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Ischemic heart disease affects a majority of people, especially elderly patients. Recent studies have utilized autologous adult stem/
progenitor cells as a treatment option to heal cardiac tissue after myocardial infarction. However, donor cells from aging patients
are more likely to be in a senescent stage. Rejuvenation is required to reverse the damage levied by aging and promote a youthful
phenotype. This review aims to discuss current strategies that are effective in rejuvenating aging cardiac stem cells and represent
novel therapeutic methods to treat the aging heart. Recent literature mainly focuses on three approaches that aim to reverse
cardiac aging: genetic modification, pharmaceutical administration, and optimization of extracellular factors. In vitro genetic
modification can be used to overexpress or knock down certain genes and allow for reversal of the aging phenotype.
Pharmaceutical administration is another approach that allows for manipulation of signaling pathways related to cell
proliferation and cell senescence. Since the stem cell niche can contribute to the age-related decline in stem cell function,
rejuvenation strategies also include optimization of extracellular factors. Overall, improving the intrinsic properties of aging
stem cells as well as the surrounding environment allows these cells to adopt a phenotype similar to their younger counterparts.

1. Introduction

Cardiovascular disease is the leading cause of mortality in the
United States [1], and its risk increases in patients 65 years of
age or older [2]. As the heart ages, themyocardium undergoes
degeneration that leads to myocyte death [3]. Previous exper-
iments conducted in the heart have explored whether the
adult myocardium contains an undifferentiated pool of cells
that may participate in cardiac repair [2]. The heart was ini-
tially thought to be a postmitotic organ without the capacity
to replace itself. However, recent discoveries represent amajor
paradigm shift, suggesting that apoptotic cardiac cells are
replaced by new cells derived from cardiac stem/progenitor
cells (CPCs) [4]. Evidence has been obtained in favor of the
regeneration of the aging myocardium. In a recent study,
injection of autologous CPCs decreased scar size, increased
the amount of visible myocardium, and improved regional

function of the infarcted myocardium [5]. Local stimulation
of CSCs can reverse the detrimental effects of aging on the
heart and therefore represents a novel strategy for solving
the problem of heart failure in the older population [2].

Obstacles to the success of stem cell-based clinical thera-
pies include the poor survival of donor cells along with the
age-related loss of stem cell regenerative capacity. More than
90% of transplanted mesenchymal stem cells (MSCs) die
within the first few days [6]. Aging leads to diminished prolif-
erative and differentiative potential due to increased oxidative
stress, mitochondrial dysfunction, and genome instability [7].
Telomeres, repetitive nucleotide sequences at the ends of
mammalian chromosomes that preserve chromosome stabil-
ity and integrity, decrease in length with aging [8]. Accumula-
tion of damage and shortening of telomeres leads to cellular
senescence—a state of irreversible growth arrest [9]. Senescent
cells are characterized by the incapability to contribute to
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tissue repair and regeneration. Aging is also associated with
reactive oxygen species (ROS) that are generated by the mito-
chondria [3, 10, 11]. Mitochondrial overproduction of ROS
also likely contributes to cellular senescence; it leads to the
formation of highly reactive products O2 or H2O2, whose
accumulation promotes senescence, DNAmutations, inflam-
mation, and cell death pathways [8]. ROS can be detoxified
within the cell by antioxidants such as superoxide dismutase
(SOD) catalase, glutathione peroxidase, peroxiredoxin, and
sulfiredoxin. However, an increase in ROS levels can subse-
quently alter the cell’s normal redox state and provoke oxida-
tive stress [12]. Therefore, rejuvenation is required to reverse
the damage imposed by aging to restore tissue and organ
function and improve longevity.

