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Nerve injury is a critical problem in the clinic. Nerve injury causes serious clinic issues including pain and dysfunctions for patients.
The disconnection between damaged neural fibers andmuscles will result inmuscle atrophy in a fewweeks if no treatment is applied.
Moreover, scientists have discovered that nerve injury can affect the osteogenic differentiation of skeletal stem cells (SSCs) and the
fracture repairing. In plastic surgery, muscle atrophy and bone fracture after nerve injury have plagued clinicians for many years.
How to promote neural regeneration is the core issue of research in the recent years. Without obvious effects of traditional
neurosurgical treatments, research on stem cells in the past 10 years has provided a new therapeutic strategy for us to address this
problem. Adipose stem cells (ASCs) are a kind of mesenchymal stem cells that have differentiation potential in adipose tissue. In
the recent years, ASCs have become the focus of regenerative medicine. They play a pivotal role in tissue regeneration engineering.
As a type of stem cell, ASCs are becoming popular for neuroregenerative medicine due to their advantages and characteristics. In
the various diseases of the nervous system, ASCs are gradually applied to treat the related diseases. This review article focuses on
the mechanism and clinical application of ASCs in nerve regeneration as well as the related research on ASCs over the past decades.

1. Introduction

Nerve injury is common in the clinic and leads to many other
complications, such as muscle atrophy and abnormal bone
reconstruction. The treatments of nerve injury cost USA
medical insurance $150 billion every year, and these diseases
affect 20 million Americans’ lives [1]. Nerve injury occurs in
2% to 3% of citizens, and more than 50,000 peripheral nerve
injury repair operations are performed per year in the United
States [2]. Therefore, nerve injury and its complications
cause huge financial burdens for social development and
affect patients’ life quality. Thus, it is critical for clinicians
to solve these urgent problems.

Nerve injury results in muscle atrophy and abnormal
bone reconstruction which leads motor dysfunction. In gen-

eral, satellite cells, as stem cells in skeletal muscle tissue, can
repair atrophied and damaged skeletal muscles [3–7]. How-
ever, the recovery of damaged musculoskeletal tissue requires
the involvement of nerve endings. It will form scar tissues
without the involvement of nerve endings [8]. The loss of
axonal continuity, nerve demyelination, and neuron cell
death after nerve injury can lead to the denervation of skeletal
muscle [2]. Some studies have demonstrated that muscle
atrophy will happen after denervation within 2 weeks [9].
Furthermore, the accumulation ability of skeletal stem cells
(SSCs) will decrease in the mandible with inferior alveolar
nerve injury according to the Annual Clinical Congress of
the American College of Surgeons in Boston, May 2018
[10]. Scientists attending the meeting have proved that nerve
injury can affect the osteogenic differentiation of SSCs and
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delay the procedure of bone fracture repair [10]. The mandi-
ble is the core component of the masticatory system, and any
damage to the mandible can cause masticatory muscle dis-
order. The recovery of damaged nerve may have a positive
impact on the bone fracture repair, and briefly, it may
provide a new strategy for skeletal muscle dysfunction and
bone diseases.

The orthodox treatment for nerve injury can be divided
into two major categories: surgical methods and nonsurgical
methods. However, both surgical and nonsurgical methods
have their own limitations. For example, Robinson et al.
found that only 4 of 53 patients who underwent neurological
direct suture had some degree of recovery [11]. The possible
reason is that the length of nerve defect is so long that the
sutured nerve has a large tension between the sutural end-
ings. The majority of clinicians reject to use medication alone
for treatment due to the long periodicity of drug therapy. At
present, there are no effective methods to treat nerve injury in
the clinic. Fortunately, the research on stem cells and tissue
engineering in the past decades may make it possible.

2. Stem Cells

Stem cells can self-renew and differentiate into multiple line-
ages. Currently, scientists have isolated several kinds of adult
stem cells, such as bone marrow mesenchymal stem cells
(BM-MSCs), skeletal stem cells (SSCs), dental pulp stem cells
(DPSCs), adipose stem cells (ASCs), neural stem cells
(NSCs), fetal-derived stem cells (FDSCs), human periapical
cyst-mesenchymal stem cells (hPCy-MSCs), induced plurip-
otent stem cells (iPSCs), skin epidermal stem cells (SESCs),
human amniotic-mesenchymal stem cells (hAMSCs), and
hair follicle stem cells (HFSCs) [12–14].

