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The pulpotomy with pulp capping is aimed at retaining vital pulp with reparative dentin formation. Vascular endothelial growth
factor (VEGF) plays a crucial role in dentin regeneration; however, its constant administrations in the human body is still
problematic. Chitosan was widely studied as an effective carrier to deliver bioactive molecules in regenerative medicine. In this
study, we conducted a chitosan/β-glycerophosphate (CS/β-GP) hydrogel as a VEGF-sustained release system and explored its
effects on dental pulp stem cells (DPSCs). CS/β-GP hydrogel was manufactured using a sol-gel method. SEM assay showed the
spongy and porous microstructure of the lyophilized hydrogels. DPSCs cultured in the CS/β-GP hydrogel kept adhesion and
vitality. CCK-8 assay tested the promoted proliferation activity of DPSCs on the hydrogel. Besides, the added VEGF protein
could continually release from VEGF/CS/β-GP hydrogel. The VEGF/CS/β-GP hydrogel could promote the odontogenic
differentiation of DPSCs better than VEGF treatment without hydrogel. Our results suggested that CS/β-GP hydrogel could
continually release VEGF and contribute to odontogenic differentiation of DPSCs, thus may become a potential carrier of
bioactive molecules in pulp capping therapy.

1. Introduction

The dental pulpotomy is a kind of dental therapy to
retain the vital pulp in accidental pulp exposure caused
by trauma or caries removal. The retained radical pulp
is valuable for continuous apexogenesis in young perma-
nent teeth with immature root. In pulpotomy, the infected
coronal pulp is amputated, and the surface of remaining
vital pulp is treated with a sealant, such as calcium
hydroxide or mineral trioxide aggregate (MTA) [1]. These
sealants, called pulp capping agents, can promote the
recruitment, migration, proliferation, and differentiation
of human dental pulp stem cells (DPSCs) [2]. Afterwards,
a protective mechanism is initiated. The dentin matrix
secreted by odontoblast-like cells is laid down on the
surface of amputated pulp. As a result, the dentin bridge

or osteodentin is formed to save the vitality of residual
pulp [2].

However, as widely used capping agents, the calcium
hydroxide has been evaluated with less success in long-term
studies, while MTA has drawbacks such as discolor of tooth,
high cost, high operational requirements, and longer curing
time [3]. Considering the mechanism underlying the repara-
tive dentin formation, bioactive molecules were studied to
promote the proliferation and differentiation potential of
DPSCs in vital pulp tissue [4–10].

Vascular endothelial growth factor (VEGF) plays a
crucial role in dentin formation and regeneration [11].
Studies have evaluated that VEGF can promote the odonto-
genic differentiation of cultured DPSCs and induce the
formation of reparative dentin on the surface of amputated
pulp [12–16]. However, the applicable VEGF recombinant
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protein has a short half-life in aqueous solutions at 37°C [17].
Most recombinant proteins are susceptible to high tempera-
ture or pH levels, and they will be easily degraded by enzymes
and loss efficiency. Nowadays, some growth factors have
been approved for human therapy as recombinant prepara-
tions; however, most of them still carry warnings on clinical
application. The use of recombinant proteins without any
carriers generally presents side effects to human body. These
proteins are pleiotropic with short half-lives and some-
times functional redundancies and overlapping side effects
[18–20]. Many researches and therapies require frequent
protein administration and ultimately poor patient compli-
ance [21]. The systemic application of proteinswith once large
dose or frequent administrationmay induce a range of flu-like
symptoms as well as more severe hematologic, autoimmune,
infection, and dermatologic adverse events [18, 22].

In order to effectively extend the residence time and opti-
mize the molecule’s concentration, various materials were
studied as carriers to deliver bioactive molecules in pulp
capping therapy [6, 23, 24]. The carriers have different
features like synthetic gel (hydrogel), sponges, scaffolds, and
membranes [7, 8, 25–27]. Only the sustained delivery carrier
can create a microenvironment to maintain a certain mole-
cule concentration and extend application period. In other
words, the carriers could prolong the effective period and
minimize the side effects [4, 28].