This review is designed to highlight current work in the
field of rejuvenation of aging cardiac stem cells. Studies in
this field have focused on three different approaches, summa-
rized in Figure 1. The first category of strategies uses genetic
modification to overexpress or knock down certain genes in
cardiac stem cells. Certain proteins are found to either
increase or decrease in expression in aging organisms, sug-
gesting that reversal of this change in expression may rejuve-
nate older cells to a youthful phenotype. The second strategy
for rejuvenation uses pharmaceutical administration to
reverse senescence by targeting signaling pathways associated
with important cellular processes such as proliferation, apo-
ptosis, and senescence. Finally, the third strategy for rejuve-
nation involves optimizing the extracellular factors in order
to prevent senescence and promote a youthful phenotype.
A wide variety of stem/progenitor cells have been trans-
planted to improve cardiac regeneration, including skeletal
myoblasts, hematopoietic stem cells, embryonic stem cells,
and induced pluripotent stem cells [13–15]. However, this
review focuses mainly on resident/adult mesenchymal stem
cells and cardiac stem/progenitor cells.

2. Genetic Modification

In vitro genetic modification of aging cardiac stem cells to
enhance proliferation, survival, and commitment is an effec-
tive strategy to enhance stem cell function and ensure
improved cardiac output. Pim-1, a conserved serine/threo-
nine protein kinase [1], is increased in expression in response
to injury and protects against myocardial infarction [16] with
its antiapoptotic and proproliferative actions [17]. Pim-1
kinase expression is higher in fetal human cardiac progenitor
cells (hCPCs) as compared to older hCPCs, which suggests a
correlation between Pim-1 expression and youthful pheno-
typic characteristic [18]. Recent studies have utilized hCPCs
isolated from heart failure patients; hCPCs engineered to
overexpress Pim-1 result in increased cellular engraftment
and differentiation with improved vasculature [19]. Genetic
modification with Pim-1 has the capability to rejuvenate with
enhanced proliferation, decreased senescence, and increased
telomere length [18]. A recent study found that Pim-1
expression in the heart coincides with nucleostemin (NS), a
nucleolar protein required for cell cycle progression and pro-
liferation. Reduced NS levels are associated with increased
senescence and aging [20]. In addition, modification through

Pim-1 is extremely powerful because of the recent study, in
which Pim-1 targeted to the nucleus preferentially enhanced
stem cell youthfulness associated with reduced senescence
while Pim-1 targeted to mitochondria promoted increased
interaction with antiapoptotic proteins such as Bcl-x [21].
These new findings suggest that organelle-specific overex-
pression of Pim1may be utilized in a more personalized form
of regenerative medicine based on the specific properties of
the patient’s hCPCs.

Literature points to the paracrine effects of MSCs as being
predominately responsible for cardiac repair. Some cytokines
and growth factors produced byMSCs have been shown to be
vital for cardiac protection while others are harmful for heart
recovery. Therefore, optimization of MSCs before transplan-
tation is required to maximize cell survival [22]. In a recent
study, optimization was done through genetic modification
of Rap1, a modulator involved in the NF-κB pathway
(Figure 2). Factors from the NF-κB pathway have important
roles in regulation of mitochondrial ROS, DNA replication,
cell survival, and inflammation [23]. BM-MSCs with deletion
of Rap1 were more tolerant than normal BM-MSCs to hyp-
oxia that is associated with reduced activation of NF-κB
activity. Also, BM-MSCs with deletion of Rap1 showed a bet-
ter therapeutic efficacy; they were associated with reduced
inflammation postmyocardial infarction and enhanced cell
survival of cardiomyocytes [24]. Another pathway that can
be subjected to genetic modification and is also a paracrine
regulator is the NRG1-ERBB4 signaling pathway (Figure 2).
NRG1 is an essential paracrine regulator of cell-cell commu-
nication through activation of ERBB4, which further activates
the PI3K/Akt pathway [25]. MSCs engineered with increased
ERBB4 expression significantly preserve heart functions
accompanied with reduced infarct size and enhanced cardio-
myocyte division. A cardioprotective effect is seen due to acti-
vation of Akt and Bcl-2, which protects from apoptosis [26].