Stem cells in different tissues can expand their quantities
by symmetrical division during the growth and development
of the human body. Meanwhile, stem cells can self-renew
and have great ability of multidirectional differentiation to
replace damaged cells by asymmetric division when some
injuries occur in different tissues. It has been reported that
intravenous injection of MSCs can treat acute lung and kid-
ney injuries in preclinical trials with mouse disease models
[15, 16]. ASCs derive from adipose tissues with some shared
characteristics of all stem cells. More importantly, it is
potential for ASCs to repair damaged tissues including ner-
vous tissues.

3. The Fate and Biological
Characteristics of ASCs

Easy obtainable methods with little damage for stem cell har-
vesting are the main ambition. The quantity of ASCs in adi-
pose tissues is 100- to 500-fold compared with that of MSCs
in bone marrow tissues. There are two types of human adi-
pose tissue: white adipose tissue and brown adipose tissue.
Subcutaneous adipose tissue in white adipose tissue is the
main source of ASCs, and this kind of ASCs has a stronger
antiapoptotic ability than ASCs located in brown adipose tis-
sue [17]. However, ASCs from brown adipose tissue more
easily undergo skeletal myogenic differentiation in the spe-

cific microenvironment [18, 19]. The characteristics of ASCs
make them popular in the field of regeneration.

3.1. The Obtainable Method andMultipotential Differentiation
of ASCs. It is widely accepted that ASCs can be harvested
from adipose tissues and have great ability of multidirec-
tional differentiation. With 0.075% collagenase type II diges-
tion, ASCs can be harvested from the stromal vascular
fraction (SVF) of adipose tissues. The ingredients of SVF
include ASCs (15~30%), endothelial cells (10-20%), pericytes
(3~5%), and immune cells (25~45%) [20, 21]. Due to the
mesodermal origin of ASCs, they can differentiate into adi-
pogenic, osteogenic, and chondrogenic lineages induced by
selective medium in vitro [22, 23]. Among them, the neural
differentiation of ASCs has attracted scientists’ attention
and created a new cell-based clinical strategy for neurodegen-
erative diseases.

3.2. Neural Differentiation. Safford et al. firstly induced
ASCs to differentiate into neuronal phenotype cells which
express nestin and neuronal nuclei protein (NeuN) in
2002 [24]. The inducing and differentiation medium they
used for neural differentiation of ASCs contained valproic
acid, butyl hydroxyanisole, insulin, and hydrocortisone.
However, this chemical method is not suitable to induce dif-
ferentiation in vivo due to its disability to construct the cor-
responding microenvironment in the body for neural
regeneration [25]. Moreover, chemical reagents in the
medium can cause some extra damage to tissues, which
brings pain to patients.

Biological induction methods are more suitable for
repairing damaged tissues in vivo. ASCs can be induced to
differentiate into neural cells if the medium contains some
soluble factors secreted from nerve tissues which include cer-
ebellum, hippocampus, and cerebral cortex [26]. ASCs can
also secrete some neurotrophic factors in the process of neu-
ral differentiation, such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), glial-derived neuro-
trophic factor (GDNF), ciliary neurotrophic factor (CNTF),
and fibroblast growth factor (FGF) [27]. The current problem
lies in how to control the direction of neural differentiation.
Both neurons and glial cells can promote the remyelination
of nerve which is of great importance for neural regeneration
and express the similar markers [28–30]. However, some dif-
ferences can be pointed out. A higher tendency of neuronal
phenotype can be recognized when ASCs are induced by
olfactory ensheathing cell conditioned medium (OEC-CM)
[31, 32]. Instead, ASCs are more likely to differentiate into
glial cells in Schwann cell conditioned medium (SC-CM)
with high concentration of GFAP [31, 32].