Chitosan is a kind of polysaccharides derived from chitin
which is a natural component of insects’ exoskeleton,
crustaceous shells, and fungi’s cell walls. Chitosan has
characteristics of bacteriostatic effects, nontoxicity, and
biocompatibility [23]. In pharmaceutical industry, chitosan
has been widely used as a drug delivery system in different
forms, like tablets, microspheres, hydrogels, and nanoparti-
cles [20]. Among these, the chitosan/β-glycerophosphate
(CS/β-GP) hydrogel gained attention by its excellent chemi-
cal and biological ability to deliver therapeutic agents,
molecules, or cells. It has been studied in cartilage repair,
bone regeneration, hemostatic agents, and even in endodontic
treatment [19, 29–32]. In the study of odontology, chitosan
shows good properties as a carrier for some medicaments,
such as chlorhexidine, calcium hydroxide, and triple antibi-
otic paste [33]. The temperature-sensitive CS/β-GP solution
can transform into semisolid hydrogel at physiological
temperature in human bodies. Besides, the hydrogel protects
the agents from physiological degradation and prolongs
therapeutic span while minimizing side effects [20].

In this study, we characterized the morphology of CS/β-
GP thermosensitive hydrogel and the bioactivity of dental
pulp stem cells (DPSCs) on the hydrogel. We also compared
the effects of VEGF treatment in CS/β-GP hydrogel and
without hydrogel on the behaviors of DPSCs. We hypothe-
sized that the thermosensitive chitosan hydrogel could effec-
tively deliver VEGF protein in a sustained release pattern to
stimulate differentiation and mineralization of DPSCs.

2. Materials and Methods

2.1. Isolation and Culture of Dental Pulp Stem Cells. The pro-
cedures were approved by the Ethical Committee of the West

China School of Stomatology, Sichuan University, and per-
formed in accordance with the approved guidelines. Human
dental pulp stem cells (DPSCs) were harvested from normal
impacted third molars extracted from donors (19–22 years
old) in West China Hospital of Stomatology and cultured
as previously described [34]. All donors provided informed
consent for this study. DPSCs were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) consisting of 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (PS) at
37°C in moist atmosphere with 5% CO2 for use. Cells
between passages 3 and 4 were used in this study.

To characterize the immunophenotype of DPSCs, flow
cytometric analysis was used to measure the expression of
mesenchymal and nonmesenchymal stem cell-associated
surface markers at passages 3. DPSCs were washed by PBS
and liberated by enzymatic digestion for 2 minutes at 37°C.
Then, the single cell suspension was washed twice by buffer
solution (PBS containing 5% BSA). DPSCs for immunolabel-
ing were resuspended in 0.5ml blocking buffer and incubated
on ice for 30 minutes. Tubes containing 1 × 106 of DPSCs
were incubated with appropriate antibodies (CD90: 328109,
CD29: 303003, CD45: 368507, and CD34: 343603, BioLe-
gend) away from light on ice. The control group was
incubated without antibodies in buffer solution. After 30
minutes, cells were washed twice by buffer solution and
analyzed on Cytomics™ FC 500 (Beckman Coulter Ltd.).

2.2. Fabrication of Hydrogel and VEGF Loading. Chitosan
(CS, viscosity: 200-400mPa·s) was obtained from Aladdin
Industrial Corporation (China). Acetic acid and β-glycero-
phosphate (β-GP) were purchased from Sigma (St. Louis,
USA). The 2% (w/v) chitosan solution was prepared by
stirring chitosan in 0.5% (v/v) acetic acid solution at room
temperature for at least 3 hours until complete dissolution.
Afterwards, the chitosan solution was stored overnight at
4°C to diminish inside bubbles. 56% (w/v) beta-sodium glyc-
erophosphate (β-GP) solution was prepared by mixing β-GP
with distilled water and then filter sterilized by a 0.22 diame-
ter filter. These two solutions were mixed by adding the β-GP
drop by drop into the stirring chitosan solution; the volume
ratio of CS: β-GP is 5/1 [31]. After magnetic stirring for 10
minutes under ice bath, the final pH value of the chitosan
solution was 7.49. After that, the VEGF/CS/β-GP hydrogel
was obtained by adding appropriate amount of recombinant
human VEGF protein (PeproTech, China) into CS/β-GP
solution under magnetic stirring for 10 minutes; the final
concentration of VEGF was 100ng/ml.