Aging is accompanied by a general decline in mitochon-
drial function in all tissues. Mitochondria may contribute to
stem cell maintenance through regulation of specific metab-
olites such as NAD+ [27], whose effects are mediated by sir-
tuin family of NAD-dependent enzymes [28]. In myocardial
tissue, SIRT3 localizes to mitochondria [29], reduces levels of
reactive oxygen species (ROS), and blocks cardiac hypertro-
phic response through activation of Foxo-dependent antiox-
idants, manganese superoxide dismutase (MnSOD), and
catalase [30]. Studies in mice revealed that SIRT3 expression
was reduced in old aortic valves compared with young ones,
signifying an age-associated SIRT3 reduction [31]. Overex-
pression of SIRT3 enhanced cells’ ability to combat oxidative
stress and reduced stress-mediated cell injury by activating
catalase and MnSOD in humanMSCs [32]. Another member
of the sirtuin family, SIRT6, is a potential target for rejuvena-
tion of aging stem cells [33]. A recent study demonstrated
that knockdown of SIRT6 in human bone marrow MSCs
resulted in impaired growth, proliferation, and migration
ability, along with increased cell death and senescence [34].
Interestingly, recent results from our group showed that
cytoglobin, a gene linked to oxidative stress and mitochon-
dria respiration, promotes cardiac progenitor cell survival
against oxidative stress via the upregulation of the NFκB/
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Figure 1: Summary of strategies used to rejuvenate aging stem cells and heal the injured heart. These methods result in an increase in
proliferation and decrease in apoptosis and senescence, allowing for improved regeneration capabilities of the myocardium.

IGF1

IGFR

AKT

Pim-1

STAT3

PI3K

mTOR

Rapamycin/resveratrol

p16

CyclinD CDK4/6
Nucleostemin

c‑MycBcl‑2

Caspase

Cytochrome c

SIRT3

Catalase

FOXO

ROS

Notch

DeltaJagged

NICD

NICD

HIF‑1�훼

p21

ERK

VEGF

VEGFR

PLC

PKC

NF‑�휅B

CoPP

Nrf2
HO-1

Survival,
proliferation

Cytosol

Cytosol

Extracellular matrix

Apoptosis,
senescence, cell

cycle arrest

NRG1

ERBB4

IKK

Rap1

Hypoxia

cMET

AMPK

MIF

Dsh

Gsk3

�훽‑Catenin

DETA‑NO

SMAD3
NO

Wnt

Frizzled

GAB1

Shp2

Extracellular matrix

TWIST

Nucleus

Figure 2: Molecular signaling pathways that are associated with rejuvenating aging stem/progenitor cells. Those that are currently being
studied and were discussed in this review are highlighted in yellow.
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iNOS signal pathway and nitric oxide production, providing
a novel molecular target that can be used to enhance the effec-
tiveness of cardiac stem/progenitor cell therapy for ischemic
heart disease [35]. Overall, mitochondria-associated proteins
represent a potential target for rejuvenation of aging cardiac
stem cells. However, future in vivo studies need to be done in
order to show improved therapeutic effectiveness in the heart.

miRNAs in the heart are also significant contributors to
disease; their altered expression may be partly responsible
for cardiovascular disorders [36]. Differential expression of
miRNAs in old cells compared to young cells, such as down-
regulation of miR-17, miR-19b, miR-20a, and miR-106a in
aged cells, implicates miRNAs as markers of biological aging
[37]. Recent work has found an increase in expression of a
specific miRNA, miR-195, which targets telomerase reverse
transcriptase (Tert) gene, causing deterioration of the regen-
erative ability of old MSCs. Transplantation of old MSCs
with knockdown of miR-195 led to improvement in cardiac
function and reduction of infarct size [38]. Another study
has reported that downregulation of miR-29c in MSCs led
to the suppression of both the p53-p21 and the p18-pRB
pathways and abrogation of cellular senescence [39].
Another miRNA, miR-34a, is elevated in mouse hearts after
myocardial infarction [40]. Overexpression of miR-34a is
associated with increased apoptosis, lower viability, and
increased senescence, possibly through activation of SIRT1/
FOXO3a pathway. Inhibition of miR-34a leads to fewer apo-
ptotic cells and better viability [41] along with improved car-
diac molecular signature and increased angiogenesis. Overall,
miRNAs represent powerful therapeutic targets because they
are small in length, around 22 nucleotides, and can be effi-
ciently inhibited in vivo [42]. However, future work is needed
to understand the mechanistic participation of various miR-
NAs in regulating cell senescence/aging.

