]. Considering
these adverse effects, the use of stem cell-derived DA neuron
transplantation in PD patients remains controversial.

After Takahashi et al. and Vodyanik et al. induced adult
human somatic cells into iPSCs with a series of transcription
factors (Oct4, Sox2, Klf4, c-Myc or Oct4, Sox2, Nanog, and
Lin28), the transplantation of DA neurons for PD patients
had become more feasible and easily operable. iPSCs can be
obtained from human somatic cells, which avoids the ethical
problems of applying human embryos for study. However, the
risk of tumorigenicity and other unpredictable adverse effects
were raised due to viral vector insertions and c-Myc oncogene
reactivation [50].

In recent years, many studies have reported that trans-
planted iPSC-derived neurons were able to increase regener-
ation and functional recovery in ischemic stroke rat model
[51, 52]. Notably, an improvement in motor ability was found
in a PD rat model after the transplantation of human derived
induced neural stem cells (iNSCs) into the striatum of the
rats. In addition, in vivo study proved that these iNSCs were
able to survive and differentiate into DA neurons, suggesting
that iPSC-derived neuron transplantation can replace the
lost neuronal cells and rescue the damaged function of
neurons [53, 54]. Putting the adverse effects aside, patients’
somatic cell-derived iPSC transplantation may be a potential

personalized cell strategy to treat PD or other degenerative
diseases in future with little or no immune reaction.

5. Challenges and Future Directions

As described above, iPSCs derived from patients with differ-
ent genetic mutations or carrying at-risk mutations are an
ideal model for studying the pathophysiological mechanisms
underlying PD. Its potential applications in drug discovery
and cell replacement therapy, will support an improved life
quality of the patients.

Despite the fact that iPSC technology is still ongoing
and has been greatly improved to accelerate the development
of clinical trials, there still exist several challenges and
limitations in iPSC transplantation for PD. Firstly, iPSCs are
induced by viral vector insertion of transcription factors,
which is accompanied with tumorigenicity or other adverse
effects. Safer and more effective transduction methods have
been attempted in many studies, successful application of
these new methods will not only save time but also improve
reprogramming efficiency and safety [3–7]. Until now, there
is no study reported using iPSC-derived neurons for trans-
plantation in PD patient. Secondly, because our human is an
integrated complex system, different cell types can play an
interactive role with each other. Though iPSCs can model
PD, it would be difficult for these cells to reveal the exact
pathophysiology status of human. Last but not least, as PD
is a neurodegenerative disease, whether the transplanted
neurons will function as expected for long term is still
unknown. Moreover, ethical issues before transplantation
should also be taken into consideration [55]. Taken together,
further investigations are required for iPSC-derived DA
neuron transplantation in rodents and nonhuman primates
to evaluate the long-term clinical benefits and potential
adverse effects. The road toward clinical application of iPSC-
based therapy is promising, but we still have a long way to go.
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