During gelation, these gel solutions were transferred to
37°C baths for 10 minutes. The process of sol-gel transition
was observed.

2.3. Scanning Electron Microscope (SEM) of the Hydrogel and
DPSCs. After gelation in glass containers, hydrogels were
lyophilized. The samples were cut into pieces, and the micro-
structures were observed by SEM (JEOLJEM-1400, Japan) at
an acceleration voltage of 20.00 kV. DPSCs were directly
seeded and cultured on the surface of CS/β-GP hydrogels.
After 24 hours, cell-seeded gels were washed with phosphate
buffered saline (PBS) for 3 times and fixed with 2.5%
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glutaraldehyde at room temperature for 4 hours. Then, the
hydrogels were dehydrated in a graded series of ethanol
(30%, 50%, 75%, 85%, 95%, and 100%) for 15 minutes in each
concentration and air-dried overnight to be analyzed by SEM
(JEOLJEM-1400, Japan).

2.4. Cell Viability Using AO/EB Staining. CS/β-GP gel solu-
tion was put in the 6-well culture plates for 1ml/well. After
gelation, the culture medium was added into the wells to soak
the hydrogels for 10 minutes for 3 times. Then, DPSCs were
suspended and cultured on the surface of hydrogels at a
density of 106 cell/well. After 24-hour culture, cells on the
surface of hydrogels were stained by 1μl/0.1ml AO/EB
(acridine orange/ethidium bromide) solution (Sabbiotech)
for 1 minute. The images were captured on a Nikon Eclipse
300 fluorescence microscope (Compix Inc.).

2.5. Cytotoxicity Using Cell Counting Kit-8 Assay. The cyto-
toxicity of CS/β-GP hydrogel was assessed using a Cell
Counting Kit-8 (CCK-8, Sigma, St. Louis, MO, USA). DPSCs
were cultured in hydrogel leachates or seeded on the surface
of hydrogels. The leachates of hydrogels were obtained using
an international standard procedure (ISO-10993) [29].
DPSCs were seeded in 96-well culture plates at a density of
2000 cells/well. The medium was replaced by a fresh culture
medium or hydrogel leachates every 24 hours. After 1, 3, 5,
and 7 days, cells were isolated and incubated with
10μl/0.1ml CCK-8 solution and then tested using a BioTek
ELX800 kit (BioTek, Winooski, VT, USA) in an absorbance
of 450 nm.

2.6. Release Behaviors of VEGF. The VEGF/CS/β-GP hydro-
gel leachates were obtained using an international standard
procedure (ISO-10993). The leaching solution was collected
and immediately frozen at -80°C. The same volume of PBS
was replenished. The concentrations of VEGF in the leaching
solution were measured by using the enzyme-linked immu-
nosorbent assay (ELISA) kit (Dakewe Biotech Company
Limited, China). The optical densities were measured at
450nm using BioTek ELX800. The standard curves were
plotted, and the concentrations of VEGF were calculated
compared with the standard curves and stated in ng/ml.