Clinical trials, such as the SCIPIO phase 1, have sup-
ported the efficacy of CPC therapy [5]. However, ischemic
heart disease is associated with increased age; therefore, it is
necessary for cell-based therapies to reduce the harmful
effects of aging. This can be done with genetic manipulation
of the stem cells. Stem/progenitor cells can be extracted from
a consenting patient through clinical methods and then iso-
lated, cultured, and modified in vitro with genetic modifica-
tion. The cells can be later transplanted back into the
patient’s own heart to assist in healing the damaged postin-
farct myocardium [43]. Overall, Pim-1, nucleostemin, Rap1,
ERBB4, SIRT3, SIRT6, and catalase along with various differ-
ent miRNAs represent potential genes whose expression can
be manipulated in order for stem cells to adopt a youthful
phenotype. However, a limitation of genetic modification is
that a combination of genes may need to be modified in order
to effectively heal the aging infarcted heart. Overall, the fun-
damental goal in genetic modification is to eventually lead to
an increase in proliferation and regenerative capacities of
stem cells and inhibition of the senescent phenotype.

3. Pharmaceutical Administration

A variety of pathways (Figure 2) including the mTOR/PI3K,
WNT/β-catenin, ERK/NRF2, and STAT3/NFκB can be

targeted for rejuvenation by pharmacological manipulation.
Drugs such as rapamycin can be used to rejuvenate aging car-
diac stem cells. Rapamycin is an inhibitor of mammalian tar-
get of rapamycin (mTOR) [44], a major downstream
component in the PI3K senescence pathway [45]. mTOR’s
inactivation by rapamycin inhibits the TORC1 complex [46]
and brings cells from a senescent to a quiescent stage [47]. A
recent study utilized rapamycin along with resveratrol, a drug
known for activating AMPK, which increases mitochondrial
biogenesis and function [48]. The combination of these drugs
was found to modify the secretome of cardiac stem cells from
explanted decompensated hearts (E-CSC) such that there was
prevention of cardiomyocyte death and senescence. Addi-
tional investigations in which infarcted mice were injected
with E-CSC treated with rapamycin and resveratrol showed
improved cardiac output. Using drugs such as rapamycin
and resveratrol has a high potential since it avoids the possible
detrimental effects from genetic modification [49]. As with
any drug, rapamycin has side effects, and future work is
needed to exposewhether side effects could limit its usage [44].

Another research group has identified the wingless inte-
gration (WNT)/β-catenin pathway (Figure 2) as a potential
target for rejuvenation of hMSCs used in stem cell therapy
for cardiac repair [9]. The study showed that increased age
was associated with reduced MSC proliferation, MSC differ-
entiation, and WNT/β-catenin signaling. However, some
functions ofMSCs from aging individuals could be revitalized
with lithium therapy, which increasesβ-catenin availability to
improve myogenic differentiation [50]. The WNT/β-catenin
pathway is closely related to stem cell renewal and differenti-
ation through regulation of CTNNB1, which plays an
essential role in cardiogenic development [9].

Targeting senescent cells is another possibility that can
lead to rejuvenation through pharmaceutical administration.
Most senescent cells express p16Ink4a, a cyclin-dependent
kinase inhibitor that leads to cell arrest by activating Rb.
The expression of p16Ink4a is also known to increase with
aging (Figure 2). A novel transgene, INK-ATTAC, was used
to eliminate p16Ink4a-positive senescent cells upon adminis-
tration of rosiglitazone to induce senescence. The administra-
tion and resulting clearance of senescent cells led to enhanced
health span and a delay in multiple age-related phenotypes in
progeroid mice [51]. Furthermore, senolytics, a new class of
drugs that selectively kill senescent cells, represent a great
potential for improving health span. Two drugs, dasatinib
(D) and quercetin (Q), were successful in improving cardiac
functioning in aging mice and reducing the number of senes-
cent bone marrow-derived murine MSCs by interfering with
the antiapoptotic and prosurvival mechanisms of senescent
cells. The results indicate that senescent cells exert deleterious
effects on cardiovascular function with aging, and that clear-
ance of these cells represents a novel therapeutic approach
for rejuvenation [52].

