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Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for
their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental
MSCs, owing to their ease of harvesting with minimally invasive procedures. Their mechanism of action has been attributed to
their cell-to-cell contacts as well as to the paracrine effect of their secreted factors, namely, secretome. In this context, dental
MSC-derived secretome/conditioned medium could represent a unique cell-free regenerative and therapeutic approach, with
fascinating advantages over parent cells. This article reviews the application of different populations of dental MSC
secretome/conditioned medium in in vitro and in vivo animal models, highlights their significant implementation in treating
different tissue’ diseases, and clarifies the significant bioactive molecules involved in their regenerative potential. The analysis of
these recent studies clearly indicate that dental MSCs’ secretome/conditioned medium could be effective in treating neural
injuries, for dental tissue regeneration, in repairing bone defects, and in managing cardiovascular diseases, diabetes mellitus,
hepatic regeneration, and skin injuries, through regulating anti-inflammatory, antiapoptotic, angiogenic, osteogenic, and
neurogenic mediators.

1. Introduction

Regenerative medicine employing tissue engineering
approaches represents a promising emerging multidisciplin-
ary branch of medicine that is aimed at regenerating as
well as guiding restoration and enhancement of organs
and tissues’ functions, thereby improving the overall quality
of life [1]. The goal remains to construct biological substi-
tutes, mimicking the actual tissues and organs for therapeutic
management of several diseases and disorders [2, 3]. In its
course, this process requires combining biocompatible scaf-
folds, cells, proper signaling molecules, and physical stimuli
[2, 4, 5].

Biocompatible scaffolds employed in tissue engineering,
comprising a variety of natural, synthetic, conductive
polymers, and elastic polymer networks such as hydrogels
[6–8], combined with signaling molecules and/or growth fac-
tors [9–12]. In addition to polymers, scaffolds were further
fabricated from bioceramics, bioactive glasses, and their
composites [12–16]. In the same context, decellularization
was introduced as a novel scaffold fabrication technique that
depends onmaintaining the extracellularmatrix with its orga-
nization, architecture, and vascular network, thus obtaining a
cell-free 3D structure harboring biological signals, affecting
the cell behavior and differentiation [17]. Different methods
were proposed for such decellularization process, including
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the employment of detergents, enzymes, and salts combined
with some physical means [18], producing a biological scaf-
fold, ready to be seeded by the desired cell type for different
tissue engineering purposes [19, 20].

Different cell populations were proposed with remark-
able properties to be used in the tissue engineering field,
mainly adult stem/progenitor cells, embryonic stem cells,
and induced pluripotent stem cells [21, 22]. Currently, adult
mesenchymal stem/progenitor cells (MSCs) are among the
most commonly investigated cells in tissue engineering
endeavours. MSCs are multipotent cells, residing in numer-
ous adult body tissues, including the bone marrow, adipose
tissues, umbilical cord blood, and synovial fluid [23–25],
hallmarked by their self-renewal abilities and differentiation
potential into a multitude of cells of mesodermal origin, upon
proper stimulation.

Although cellular transplantation of various MSCs has
been proposed as a valid model for functional tissue regener-
ation, its translation into the clinical settings remains faced
with various serious clinical obstacles. In recent years, MSCs
have been characterized for their secretory ability of various
bioactive molecules in their surrounding media (the condi-
tioned media (CM)). These secreted molecules, also known
as secretome, can be readily isolated, with demonstrated
remarkable effects on mesenchymal tissue regeneration
[26, 27]. Among the advantages reported for stem/progenitor
cell-derived secretome over cell-based therapy are its ease of
preservation, sterilization, packaging, and storage for
extended periods without the risk of losing its properties. It
can be accurately gauged for proper dosages and produced
in large quantities, using cell lines without subjecting the
patient to invasive extraction procedures, which is both time
and cost saving [28–31]. In this review, we aim to investigate
the efficacy of secretome derived from various dental mesen-
chymal stem/progenitor cell (dental MSC) populations in the
therapeutic approaches of various diseases as well as on
different tissues’ regeneration, highlighting the bioactive
molecules involved in their action.