2.7. ALP and Alizarin Red Staining. DPSCs were cultured in
24-well plates and treated with four different concentrations
of VEGF protein (5, 10, 50, and 100 ng/ml) in odontogenic
medium (OM, consisting of DMEM, 10% FBS, 1%PS,
10mmol l-1 β-GP, 50μg/ml ascorbic acid 2-phosphate, and
10-7mol/l dexamethasone). DPSCs in base culture medium
(NC, consisting of DMEM, 10% FBS, and 1% PS) were
cultured as a negative control group. DPSCs in OM without
VEGF were as another control group. Cells were dyed using
an alkaline phosphatase (ALP) staining kit (Beyotime,
China) after 0, 4, and 7 days, and alizarin red staining
(ARS) after 7 and 14 days. For quantitative analysis, 10%
(w/v) cetylpyridinium chloride resolution was used to elute
the alizarin red positive depositions. The absorbance was
measured using BioTek ELX800 (BioTek, Winooski, VT,
USA) in an optical density of 562nm.

The VEGF/CS/β-GP hydrogels were placed on the upper
chambers, and DPSCs were cultured on the lower chambers
in transwell plates. In the 100ng/mL VEGF group, DPSCs
were cultured in OM containing same amount of VEGF
(100 ng/ml) without hydrogels for seven days. DPSCs in
NC and OM groups were cultured without hydrogels. DPSCs
were dyed using the ALP staining kit after 4 and 7 days, and
ARS after 10 and 14 days. Before staining, cells were washed
by PBS for 3 times and fixed in 4% paraformaldehyde for 15
minutes in room temperature. The stained cells were
observed under light microscopy.

2.8. RNA Extraction and qRT-PCR. Total RNAs of DPSCs
were extracted using TRIzol reagent according to the man-
ufacturer’s protocol. Reverse transcription was performed
with a PrimeScript® RT reagent kit with gDNA Eraser
(TaKaRa). Quantitative real-time PCR (qRT-PCR) was car-
ried out using a standard SYBR Green PCR kit (TaKaRa) on
a CFX96 (Bio-Rad). Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used to normalize the expression level of
each gene. The primer information is shown in Table 1.

2.9. Western Blot Analyses. Total proteins of DPSCs were
extracted following the kit (KeyGEN, China) protocol. After
protein denaturalization, the protein concentrations were
measured by bicinchoninic acid (BCA) protein assays (Beyo-
time, China). Equal amount of each sample was segregated
via sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) gels and then transferred to a nitrocellulose
membrane. After blocking, the membranes were incubated
with primary antibody: mouse anti-β-actin (ab8226, Abcam,
1 : 1000) and mouse anti-OSX (sc-393325, Santa Cruz Bio-
technology, 1 : 1000). Then, the membranes were incubated
with goat anti-mouse IgG-horseradish peroxidase (Santa
Cruz Biotechnology) and detected with a chemiluminescent
reagent kit (Millipore). The expression level of β-actin was
normalized. A GS-700 imaging densitometer (Bio-Rad) was
used for image analysis.

2.10. Statistical Analysis. The results are revealed as
mean ± SD from experiments conducted at least 3 times

Table 1: Primer names and sequences.

Primer names Primer sequences

GAPDH
Forward: GGAGCGAGATCCCTCCAAAAT

Reverse: GGCTGTTGTCATACTTCTCATGG

Runx-2
Forward: CCTTTACTTACACCCCGCCA

Reverse: GGATCCTGACGAAGTGCCAT

OCN
Forward: ATTGTGGCTCACCCTCCATC

Reverse: CCAGCCTCCAGCACTGTTTA

OSX
Forward: TCTGCGGGACTCAACAACTC

Reverse: TAGCATAGCCTGAGGTGGGT

ALP
Forward: CTATCCTGGCTCCGTGCTCC

Reverse: GTTAACTGATGTTCCAATCCTGCG

DSPP
Forward: ATATTGAGGGCTGGAATGGGGA

Reverse: TTTGTGGCTCCAGCATTGTCA
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independently and analyzed by two-way ANOVA with
SPSS 21.0. When the P values were <0.05, data were
considered statistically significant. ∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗P < 0:005.

3. Results

3.1. Gelation and Microstructure of Hydrogels. The CS/β-GP
gel solution was prepared as procedures described previ-
ously [22]. The VEGF/CS/β-GP gel solution was formed
by adding VEGF protein into CS/β-GP solutions. The gel
solution was transparent liquid at 4°C and transformed into
nontransparent semisolid hydrogel after incubation at 37°C
for 15 minutes (Figures 1(a)–1(d)). After gelation, the
CS/β-GP and VEGF/CS/β-GP hydrogels were lyophilized
and observed by SEM (Figures 1(e) and 1(f)). These lyophi-
lized hydrogels showed the spongy and porous microstruc-
ture and the average pore diameter range from 100 to

200μm (Figures 1(g)–1(j)). There was no significantly differ-
ent appearance of hydrogels with or without VEGF proteins.

3.2. Adhesion of DPSCs on the Hydrogel. The flow cytometry
detected that the cultured DPSCs were positive for CD29 and
CD90, and negative for CD45 and CD34, which are the cri-
teria for mesenchymal stem cell (Figure 2(a)). The DPSCs
were planted on the surface of CS/β-GP hydrogel for 24
hours. The microstructure of CS/β-GP hydrogel with DPSCs
was analyzed by SEM. DPSCs showed spherical shapes, and
the cellular synapses were embedded into the porous hydro-
gel (Figure 2(b), i and ii).

3.3. Cytotoxicity of CS/β-GP Hydrogel to DPSCs. AO/EB
double fluorescence staining was conducted to observe the
morphology, distribution, and viability of DPSCs cultured
on the surface of CS/β-GP hydrogel after 24 hours
(Figure 3(a)). DPSCs cultured without hydrogel were as
control groups (Figure 3(b)). Live cells were stained in green

(a) (b)

(g)  200×

500 𝜇m

(h) 500×

200 𝜇m

(i) 200×

500 𝜇m

(j) 500×
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(e)
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(f)
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CS/𝛽-GP hydrogel

4 °C 37 °C for 10 min

(c) (d)

VEGF/CS/𝛽-GP hydrogel

4 °C 37 °C for 10 min

Figure 1: The process of gelation and the microstructure of hydrogels. Photographs of CS/β-GP gel before and after gelation (a, b).
Photographs of VEGF/CS/β-GP gel before and after gelation (c, d). Photographs of CS/β-GP and VEGF/CS/β-GP hydrogels after
lyophilization (e, f). SEM images of CS/β-GP hydrogel in 200x and 500x (g, h). SEM images of VEGF/CS/β-GP hydrogel in 200x and
500x (i, j).
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Figure 2: Cell surface markers on DPSCs and the morphology of DPSCs cultured on the hydrogel. Flow cytometric analysis was used to test
the surface markers of DPSCs. DPSCs were positive for CD29 and CD90, and negative for CD34 and CD45 (a). Morphology of DPSCs
cultured on the surface of CS/β-GP hydrogel after 24 h (b). DPSCs embedded their cellular synapses into the pore canal (i, ii).
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or yellow-green (Figure 3 (i)), and apoptotic cells were red or
orange (Figure 3 (ii)). There was no significant difference of
cell population in the CS/β-GP hydrogel group compared
to cells without hydrogel, and most of DPSCs on the hydrogel
kept vitality.

Cell Counting Kit-8 (CCK-8) assay was conducted to test
the cytotoxicity of CS/β-GP hydrogel. The proliferation of
DPSCs cultured on the surface of hydrogel (Figure 4(a))
and in the hydrogel leachates (Figure 4(b)) was assayed. Cells
cultured on the plate were as control groups. The activity of
DPSCs showed no difference on the 1st and 3rd day. Sur-
prisingly, the promoted proliferation of DPSCs was shown
in hydrogel and hydrogel leachate groups compared to the
control group after 7 days. These results suggested that the
CS/β-GP hydrogel was noncytotoxic; furthermore, it has
the characteristic to promote the proliferation of DPSCs.

