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Supporting information for “Mathematical modeling reveals the role of hypoxia in 

promotion of human mesenchymal stem cell long-term expansion” 

 

Table S1 Model parameter values for normoxic and hypoxic conditions fitted from another dataset in 

Experiment A, i.e., the one with MSCs collected from a 78-year-old male donor. 𝑟1: net expansion rate; 𝑟20: 

death rate of non-linear cells; 𝐿, 𝑘 and 𝑇 are the upper bound, the steepness and the midpoint time of the 

logistic state transition rate 𝑟12(𝑡) respectively. 

Parameter Normoxia Hypoxia 

𝑟1 (day−1) 0.3790 0.3903 

𝑟20 (day−1) 0.0293 0.0537 

𝐿 (day−1) 0.3943 0.4131 

𝑘 0.1482 0.1433 

𝑇 (da𝑦) 48.9356 64.9611 

 

Table S2 Model parameter values for normoxic and hypoxic conditions fitted from data of a female donor 

of age 56 (same as the main text) in Experiment A but with 10% non-dividing cells at the beginning, i.e., 

𝑥2(0) = 0.1𝑦(0), for comparison with Table 1. 𝑟1: net expansion rate; 𝑟20: death rate of non-linear cells; 

𝐿, 𝑘 and 𝑇 are the upper bound, the steepness and the midpoint time of the logistic state transition rate 

𝑟12(𝑡) respectively. We can see that the result is almost the same as Table 1 in the main text. 

Parameter Normoxia Hypoxia 

𝑟1 (day−1) 0.3506 0.3528 

𝑟20 (day−1) 0.0136 0.0141 

𝐿 (day−1) 0.3623 0.4094 

𝑘 0.3015 0.3565 

𝑇 (da𝑦) 47.2027 72.4237 
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Figure S1 Experimental measurements and model-fitted population dynamics of MSCs at different oxygen 

tensions in Experiment A for another dataset (MSCs from a 78-year-old male donor). The cultured MSCs 

under study were originally obtained from a female donor of age 78 
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Figure S2 Simulation of the dividing and non-dividing cell fractions in the two oxygen environments of 

Experiment A for another dataset (from a 78-year-old male donor). (A) Hypoxia. (B) Normoxia. Initially (at 

day 0), it is assumed that all cells are dividing in both two conditions. 
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Figure S3 Comparison of the time-variant state transition rate 𝑟12(𝑡) for MSCs cultured under hypoxia and 

normoxia in Experiment A for another dataset (from a 78-year-old male donor). The three parameters 

used to simulate the logistic function 𝑟12(𝑡) defined in equation (2) can be found in Table S1, of which the 

midpoint time is annotated in the figure as 𝑇𝑛 and 𝑇ℎ for normoxia and hypoxia respectively. 
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Figure S4 Model fitting results by setting 𝑇ℎ = 𝑇𝑛 in Experiment A as a comparison to Figure 4 in the main 

text.  The other parameters for this simulation are listed in Table 1.  The MSCs under investigation are 

collected from the 56-year-old female donor (data used in the main text Experiment A). As shown here, 

the slightly different 𝐿  in the two conditions cannot fit the hypoxic data and thus cannot explain the 

considerable difference of cell yields in these two conditions. In other words, it is the parameter 𝑇 that 

can explain the disparity of MSC expansion under the two oxygen conditions. 
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Figure S5 Model fitting results by exchanging the net expansion rate 𝑟1 in Table 1 as a contrast of Figure 4 

in the main text.  As shown here, even if we assume the net expansion rate 𝑟1 is slightly larger in the 

normoxic condition, there is a still a large gap between the final population size under the two conditions. 

Besides, the fitting results change quite little in comparison with Figure 4. Thus, we can conclude that the 

minute difference of the fitted 𝑟1 value under two oxygen conditions plays just a negligible role in causing 

the significant difference of MSC expansion efficiency.  
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Implementation details of nonlinear regression in MATLAB 

In this section, we present more details about how to solve the nonlinear regression problem (5) 

corresponding to Figure 3 in the main text, i.e., how to minimize 𝐽(𝜽).  Once we choose an initial value 𝜽0 

for the parameter vector, we can simply feed the data into mature optimization algorithms  in MATLAB, 

such as fminsearch, fmincon or lsqcurfit. However, it is well known that the optimization of a nonlinear, 

nonconvex objective function may be sensitive to initial values due to the existence of multiple local 

optima. Therefore, in the following we mainly explain how to choose a good initial value for the parameter 

vector 𝜽. In our study, since for each experiment there are only few data points, we simply use an 

exhaustive grid search method to determine the initial parameter values [1], detailed as follows. 

Step 1:  Determine a minimal parameter space, according to our prior knowledge or by observing the 

experimental data.  

In equation (5) of the main text, the constraints for the parameters are derived from merely mathematical 

requirements. However, with some prior biological knowledge or simply by observing the experimental 

data, we can further narrow the parameter space.  