2. Dental Stem/Progenitor Cells (Dental MSCs)

Dental MSCs are unique adult MSCs, derived from the ecto-
mesenchyme’s neural cells [32, 33]. They include dental pulp
mesenchymal stem/progenitor cells (dental pulp MSCs) iso-
lated from dental pulpal tissues of permanent teeth [34],
stem/progenitor cells extracted from pulpal tissues of human
shed deciduous teeth (SHED) [35, 36], periodontal ligament
mesenchymal stem/progenitor cells (periodontal ligament
MSCs) isolated from the periodontal ligament [37, 38], den-
tal follicle mesenchymal stem/progenitor cells (dental follicle
MSCs), usually isolated from the dental follicle surrounding
the thirdmolar [39], alveolar bone proper-derivedmesenchy-
mal stem/progenitor cells (alveolar bone MSCs) [40–42],
mesenchymal stem/progenitor cells isolated from the apical
dental papilla (MSCs from apical papilla) at the apices of the
immature permanent teeth [38, 43], tooth germ progenitor
cells, isolated from late bell stage third molar’s tooth germs
[44], and gingival mesenchymal stem/progenitor cells
(gingival MSCs), isolated from gingival tissues [45–49].

Stem/progenitor cells have further been isolated from dis-
eased dental tissues as inflamed pulp [50, 51] and periapical
cysts [52, 53].

Dental MSCs express the common MSCs’ surface
markers, including CD105, CD73, and CD90 with a lack of
expression of CD45, CD34, CD14, CD11b, CD79a, CD19,
and human leukocyte antigen-DR isotype [54]. They are
characterized by their ability to differentiate into multiple cell
lineages, their self-renewal ability, their immunomodulatory
properties, and their potent regenerative potentials [55–61].
Aside from their remarkable ease of acquisition via routine
minimally invasive dental procedures [21], dental MSCs were
reported to demonstrate an enhanced regenerative potential
as compared to MSCs derived from other body tissues. Den-
tal pulp MSCs [62–68], SHED [68], MSCs from the apical
papilla [63–65], and dental follicle MSCs [63–65] revealed a
higher osteogenic [63, 67], hepatogenic [64], neurogenic
[65, 68], antiapoptotic [62], angiogenic [62, 69], pulpal tissue
regenerative [62] potential and remarkable proliferative rates
[70, 71] as compared to bone marrow-derived mesenchymal
stem/progenitor cells (bone marrow MSCs) [62–68] or adi-
pose stem/progenitor cells (adipose MSCs) [62, 66, 67].

3. Stem/Progenitor Cells’
Secretome/Conditioned Medium

Apart from their direct cellular activity following stem/-
progenitor cells engraftment, the positive effect of stem/-
progenitor cells on target tissue repair and regeneration is
indirectly mediated through paracrine effects [72–75]. The
latter is mainly invoked through the release of trophic and
modulatory bioactive factors (secretome) into the surround-
ing environment, by which they can influence tissue homeo-
stasis and promote tissue regeneration [76, 77]. Secretome
can induce cellular migration, proliferation, immunomodu-
lation, and tissue regeneration [78–82]. Relying on this
recently evolving concept, cell-free regenerative medicine
approaches, utilizing stem/progenitor cells’ secretome, have
emerged as an alternative to cell-based therapies [73, 74, 83].

Secretome can be defined as the range of molecules
secreted from living cells or shed from their surface into the
extracellular environment [80]. Upon stimulation, stem/-
progenitor cells release secretome and trophic factors into
the culture media, the stem/progenitor cells’ CM [79, 84].
These stem/progenitor cells’ secretome contains lipids,
proteins, nucleic acid, and trophic factors as chemokines,
cytokines, growth factors, hormones, and extracellular vesi-
cles (EVs) [77]. Human cytokine array system, a useful tool
for identifying novel cytokines [85], demonstrated that
stem/progenitor cells derived from different anatomic loca-
tions show variation in secretome profile [86].

Regarding their composition, stem/progenitor cells’
secretome was demonstrated to harbor an array of growth/-
differentiation factors, including vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF), epider-
mal growth factor, insulin-like growth factor I and II (IGF-I,
IGF-II), hepatocyte growth factor (HGF), fibroblast growth
factor 2/basic fibroblast growth factor (FGF-2/bFGF), keratino-
cyte growth factor/fibroblast growth factor-7 (KGF/FGF-7),
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platelet-derived endothelial cell growth factor, heparin-
binding epidermal growth factor, neural growth factor
(NGF), and brain-derived neurotrophic factor (BDNF)
[87]. Additionally, anti-inflammatory cytokines including
transforming growth factor- (TGF-) β1 and interleukins
(IL), including IL-6, IL-10, IL-27, IL-17, and IL-13, and pro-
inflammatory cytokines including IL-8/CXCL-8, IL-9, and
IL-1β were identified. Furthermore, granulocyte colony-
stimulating factor (GCSF), granulocyte macrophage CSF
(GM-CSF), and prostaglandin E2 (PGE2) were present [87].