Pharmacological treatment with cobalt protoporphyrin
(CoPP) is another method to improve therapeutic effective-
ness of myocardial repair. CoPP is an inducer of heme
oxygenase-1 (HO-1), which induces cellular protection. A
previous study has shown that preconditioning of hCSCs
with CoPP increases the resistance of these cells to oxidative
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stress-induced apoptosis via the activation of ERK/NRF2 sig-
nal pathways (Figure 2). Knockdown of HO-1 leads to a
diminished cytokine effect, which suggests that the beneficial
effects of CoPP preconditioning may be due to the secretion
of protective cytokines [53]. Another study demonstrated
that CoPP treatment in hypoxic cells reduced cell damage
and increased the viability of cardiomyocytes by preserving
mitochondrial membrane potential [54]. Furthermore, pre-
conditioning hCSCs with CoPP leads to an increase in cell
survival and proliferation after transplantation into the
infarcted heart along with greater LV functional and struc-
tural improvement [55]. Overall, the HO-1 inducer, CoPP,
is a promising candidate that can improve the efficiency of
CSC-based therapies for ischemic heart disease. Nitric oxide
(NO) is a gaseous signaling molecule shown to have an anti-
apoptotic role in many cells. Diethylenetriamine nitric oxide
adduct (DETA-NO) is a chemical-based NO releaser. A
recent study has demonstrated that preconditioning human
cardiac stem cells with DETA-NO promotes cell survival
and resistance to oxidative stress. Future work would require
examination of the in vivo survival of hCSCs enhanced by
DETA-NO preconditioning [56].

Pharmaceutical administration is a valid methodology
for rejuvenation. Similar to the genetic modification tech-
nique, stem/progenitor cells can be extracted from a patient
and cultured in vitro while being treated with pharmaceutical
agents. However, a potential limitation of this strategy is that
pharmaceutical agents can have a wide variety of effects, and
therefore, a balance between side effects and benefits must be
reached before the drugs can be used in a clinical setting. Per-
haps, a combination of pharmacological treatment and
genetic modification can be employed to rejuvenate aging
stem cells, allowing for a more comprehensive approach.

4. Optimization of Extracellular Factors

The host environment plays a very important role in the out-
come of cell therapy; allogenic cells from young, healthy
donors have been used to overcome age-related stem cell dys-
function [57]. Furthermore, tissue aging is influenced by sys-
temic and circulating factors. The detection of senescence
factors by neighboring healthy cells might further progress
cellular senescence, contributing to dysfunction associated
with age-related cardiac diseases [2]. Factors that slow the
age-dependent deterioration of the cell niche represent a
new method for treating age-related diseases [58]. Using sys-
temic and circulating factors to rejuvenate aging cells has
been shown in nerve [58] and bone [59] cells. Heterochronic
parabiosis experiments, in which a young and old mice are
surgically linked so they develop a shared blood circulation
[60], indicate that signals from a young circulation can
impact the function of aging tissues [61].