ASCs can promote axonal regeneration, myelination, and
functional recovery [33]. ASCs upregulate the expression of
myelin protein zero, peripheral myelin protein-22, and mye-
lin basic protein, which promotes self-regulation of ASC dif-
ferentiation and reestablishes the connection between
damaged nerve and target organs [34]. Some animal models
have proved that ASCs have neuroprotection abilities and
provide trophic supports for axon regeneration in optic nerve
transection, glaucoma, and retinitis pigmentosa [35–37].
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Furthermore, ASCs were applied to the preclinical trials
for the CNS diseases, such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) [38].

4. The Regulation and Mechanism in the Neural
Differentiation of ASCs

There is a complex regulatory network in the neural differen-
tiation of ASCs. In addition to neurotrophic factors secreted
by ASCs, parts of signaling pathways are also involved in the
differentiation courses. Most importantly, ASCs can promote
their own neural differentiation by regulating the microenvi-
ronment. It is widely accepted that the microenvironment
regulation interacts with the neural differentiation of ASCs
[39]. The neural differentiation of ASCs takes place under
complex regulatory mechanisms and promotes neural regen-
eration in order to repair damaged nervous tissues.

4.1. The Neurotrophic Effect. The paracrine function of stem
cells is a kind of mechanism that accelerates the process of
neural differentiation. Undifferentiated ASCs can secrete
neuroprotective factors to enhance neural regeneration and
reduce muscle atrophy [40, 41]. These neuroprotective fac-
tors include BDNF, GDNF, CNTF, and neurotrophin-4
[41]. Furthermore, some angiogenesis and antiapoptotic fac-
tors are also secreted by ASCs, including hepatocyte growth
factor (HGF), transforming growth factor-β (TGF-β), and
vascular endothelial growth factor (VEGF) [42–46]. Some
scientists believe that the inhibition of apoptosis is a crucial
step in tissue regeneration, which is decided by the concen-
tration of antiapoptotic factors in the microenvironment
[47]. Antiapoptotic factors and neurotrophic factors can pro-
mote neuron proliferation and survival [48, 49]. Another
important point is that the activation and proliferation of
microglia accelerate the process of some neurodegenerative
diseases, for example, traumatic brain injury (TBI) [50–54].
Jha et al. have proved that trophic factors secreted by ASCs
can normalize microglia and slow down the development of
neurodegenerative diseases [55].

Neurotrophic factor is a sort of protein molecule neces-
sary for the growth and survival of neurons [56]. Among
the known neurotrophic factors, BDNF is one of the most
important factors in the development of the nervous system
[41]. BDNF is a neural-related protein encoded early during
the embryonic period and its genome is made of eight pro-
moters, each of which binds to a common BDNF full-
length protein-encoding exon [57]. Transcription of BDNF
is regulated by several mechanisms [58–60]. For example,
the cAMP response element-binding protein (CREB) con-
trols the transcription of exon IV and it is a key factor for
the synaptic plasticity of neurons and cognition [61–64]. Fur-
thermore, forskolin is a cAMP-elevating agent that can
upregulate the expression of BDNF [65]. Recent studies have
shown that the use of BDNF has a positive impact on synap-
tic plasticity, neuron-glia communication, and regulation of
neurite outgrowth [66, 67]. The neuron-glia communication
is the foundation of neural maintenance. Glial cells can
upregulate the expression of BDNF by receiving the signals
from neurons [67–69].

4.2. The Microenvironment Regulation of ASCs. ASCs can
improve the microenvironment for neural regeneration by
inhibiting inflammatory responses [70]. Inflammation is
induced by proinflammatory immune cells and cytokines
and ASCs can secrete angiogenic factors to inhibit that pro-
cess [71–74]. The newborn blood vessels ameliorate the
microenvironment for tissue recovery while the inhibition
of angiogenesis aggravates the progression and pathology of
inflammation [75]. Black et al. found that ASCs reduced
inflammatory response and demonstrated positive therapeu-
tic effects on chronic inflammatory bowel disease in dogs
[76]. ASCs can inhibit neural cell apoptosis by releasing
anti-inflammatory factors and cytokines, which provide a
stable microenvironment for the neural differentiation of
ASCs [77].