3.1. Extracellular Vesicles (EVs). EVs are secreted by many
cell types, including stem/progenitor cells. They can be iso-
lated from body fluids like urine, serum, and cerebrospinal
fluids. Their content depends on the surrounding envi-
ronment and may change upon cell stimulation. EVs
include microvesicles (MVs) (100-1000nm), exosomes (EXs)
(40-100 nm), and apoptotic bodies (1-5μm) [80, 88–90].
Once EVs reach their target sites, they interact and attach
to the target cell surface, where they either remain
attached, become internalized by the target cell via fusion
with the cell membrane as well as via the endocytotic
pathway to discharge their content intracellularly, or
become detached from the cell surface after completing their
action [89, 91].

MVs and EXs are membrane-bound particles that are
secreted by most cell types for normal homeostasis with
their secretion increasing upon stimulation [91, 92]. Both
MVs and EXs are pivotal for intercellular communication
and can exert both paracrine and endocrine actions [91].
MVs and EXs can function as vehicles or stable trans-
porters for the transfer of bioactive molecules as cytokines
and growth factors from the producing cells to the adjacent
or distant target cells through the circulation [89, 91, 92].
They can further deliver RNA to target cells to modify tar-
get cells’ gene expression or protein synthesis [93, 94].
MVs and EXs differ in their cellular origin (biogenesis)
as well as their physical characters, including size and sur-
face markers [88, 95, 96]. Their content depends upon the
producing cells, encompassing proteins and lipids, and
protein-coding messenger RNAs and noncoding microRNA
[90, 92, 96, 97].

MVs (also termed ectosomes) are heterogenous in size,
ranging between 100 and 1000 nm in diameter. They are
produced through direct budding from the cell plasma
membrane, with their surface markers originating from
the producing cells [95, 98]. MVs contain proteins and
lipids, as well as mRNA and microRNA [99]. EXs, on the
other hand, are homogenous and smaller in size with a
diameter ranging from 40 to 100nm. They originate in
multivesicular bodies and are released from the cell
through exocytosis via fusion with cell membrane [88, 100].
Following endocytosis, endocytotic vesicles are formed
and fused giving rise to early endosomes that mature into
late endosomes (multivesicular bodies), which eventually
fuse with the membrane and discharge their content extra-
cellularly [101]. EXs are rich in annexins, tetraspanins
(CD63, CD81, and CD9), and heat-shock proteins (as

Hsp60, Hsp70, and Hsp90), which are usually used for their
identification [102].

3.2. Comparison between Secretome/Conditioned Media
Derived from Dental MSCs and MSCs from Other Tissue
Sources. A total of 1533 proteins were identified in the CM
derived from bone marrow MSCs, adipose MSCs, and dental
pulp MSCs by proteomic analysis. 999 proteins were
contained in the CM of all three cell sources, of which 124
proteins were identified as secreted extracellular proteins.
The secreted extracellular proteins were suggested to be
responsible for the regenerative effects of MSCs including
angiogenesis, migration, inflammatory response, ossification,
and organ survival. A closer resemblance was notable
between protein sets isolated from bone marrow MSC-CM
and adipose MSC-CM rather than dental pulp MSC-CM
[103]. Comparing MSCs from apical papilla-CM to bone
marrow MSC-CM, proteins responsible for angiogenesis,
immunomodulation, chemotaxis, neuroprotection, antia-
poptosis, and extracellular matrix formation were detected
in both CM. A significant difference in the levels of 151 of
the detected proteins was however noticeable between the
two cell sources, where MSCs from apical papilla-CM was
associated with higher levels of proteins related to metabolic
processes and transcription in addition to chemokines and
neurotrophins and lower levels of proteins responsible for
adhesion, immunomodulation, angiogenesis, and extracel-
lular matrix proteins [104]. MSCs from the apical papilla-
CM, dental follicle MSC-CM, and dental pulp MSC-CM
showed a common expression of 174 cytokines. Dental pulp
MSC-CM however revealed a significantly higher expres-
sion of 23 cytokines related to odontoblast differentiation,
proinflammatory and anti-inflammatory cytokines, while
three cytokines related to proliferation were significantly
higher in MSCs from apical papilla-CM and dental follicle
MSC-CM [105].