Manipulation of the Notch pathway, in which ligands
such as Delta interact with the Notch receptor (Figure 2),
can be used to rejuvenate aging cardiac stem cells [62]. Studies
have found that the failure of this pathway to be activated can
lead to decline in the regenerative potential of muscle with
age, due in part to impairment in upregulation of the Notch
ligand Delta after muscle injury [63]. Using heterochronic

parabiosis to restore Delta upregulation in aging satellite cells
allows for enhanced activation and proliferation [64]. Notch
activation has been found to restrain cardiac hypertrophy
and fibrosis and promote cardiac precursor expansion. Com-
munication between Jagged1-expressing cardiomyocytes and
Notch-expressing MSCs is important to shift the response
towards cardiac precursor expansion [65]. Activation of
Notch signaling in the border zone after infarction promotes
survival and improves cardiac function. Delivery of a peptide
mimic of the Notch1 ligand Jagged1 to the infarcted rat heart
led to improvements in cardiac function and contractility
[66]. Notch signaling also plays a crucial role in cell senes-
cence; overexpression of Notch prolongs the lifespan of vas-
cular endothelial cells by inhibiting a p16-dependent
pathway [62]. Overall, manipulation of the Notch signaling
pathway could be a new therapeutic target for treating age-
associated vascular diseases.

Another circulating factor implicated in cardiac disease is
insulin-like growth factor 1 (IGF-1). IGF-1 is important in
the recovery process of the heart because of its subsequent
activation of PI3K/Akt signaling (Figure 2), which allows
for enhanced cell survival, release of growth factors, stem cell
mobilization, and angiogenesis. IGF-1 overexpression also
accentuates the release of various growth factors, including
HGF and VEGF, which contribute towards reduced cell apo-
ptosis. Localized IGF-1 overexpression also significantly pre-
serves LV wall thickness and contractile function in vivo [67].
A study has concluded that the IGF-1 receptor (IGF-1R)
identifies a pool of human cardiac stem cells that have a
superior therapeutic potential for myocardial regeneration.
Overall, the presence of IGF-1R led to decreased apoptosis
rates, enhanced telomerase activity, preserved telomere integ-
rity, and favoring of hCSC division and survival. The expres-
sion of IGF-1R and the synthesis of IGF-1 are attenuated in
aging hCSCs. Therefore, the study shows that a careful analy-
sis of the phenotypic properties of the cells can be used to
consider which cells are used for clinical treatment [68].

Many other cytokines and growth factors have been
implicated as potential candidates for rejuvenation. Macro-
phage migration inhibitory factor (MIF) (Figure 2) is a
cytokine that is released by ischemic cardiomyocytes in
the heart, allowing for protection from injury and cellular
apoptosis [69]. MIF-treated aged MSCs survived better
than young MSCs not treated with MIF, suggesting that
MIF possesses antiapoptotic properties. MIF also restored
the trophic activity of MSCs as seen by the quantification
of VEGF, HGF, and IGF levels [70]. Furthermore, tissue
engineering has been used to seed angiogenic cytokines,
VEGF and bFGF, onto a collagen scaffold. The cytokine-
enhanced, tissue-engineered patch rejuvenated aging cells,
prolonged cell survival, and improved angiogenesis to
restore ventricular function [71]. Gdf6, found to be down-
regulated in old MSCs, is another growth factor that may
play a role in rejuvenation. A recent study in which Gdf6
was administered led to the restoration of the differentia-
tion potential of aged MSCs in vitro and wielded beneficial
effects on age-associated pathologies in mice [72]. An
understanding of the mechanisms underlying the regener-
ative effects of various growth factors could lead to the
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development of novel therapeutic agents for the treatment
of myocardial infarction.

Oxygen levels of stemcell niches areknown toplay a role in
stem cell quiescence; changing oxygen concentrations can
affect the survival and proliferation of stem cells when used
for myocardial therapy. It has been shown that expansion of
hCSCs under hypoxic conditions leads to greater engraftment
and functional benefit after implantation into infarcted hearts
of mice [73]. Further studies show thatMSCs cultured in hyp-
oxia activate the Akt and HGF-cMet signaling pathway
(Figure 2), which leads to increase inmigration rates. The cul-
ture in hypoxic conditions is also beneficial because it is more
similar to the physiologic niche of MSCs in the bone marrow.
Ahind limb ischemia injurymodelwas used to show thatmice
that received hypoxic preconditioned MSCs recovered faster
than control groups [74]. A studywith EPCs showed that hyp-
oxia can prevent senescence, increase proliferation capacity
and lifespan, and maintain the stem cell properties of EPCs
through HIF1α-induced TWIST expression (Figure 2), which
inhibits cell cycle arrest and replicative senescence [75].
Another study displayed a significant increase in the expres-
sion of prosurvival proteins such as NF-κB and antiapoptotic
proteins Bcl-2 and Blc-xL. Hypoxia-preconditioned MSC
transplantation leads to enhanced angiogenesis and vascu-
larization as compared to normal MSCs. Since 90% of
grafted cells die within the first few days of transplanta-
tion, this protective effect of hypoxia is crucial to protect
transplanted cells [6].