3.4. VEGF Release from CS/β-GP Hydrogel. VEGF proteins
were added into the CS/β-GP hydrogel to form 100 ng/ml
VEGF/CS/β-GP hydrogel, and the release profiles of VEGF
were detected using the enzyme-linked immunosorbent
assay (ELISA). As a result, a linear increase of VEGF release
was observed during the first 5 days. After 8 days, the cumu-
lative release level tended to the peak and levelled out. A total
of 12% VEGF proteins were shown to release out of hydrogel
after 8 days (Figure 4(c)). The everyday release of VEGF
proteins showed a downward trend from the 4th day to reach

a constant concentration (Figure 4(d)). The results suggested
that the CS/β-GP hydrogel could be used as a carrier to con-
stantly release VEGF proteins.

3.5. The Sustained Release of VEGF from Hydrogels Promoted
the Odontogenic Differentiation of DPSCs. VEGF could
promote odontogenic differentiation of DPSCs, while the
strategy of optimal concentration treatment remains
unclear. The effects of VEGF treatment in DPSCs were
detected using different concentrations of 5 ng/ml, 10 ng/ml,
50 ng/ml, and 100ng/ml. The results of ALP staining illus-
trated induced ALPase activity in DPSCs treated with VEGF
compared to cells without VEGF (Figure 5(a)). After 7 days,
the VEGF treatment significantly increased the mineralized
nodule formation (Figure 5(b)). Cells cultured with 10ng/ml
VEGF exhibited to be higher mineralized than cells with
5 ng/ml VEGF, and cells with 10ng/ml, 50 ng/ml, and
100 ng/ml did not show an obvious difference in the
amounts of mineralized nodules (Figure 5(c)). It suggested
that more than 10ng/ml VEGF may not be needed to induce
the odontogenic differentiation of DPSCs, and this result
was consistent with previous study [14].

The CS/β-GP hydrogel was evaluated as a valuable
sustained delivery system for bioactive molecule release.
To further investigate the advantage of hydrogel system
compared to the once-add strategy without carriers, we
evaluated the cell responses to 100ng/ml VEGF proteins

D
PS

Cs
 o

n 
th

e p
la

te
D

PS
Cs

 o
n 

th
e s

ur
fa

ce
 o

f h
yd

ro
ge

l

(a1) (a2) (a3) 

(b1) (b2) (b3) 

1000 𝜇m 500 𝜇m 300 𝜇m

1000 𝜇m 500 𝜇m 300 𝜇m

i

i

ii

ii

Figure 3: The activity of DPSCs cultured on the hydrogel. Distribution and viability of DPSCs cultured on the surface of CS/β-GP hydrogel or
on well plates after 24 hours stained by AO/EB. Live cells were shown in green or yellow-green (i), and apoptotic cells were red or orange (ii).

6 Stem Cells International



with or without a CS/β-GP delivery system. Cells without
hydrogel cultured in NC and OM were as controls. The
results of ALP staining showed that the addition of VEGF
protein in the medium and in the hydrogel both increased
ALPase activities after 7 days, and no obvious difference
was shown between two groups (Figures 6(a1)–6(a4) and
6(b1)–6(b4)).

ARS was further performed to detect the mineralization
activity of DPSCs during the late stage of differentiation.
After 10 days, the added VEGF proteins increased the forma-
tion of mineralized nodules compared to control groups
(Figures 6(c1)–6(c4)). Moreover, the sustained VEGF treat-
ment elevated the mineralization activity of DPSCs better
than the initial burst release of VEGF without carriers
(Figures 6(d3) and 6(d4)). The hydrogel worked as a
sustained delivery system and created a steady concentration
of VEGF protein, promoting the odontogenic differentiation
of DPSCs in the long-term differentiation period.