Regarding their tissue biological effects, dental pulp
MSC-CM showed higher antiapoptotic, angiogenic, neurite
outgrowth, migration activity [62, 106], and immuno-
modulatory effects in vitro as compared to bone marrow
MSC-CM, in addition to higher vasculogenesis in vivo [106].
Dental pulp MSC-CM further demonstrated antiapoptotic
effect and increased migration and angiogenesis on mouse
embryonic muscle myoblast cells (C2C12) in vitro, which
was attributed to the presence of high concentration of
CXC motif ligand (CXCL14) and monocyte chemoattractant
protein-1 (MCP-1) [107]. Dental MSC-CM derived from
dental pulp MSCs, MSCs from the apical papilla, and dental
follicle MSCs showed a superior nerve regenerative potential
as compared to bone marrow MSC-CM, where dental
MSC-CM were associated with significantly higher colony
formation and neurite extension, indicating an enhanced
neural differentiation and maturation, in comparison to bone
marrowMSCs. This could be attributed to significantly higher
levels of BDNF, neurotrophin-3 (NT-3) in dental MSC-CM
derived from all three cell sources, and a significantly higher
expression of NGF inMSCs from apical papilla-CM and den-
tal follicle MSC-CM, as compared to bone marrowMSC-CM.
Moreover, higher concentrations of GCSF, interferon gamma
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(IFN-γ), and TGF-βwere detected in dental pulpMSC-CMas
compared to bone marrow MSC-CM [65]. Similar results
were notable, comparing the dental pulp MSC-CM to the
bone marrow MSC-CM and adipose MSC-CM [66].

4. Stem/Progenitor Cells from Exfoliated
Human Deciduous Tooth-Derived
Secretome/Conditioned Medium (SHED-CM)

SHED, derived from the pulpal tissues of deciduous teeth,
possess higher proliferation rate as compared to dental pulp
MSCs and bone marrow MSCs. Microarray analysis showed
that SHED had higher expression levels of FGF, TGF, con-
nective tissue growth factor, NGF, and bone morphogenetic
protein- (BMP-) 1 [108]. Gene encoding for extracellular, cell
surface molecules, cell proliferation, and embryonic tissue
development are highly expressed by SHED. Moreover,
SHEDs expressed neural cell lineage markers including nes-
tin, doublecortin, β-tubulin III, NeuN, glial fibrillary acidic
protein (GFAP), S100, A2B5, and 2′,3′-cyclic-nucleotide
3′-phosphodiesterase [109]. In addition, SHED release an array
of secretome with various biological therapeutic activities.

4.1. SHED-CM in the Therapy of Neural Injuries (Table 1).
SHED-CM contains various cytokines and chemokines with
the ability to improve peripheral nerve regeneration and
functional recovery [110]. The unique combination of neuro-
trophic factors, MCP-1 and secreted ectodomain of sialic
acid-binding Ig-like lectin-9 (sSiglec-9), were described as
crucial for SHED-CM mediated functional recovery, follow-
ing severe peripheral nerve injury. This neuroprotective
effect was evident through the promotion of migration, pro-
liferation, and differentiation of Schwann cells; blood vessel
formation; and nerve fiber extension [111]. These in vitro
results were confirmed in vivo [110, 111]. SHED-CM admin-
istration in a rat nerve gap model induced axon regeneration
and remyelination [110, 111]. Notably, MCP-1/sSiglec-9
prompted the polarization of M2 macrophages, which antag-
onized the proinflammatory M1 conditions associated with
neural insult [111, 112], thereby increasing the expression
of anti-inflammatory markers IL-10 and Arginine-1 and
markedly suppressing inflammatory mediators IL-1β, tumor
necrosis factor (TNF-α), IL-6, and inducible nitric-oxide syn-
thase (iNOS) [111]. In a perinatal hypoxia-ischemia-induced
brain injury mouse model, intracerebral administration of
SHED-CM resulted in significant recovery in neurological
function, survival rate, and neuropathological score [113].
The effects were primarily ascribed to the generation of an
anti-inflammatory microenvironment, reducing tissue loss
and thereby significantly improving the neurological out-
come. In a further investigation, SHED-EXs reduced the pro-
inflammatory microglia M1 phenotype cell markers in a
dose-dependent manner and activated M2microglia, thereby
suppressing neuroinflammation by anti-inflammatory cyto-
kines. These results were further proven in vivo [114, 115],
where SHED-EXs improved rat motor functional recovery
and reduced cortical lesion in a traumatic brain injury rat
model [115]. Similarly, SHED-CM decreased infarct volume