For example, with the data points of Experiment A presented in Figure 4, it is easy to estimate the slope 

of the first stage, i.e., the exponential growth stage, to be around 0.5. According to equation (8), we know 

that the theoretical slope is 𝑟1 log2 𝑒 and thereby the value of 𝑟1 should be less than 0.5, since log2 𝑒 ≅

1.44 > 1. As for the parameter 𝑟20, which represents the death rate, it should be a small value according 

to our biological knowledge of MSC proliferation: we simply guess that 0 < 𝑟20 < 0.2. It is also easy to 

determine a rough range for the parameter 𝑇, the midpoint time of the logistic function, by noticing that 

in Figure 4 the exponential growth doesn’t stop until day 50 and the plateau stage is reached around day 

80 for both conditions. Thus, we know approximately 50 < 𝑇 < 80.  For the other two parameters, 𝐿 and 

𝑘, it is a little difficult to further narrow their range, and we preserve their upper bound listed in (5), i.e., 

𝑟1 < 𝐿 < 1 and 0 < 𝑘 < 1.   

With such a narrowed parameter space, it is easier to choose sensible starting-values for the optimization. 

Step 2: With the parameter space determined in step 1, perform a coarse-grained grid search to try 

different initial values for the optimization routine. 

The classical grid search method constructs a discrete grid based on the parameter space 𝐶 composed of 

all parameters. Usually, the points are sampled equidistantly as the initial values to be tested for 

optimization.  In our implementation, for this 1st-round coarse grid search, we pick 5 equidistant values in 
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the range of each parameter. Therefore, for the total 5 parameters, there are 55 = 3125 trials made in 

total. That is, we have tested 3125 initial parameter values uniformly sampled from the parameter space, 

and for each initial value the optimization routine is executed and yields a minimizer 𝜽̂ = min
𝜽

𝐽(𝜽), which 

depends on the initial values 𝜽0 . Define the best minimizer in this round as the one leading to the 

minimum objective value: 𝜽̂∗ = min
𝜽̂

𝐽(𝜽̂). 

Step 3:  Perform a fine-grained grid search around the best minimizer we obtained in step 2. 

Since the number of grid points increases quickly with model dimension, in the above step 2 we only 

perform a coarse grid search with 5 samples for each parameter, and a further fine-grained grid search is 

made in this step. After we get the best minimizer 𝜽̂∗ in step 2, we build a new grid with the neighboring 

points of the previously optimal solution 𝜽̂∗. Suppose the optimal solution of a parameter 𝑝 obtained in 

step 2 is 𝑝∗ and the original range of this parameter is 𝑐𝑝, then a reduced range is specified to be 𝑐𝑝 =

[𝑝∗ −
𝑐𝑝

10
, 𝑝∗ +

𝑐𝑝

10
], which should of course respect the fixed constraint in equation (5). This range reduction 

principle applies to all the parameters. Afterwards, another grid search routine like the one in step 2 is 

performed again in this reduced parameter space to further refine the optimal solutions.  

The purpose of this fine-grained grid search step is to make it more likely that the global optimum is found. 

Even not, after the grid searches in step 2 and step 3, we have much confidence that a local minimum 

close enough to the global one can be obtained.  Finally, the result we report is the best local minimizer 

found so far, 𝜽∗, which leads to the minimum objective value among all trials in both steps. 

In step 2 & 3, given an initial parameter vector, we used the nonlinear programming solver fminsearch in 

MATLAB to solve the nonlinear optimization problem. Particularly, the most important options are 

MaxIter=1000 (maximum number of iterations), TolFun=1e-4 (termination tolerance on the function value 

change) and TolX=1e-4 (termination tolerance on independent variable step). The optimization routine 

was actually finished in less than 700 iterations for most initial values. We have also tested other 

optimization options and other solvers such as fmincon. The obtained optimal solutions remains almost 

the same. 

Remarks 

1) It is known that the number of grid points increases exponentially with the dimension (number of 

parameters) of the optimization problem [1]. However, in our study, there are only five 
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parameters and the size of the dataset in each experiment is also very small. Thus, it is still 

practical to adopt the grid search method to attempt a good starting point for optimization.  

2) To repeatedly run the optimization solver with different initial values (starting points), we can use 

a for-loop manually or resort to the MultiStart algorithm in MATLAB to execute these iterations 

automatically. Please refer to the online documentation for more details. 

https://www.mathworks.com/help/gads/multistart.html. 

3) There is no technical reason to limit the solvers to be fminsearch or fmincon. Other solvers capable 

of nonlinear programming can also be used.  Furthermore, global optimization solvers like genetic 

algorithm, differential evolution and particle swarm solvers are also good alternatives, though 

they may need a higher cost of computation.  Interested readers may refer to [2] and [3]. 
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