The main anti-inflammatory factors secreted by ASCs
include tumour necrosis factor-inducible gene 6 protein
(TSG-6) and STC-1 [78–81]. TSG-6 is a component of the
negative feedback mechanism and it can downregulate the
inflammatory response [82]. Increasing evidences indicate
that some paracrine factors secreted by ASCs are enough
to alleviate inflammatory diseases in animal neural disease
models [78, 80, 83, 84]. The anti-inflammatory and immu-
nomodulatory effects of these cytokines and chemokines
are not only affected by the status of ASCs but are also
affected by the concentration of TGF-β1, tumour necrosis
factor-α (TNF-α), lipopolysaccharide (LPS), and hypoxia in
microenvironments [85–88]. Taken together, the interaction
between the neural differentiation of ASCs and the regula-
tion of the microenvironment has a positive influence on
inflammatory inhibition.

4.3. The Regulation of Signaling Pathways. Since the discov-
ery of the signaling pathways was introduced, scientists have
discovered that most of cell physiology can be explained by
the regulation of signaling pathways. The neural differentia-
tion of ASCs is also regulated by multiple signaling pathways.
Here, we reviewed several known signaling pathways
involved in the neural differentiation process.

Researchers have discovered that theWnt signaling path-
way is involved in the formation of the brain. The
Wnt/LEF/TCF genes work synergistically to participate in
the development of the hippocampal gyrus, and Wnt3a
knockout can stop the development of hippocampus in
mouse embryos [89–91]. In addition, the Wnt signaling
pathway is also involved in the initiation of axon formation.
Wnt7a can induce the reconstitution of axons and growth
cones in mossy nerve fibers, as well as the collection of recep-
tors I [91]. In contrast, Jang et al. have demonstrated that the
classical Wnt signaling pathway does not regulate the neural
differentiation of ASCs. Instead, they have proved that the
noncanonicalWnt signaling pathway activates the neural dif-
ferentiation of ASCs by regulating the activation/phosphory-
lation of Wnt5a/JNK signaling pathway [92].

Some other signaling pathways have been found to par-
ticipate in the neural differentiation process, such as ROCK
and BDNF/TrkB signaling pathway. Ren et al. have proved
that the ROCK pathway inhibitor, namely, Y-27632, could
accelerate the neural differentiation of ASCs in their

3Stem Cells International



experiment. After adding Y-27632 into the culture medium,
the shape of mouse ASCs switched to neuronal-like cells.
Furthermore, the cells lost their neuron-like morphology
once Y-27632 was removed from the medium [93]. It indi-
cates that the ROCK signaling pathway inhibits the neural
differentiation of ASCs. Some scholars have pointed out that
ASCs may be also regulated by the BDNF/TrkB signaling
pathway during the neural differentiation [84]. The
BDNF/TrkB signaling pathway induces the secretion of
BDNF which is a neurotrophic factor which can promote
the neural differentiation of ASCs as previously mentioned
[85]. However, scientists are not sure how these multiple sig-
naling pathways interplay in the neural differentiation of
ASCs. More research is needed in this field.

5. The Prospects for Clinical Application of
ASCs in Neural Disease

Due to the limited therapeutic effect of clinical methods,
treatment for nerve injury cannot keep pace with the life
quality of people. Many elderly people suffer from nervous
system diseases around the world. For example, the organic
chemical pollution in water always causes serious nervous
system diseases in developing countries and backward
regions. Nerve injury not only leads to neurological disorders
but also musculoskeletal system damage. Taking into
account the limitations of current therapeutic methods, the
application of stem cell-based therapy is extremely urgent.

The occurrence of neurodegenerative diseases involves a
variety of pathophysiological mechanisms that determine
the progress and severity of the diseases including neuroin-
flammation, mitochondrial dysfunction, and protein aggre-
gation [94]. There are several common neurodegenerative
diseases in the clinic, such as AD, PD, TBI, and spinal cord
injury (SCI). In addition to their own ability to differentiate
into nerve cells, ASCs can also secrete various neurotrophic
factors and immune regulatory mediators. In the recent
years, clinical application of ASCs has attracted much atten-
tion in the field of regenerative medicine.

5.1. AD. AD is a neurological degenerative disease with
family heritability [95]. It is characterized by generalized
dementia, such as memory impairment, loss of recognition,
abnormal motion, and personality and behavioural change.
AD may be a heterogeneous group of diseases, which is reg-
ulated by a variety of factors, including biological and psy-
chosocial factors. Entanglement of amyloid-β plaques and
neuronal fibers, neurodegeneration of the limbic system,
and neural progressive decline are the main pathological fea-
tures of AD [96].