The expressions of odontogenic markers were further
detected using qRT-PCR assay. The alkaline phosphatase
(ALP) expression level was higher in the VEGF/CS/β-GP

hydrogel group than other groups, in consistent with the
results of ALPase staining (Figure 7(d)). The expression
levels of osteocalcin (OCN), osterix (OSX), and dentin sialo-
phosphoprotein (DSPP) were significantly higher in the
VEGF/CS/β-GP hydrogel group after 7 days compared to
the 100ng/ml VEGF group (Figures 7(b), 7(c), and 7(e)).
The expression of runt-related transcription factor-2
(RUNX-2) increased at the 7th day while decreased at the
14th day in the VEGF/CS/β-GP group (Figure 7(a)). It vali-
dated the VEGF/CS/β-GP hydrogel delivery system induced
the odontogenic differentiation of DPSCs.

Consistent with the results in gene expression, the
protein expressions of osterix (OSX) were also increased in
the DPSCs cocultured with VEGF/CS/β-GP hydrogel than
cells cultured in 100ng/ml VEGF (Figures 7(f) and 7(g)).

4. Discussion

The pulpotomy and direct pulp capping in teeth initially
establish a nonbacterial environment and maintain the
pulpal vitality for further dentin-pulp complex healing [24].
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Figure 4: The CS/β-GP hydrogel promoted the proliferation of DPSCs and constantly released VEGF. The results of CCK-8 assay showed the
promoted proliferation of DPSCs plated on the CS/β-GP hydrogel and in hydrogel leachates (a, b). DPSCs cultured in base culture medium
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Under the condition of dental pulp exposure, stem cells in
dental pulp provide the potential of pulp self-healing and
tertiary dentin formation. Numerous investigations have
concerned that the biological behaviors of DPSCs could be
affected and amplified by extracellular environment [35].
Nowadays, an increasing focus on the design of new
materials has emerged which are capable of driving DPSC
migration and differentiation in dental therapy [36]. Among
these, the CS/β-GP hydrogel has been widely used in drug
delivery or tissue engineering systems for its biodegradabil-
ity, biocompatibility, and antibacterial property [37].

The CS/β-GP hydrogel has thermosensitive property.
The mixture maintains in the liquid state at room tempera-
ture and transforms into gel after 37°C incubation or be
injecting into the body [22, 38]. The thermosensitive charac-
teristic has been reported to be helpful in wound healing and
bone tissue regeneration [32, 39]. The initial liquid stage can
easily flow and fill any target area. Also, the liquid state is
useful for encapsulating living cells and therapeutic agents.
After the sol-gel transformation in the body, the hydrogel
promoted the proliferation of cells. The sol-gel transforma-
tion in wound is safe and operable as it does not require
externally applied trigger for gelation. Besides, the CS/β-GP
hydrogels were elevated to be compatible with DPSCs in this
and previous studies [39].

Lyophilization resulted in loss of water in the hydrogel;
then, the porous structure of dry hydrogel was observed.
The porous and hydrous structure allowed DPSC adhesion
with embedded cellular synapses in the hydrogels. Numerous
investigations indicated that the extracellular microenviron-
ment can have an impact on cell behaviors. The morphology
of cells seeded on different carriers showed in different

shapes. Studies reported that the odontoblastic cell line was
spherical on HA sponge, while flattened with stretching
processes on collagen sponge [25]. The difference of cell
morphology on these carriers may be related to the adhesion
receptor. It was previously demonstrated that odontoblastic
cell lines KN-3 adhere to HA through surface markers like
CD44 and attach to collagen through the integrins and colla-
gen interaction [40, 41]. In the present study, DPSCs on the
CS/β-GP hydrogel showed spherical shape. The related adhe-
sion receptors need to be further investigated to identify the
adhesion motility of DPSCs on the hydrogel [42, 43].