The identification of rejuvenating growth factors and
environmental conditions opens new prospects to reverse
the effects of cardiac aging. This strategy allows for precondi-
tioning of the stem cells in order to optimize the extracellular
environment before transplantation into the postinfarct
heart. Altering systemic expression of factors that promote
stem cell activity and culturing cells in hypoxic conditions
are powerful methods of rejuvenation. However, the stem cell
niche is very complex; therefore, further research is required
before this strategy can lead to clinical translation.

5. Other Strategies

Other engineering strategies are being developed to rejuve-
nate the senescent heart. Two novel stem cell products have
been engineered: CardioChimeras and CardioClusters.
CardioChimeras are formed by fusing together CPCs with
MSCs. Combined administration of hMSCs and human
c-kit-positive CPCs into an infarcted heart has significantly

improved myocardial structure and function [76]. This tech-
nique creates a cell hybrid that combines optimal traits such
as proliferation, survival, and paracrine secretion. In addi-
tion, CardioClusters are comprised of a 3D microenviron-
ment consisting of specific cell types isolated from the
human heart such as CPCs, MSCs, EPCs, and fibroblasts.
Furthermore, Cardiospheres are 3D spontaneous aggrega-
tions of heterogeneous stem cells and have been created to
enhance communication between stem cells and the cardiac
environment [9]. A clinical trial CADUCEUS has explored
the effect of intracoronary infusion of cardiosphere-derived
cells and found a significant reduction in scar mass [77]. Car-
dioClusters, Cardiospheres, and CardioChimeras represent a
next generation of stem cell therapy that can be used to reju-
venate the heart. However, these combinatorial cell therapies
are limited because of differences in proliferation rates and
survival after injection into the damaged heart [9]. More
studies are required before this technique can be translated
into clinical applications.

6. Conclusion and Future Directions

This review discusses the current strategies for the rejuvena-
tion of aging stem cells in order to improve therapeutic tech-
niques for myocardial repair. Cardiac stem cells have an
innate ability to rejuvenate the myocardium; however, the
aging population of patients has a compromised stem cell
population in terms of functional capacity and regenerative
potential [78]. Therefore, these aging stem cells must be reju-
venated by techniques such as the discussed methods of
in vitro genetic modification, pharmaceutical administration,
and optimization of extracellular factors. Recent studies show
promising results of the ability of these techniques to rejuve-
nate the aging heart. However, more understanding of the
combinatorial effects of these interventions and fine-tuning
of these techniques, depicted in Figure 1, is required to eval-
uate the translational potential of these methods. Each
strategy has its own advantages and disadvantages as out-
lined in Table 1. Overall, the success of myocardial regen-
erative treatment will require teamwork across various
disciplines to make stem cell therapy a reliable method
for cardiac repair.
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Table 1: Advantages and disadvantages of the various strategies that were discussed.

Genetic modification Pharmaceutical administration Optimization of extracellular factors

Advantages
(i) Has stable effect
(ii) Can directly target specific cell

survival pathways

(i) Has the ability to effect
multiple pathways at once

(ii) Can lead to release of
growth factors and
cytokines

(i) Takes into account the stem cell niche
(ii) Has potential to prime cells to endure the

postinfarct environment

Disadvantages
(i) May need multiple genes modified

to have a significant effect
(i) Has potential side effects

(i) Has multiple aspects of environment may need
to be optimized to have significant effect
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