Kim et al. have proved that the application of ASCs in the
AD mouse experimental models was feasible [97]. In their
study, theMorris water maze test (MWM) of mice was signif-
icantly improved. They found that Aβ plaque formations
were reduced in the cerebral cortex. Amyloid precursor pro-
tein (APP) levels were reduced and Aβ-degrading enzyme
levels were also upregulated. These phenomena clearly
showed that the symptom of AD has been ameliorated. In
another experiment, ASCs increased the secretion of anti-

inflammatory factors, enhancing the expression of Aβ-
degrading enzymes and raising the response levels in cogni-
tive and memory tests [38]. Furthermore, ASCs increased
the secretion of interleukin-10 and induced microglia to
polarize the activation phenotype as well as express several
vascular and neurotrophic factors [38, 97, 98]. In the recent
years, Pérez-González et al. found that ASCs could secrete
leptin during neural differentiation. Leptin is a kind of pro-
tein hormone which promotes the neural regeneration of
stem cells in vitro and slows down the process of neurodegen-
erative diseases in vivo [99].

5.2. PD. PD is a common degenerative disease of the nervous
system in the elderly. The main pathological features of PD
are progressive dopaminergic neuron loss in the substantia
nigra pars compacta. Tremor, muscle rigidity, and decreased
motion are the main clinical features of PD. Zhang et al. have
found that PD patients always had chest muscle tissue ten-
sion which lead to breath function disorder [100]. It shows
that the nervous system damage of PD is not the most fatal
factor for patients. Dyspnea and its complications caused
by PD are the greatest harm to the human body.

In animal experimental models of PD, ASCs upregulated
the secretion of soluble growth factors including anti-
inflammatory factors and BDNF [101]. BDNF is an impor-
tant neurotropic factor which can promote differentiation
of stem cells and anti-inflammatory can improve the micro-
environment as described earlier. The ASC-based regenera-
tive therapy has a huge potential to treat PD and provides
us a new strategy to improve neural and musculoskeletal tis-
sue function for PD patients. However, Schwerk et al. found
that the function of regenerative dopaminergic neurons
induced by ASCs cannot completely replace that of lost dopa-
minergic neurons [102]. Furthermore, some scientists dem-
onstrated that ASCs cannot improve the survival rate of PD
patients after clinical treatment [103]. More research is
required to clarify whether ASCs are useful in the treatment
of PD.

5.3. SCI. SCI is one of the common symptoms in serious
traumas caused by car accidents or falls. Serious injury
to the limbs and muscle atrophy due to disconnection
between muscles and damaged nerves disturb the ordinary
life of patients. Thousands of SCI patients impose a huge
burden on the development of social economy, and it
costs billions of dollars every year [1]. The prevention,
treatment, and rehabilitation of SCI have become a major
issue in the medical field due to its urgency for patients
and society.

Some studies have shown that ASCs can survive and
migrate to damaged nerve tissue in animal experimental
models [104]. Meanwhile, transplanted ASCs express GFAP
and neuronal nuclear antigens in ischaemic encephalopathy
[105]. In a previous study, the expression of GFAP, NF160,
and Tuj-1 of ASCs was positive after transplanted ASCs were
inserted into lentiviral vectors that were GFP-tagged in SCI
models [8]. It is suggested that the implantation of ASCs
can differentiate into astrocytes and oligodendrocytes as well
as neurons. Neurons deriving from differentiation can
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convey regenerative information from proximal-disrupting-
ending neural fibers to the distal side [106].

The neural regeneration in SCI has a positive effect on
innervation to muscle after peripheral nerve injury. When
the peripheral nerve breaks down, the skeletal muscle
which is innervated by the damaged nerve degenerates
and muscle atrophy occurs. The neural transdifferentia-
tion process may be the consequence of cytokine secre-
tion, the interactions of ASCs and intercellular signaling
pathways of ASCs [107]. Also, ASCs have been shown
to secrete a variety of angiogenic and antiapoptotic cytokines,
which support tissue regeneration and minimize tissue
damage [108].