The AO/EB staining illustrated that the live cells without
hydrogel were uniformly distributed on the well, while the
live cells grew on the surface of hydrogel showed a status of
agminate growth which might be contributed by the advan-
tage of hydrogel for promoting proliferation of DPSCs. The
apoptotic cells were stained by EB and less presented on the
surface of hydrogels both in the two groups, which was a
good proof for the biocompatibility of hydrogel. The well
activity of DPSCs was similar with previous studies of human
umbilical vein endothelial cells (HUVEC) and mouse embry-
onic fibroblast cells (NIH 3T3) on other materials composed
by chitosan [29, 44]. The results of CCK-8 assay further
showed the promoted proliferation of DPSCs with hydrogels.
The hydrogel itself is not transparent and may influence the
detection of absorbance. DPSCs were cultured in the hydro-
gel leachates to exclude the hydrogel absorbance in CCK-8
analysis [29]. These evidences were all in agreement with
previous studies, suggesting the potential application of
CS/β-GP hydrogel with great biocompatibility [45].

The previous studies have suggested that preencapsu-
lating drugs in carriers allow a prolonged release of drugs
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[46], and the sustained delivery capability of CS/β-GP
hydrogel was also evaluated in consistent with previous
findings [47, 48]. The results of ELISA showed the incor-
poration of VEGF into CS/β-GP hydrogel had an initial
burst release followed by a sustained release of VEGF over a
period of time, and the release cumulation reached a steady
level to create a relative steady concentration for cell culture.
The similar release status was also observed in CS/β-GP
hydrogel with other bioactive molecules [19, 22].

As we found the VEGF/CS/β-GP hydrogel was able to
constantly release VEGF, we further compared the effects
on the differentiation of DPSCs between VEGF released from
hydrogels and once-added 100ng/ml VEGF treatment.

Generally, agent release from biocompatible materials is
related to initial agent loading, agent solubility, carrier
material degradation, and so on [49]. In our study, we used
the CS/β-GP hydrogel that carried 100ng/ml of VEGF. Com-
pared to the once-added VEGF treatment, DPSCs with
VEGF/CS/β-GP hydrogel showed more mineralized nodule
formation in the late differentiation stage. The higher expres-
sion levels of osteogenic/odontogenic markers in the
VEGF/CS/β-GP hydrogel group were further detected. As a
result, we supposed that this delivery system promoted the
proliferation and odontogenic differentiation of DPSCs in a
period of time, better than 100ng/ml VEGF treatment with-
out carriers. As described in previous studies [14], VEGF has
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an effect on odontogenic differentiation of DPSCs, while
higher concentrations of VEGF may not always show better
effects on DPSCs. Our study yielded similar cell responses
to VEGF treatment with different concentrations. Based
on the VEGF release behavior from hydrogel, it was sus-
pected that the VEGF concentration in the hydrogel group
was lower than that of the 100 ng/ml VEGF group. Besides,
the β-GP in the CS/β-GP hydrogel not only induced the
sol-gel transformation at body temperature but also pro-
vided organophosphates, as a result, inducing more calcium
deposition [50]. All these data suggested that, even though
the hydrogel group creates a lower concentration of VEGF
in surroundings, the sustained release and steady concentra-
tion of VEGF may better contribute to promote the activity
and odontogenic differentiation of DPSCs than the initial
burst application of VEGF. These effects were consistent with
the BMP-2/CS/β-GP hydrogel delivery system [22]. On the
one hand, the CS/β-GP delivery system saves cost and
maximizes the effects of VEGF treatment [14, 51, 52]. On
the other hand, the delivery system decreased the negative
consequence caused by rapid loss of physical stability
and bioactivity [22, 32, 44–46]. The transwell technique
helps us creating a circumstance to simulate practical
application and allowing the VEGF released from hydrogel
working on DPSCs.

5. Conclusions

In this study, the microstructure and biocompatibility of
CS/β-GP hydrogel were identified. As a carrier material,
the characteristic of sustained releasing VEGF was profiled
and contributed to the proliferation and differentiation of
DPSCs. Besides, the angiogenesis is another key step in
the dental pulp healing. VEGF has been reported to be a
potent factor to promote angiogenesis and might be benefi-
cial to form the pulpodentinal complex. However, the
advantages of chitosan carrying VEGF on angiogenesis still
need further studies. Also, the pharmaceutical applications
of hydrogels need further exploration on animal studies
and clinical trials [53].
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