5.4. TBI. TBI is a type of disruption or alteration of brain
function caused by external forces. Skull fracture and intra-
cranial hypertension caused by TBI can lead to conscious
disturbance, headache, and vomiting which are transient
or long-lasting clinical symptoms of patients. External
forces that cause TBI include acceleration or deceleration,
direct compression, penetration of objects, and explosion
damage. In the United States, the top three causes of TBI
are fall (28%), motor vehicle accidents (20%), and pedes-
trian impact (19%) [109]. Masel and Dewitt thought that
TBI is a cascade process involving primary and secondary
brain injury instead of a simple external force injury process
[110]. Primary damage refers to mechanical damage to the
brain tissue caused by external forces. Secondary damage
is a cellular metabolic event that occurs after an external
force injury [111]. Within 24 hours after the brain tissue
injury, the blood-brain barrier has been damaged and
inflammatory cells enter the brain tissue leading to the
occurrence of inflammation.

Tajiri et al. have proved that ASCs and ASC-associated
secreted proteins can reduce cortical damage in mouse TBI
models [112]. But the experimental mice were killed at an
early stage, and the relevant mechanisms have not been
proved. However, a possible mechanism is increasingly sup-
ported in scholars: inflammatory suppression theory [113].
Regarding these patients suffering TBI, inflammatory cells
release kinds of immune-mediated factors. It is often consid-
ered as a secondary brain injury [114, 115]. TNF-α, as a kind
of inflammatory factor, mainly predominates the inflamma-
tory response [116, 117]. Controlling the inflammatory
response after injury can be thought as a target for the
TBI treatment. Kappy et al. have demonstrated that ASCs
and its own secreting proteins downregulate the secretion
of inflammatory factors and inhibit the inflammation in
TBI [118–120].

Furthermore, β-APP is thought to be an important
marker of nerve damage [121]. β-APP is a complete mem-
brane protein with a high concentration in neuronal synap-
ses. The role of β-APP in the brain has not been clarified,
but the concentration of β-APP has been found increasing
in the mouse TBI model [121]. β-APP can be used as a
marker for diagnosing nerve damage and assessing the sever-
ity of TBI [122]. In Kappy’s experiment, inserting ASCs into
TBI mouse maintains the β-APP concentration instead of
making the concentration of β-APP continuously increasing

[118]. It suggests that ASCs play a neuroprotective role in the
TBI model.

6. Conclusion

Stem cells have great abilities of multidirectional differentia-
tion and are widely found in nearly all organs and tissues
except the heart. When human tissues or organs are damaged
or diseased, stem cells can differentiate into corresponding
progenitor cells and replenish the cell pools to recover nor-
mal function of organs. However, due to the particularity of
the nervous system, nerves are less able to self-regenerate.
The nerve injury is not only limited to the nerve tissues but
also often affects the musculoskeletal tissues. Muscle atrophy
and scar formation can be effectively prevented by neural
regeneration. At present, the clinical therapy for neurodegen-
erative diseases mainly includes surgical and nonsurgical
means, such as neurolysis, direct nerve suture, and drug
treatment. Although these methods have been proved to have
a degree of curative effect, it has not lived up to expectations.
In recent years, stem cell-based therapies are expected to
replace orthodox treatment.

ASCs that are isolated from adipose tissue can differenti-
ate into other kinds of cells with a low mortality rate in vivo
and in vitro. ASCs have advantages of easy material extrac-
tion, which means that they could be extracted from many
types of tissues with slight damage to the body. Most impor-
tantly, ASCs are characterized by low immunogenicity and
are not susceptible to immune rejection. Considering the
advantages above, we are looking forward to a fact that ASCs
will play a crucial role in the treatment of various tissue and
organ diseases. In particular, in the nervous system, ASCs are
important for promoting neural regeneration. The neuro-
genic and osteogenic differentiation of ASCs accelerates the
recovery of damaged tissues. It will provide a new method
for orthodox treatments. However, there are still many issues
in the field of neural regeneration with ASCs. For example,
the neural differentiation ability of ASCs extracted from dif-
ferent tissues should be clarified in order to identify the most
efficacious ASC source for neural regeneration. More
research is needed in the field for clinical application. We
truly believe that ASCs would play a signature role for neural
regeneration in the future.
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