in contrast to bone marrow MSC transplantation in a focal
cerebral ischemic study [114]. Moreover, SHED-CM pro-
moted the migration and differentiation of endogenous neu-
ronal progenitor cells, boosted vasculogenesis, and enhanced
ischemic brain injury [114].

Both SHED-CM and dental pulp MSC-CM (as discussed
below) significantly promoted transected axon regeneration,
through inhibiting the multiple axon growth inhibitors
signals directly or via paracrine mechanisms, as compared
to fibroblast-CM or bone marrow MSC-CM. Moreover,
the levels of MCP-1 and secreted ectodomain-Siglec-9
were higher in SHED-CM compared with bone marrow
MSC-CM in vitro [109]. The neuroprotective effects were
correspondingly confirmed in vivo [109, 112, 116], as SHED-
CM improved functional recovery as compared with bone
marrow MSC-CM [109, 112]. The therapeutic effect of
SHED-CM was largely ascribed to immunoregulatory func-
tions that activate anti-inflammatory M2-like macrophages
and suppress proinflammatory mediators [112].

SHED-CM was further demonstrated to convert the pro-
inflammatory brain/spinal cord environment to an anti-
inflammatory state, through altering microglial phenotype
as shown in a mouse model of Alzheimer’s disease [117] and
a mouse model of multiple sclerosis (MS) [118]. SHED-CM
administration improved cognitive function more effi-
ciently than the bone marrow MSC-CM or fibroblast-CM.
SHED-CM, bone marrow MSC-CM, or fibroblast-CM
similarly suppressed the proinflammatory cytokines and
markers of oxidative-nitrosative stress expression. In contrast,
SHED-CM uniquely activated M2-type microglia, which led
to the expression of the mRNA encoding BDNF, a neurotro-
phin that plays an important role in the synaptic remodeling
associated with memory formation. Interestingly, the same
neuropathological recovery was observed in a previous
study [113].

In an in vitro model of Parkinson’s disease, SHED-CM
demonstrated neuroprotective effects. SHED-CM enhanced
neurite outgrowth and repressed 6-hydroxydopamine-
induced cell death [119]. Similarly, SHED-CM showed a pos-
itive outcome in a Parkinson’s disease rat model [120, 121]. A
superior laryngeal nerve injury rat model was treated with
systemic administration of SHED-CM and strikingly func-
tional recovery was improved via two mechanisms: macro-
phage polarization and vascularization [122].

The previous data highlights the neural regenerative
potential of SHED-CM that was primarily ascribed to the
release of multiple growth factors, including NGF, BDNF,
NT-3, ciliary neurotrophic factor, glial cell line-derived neu-
rotrophic factor, and HGF [110], stimulation of angiogenesis
by VEGF expression [123], and inhibition of 3-NT and iNOS
generation [117]. Taken together, the results validated the
potential of SHED-CM/EXs as a candidate for neuroprotec-
tive treatment of brain ischemia [114] and that SHED-CM
may act through multiple mechanisms to provide neural
functional recovery.

4.2. SHED-CM in the Therapy of Cardiopulmonary Injuries
(Table 2). SHED-CM induced the differentiation of mouse
bone marrow-derived macrophages into M2 macrophages
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that expressed Arginase-1, Ym-1, and CD206 in vitro. These
findings were further proved in vivo [124–126], where intra-
venous administration of SHED-CM in a bleomycin-induced
acute lung injury mouse model, reduced lung fibrosis, and
enhanced survival rates. These therapeutic effects were
elicited through reducing the expression of proinflamma-
tory cytokines and fibrotic markers such as α-smooth
muscle actin, thereby reducing fibrosis by altering proin-
flammatory M1 into an anti-inflammatory M2 phenotype
[112, 113, 126]. Furthermore, SHED-CM administration
provided cardioprotective benefits in ischemic heart diseases,
through at least two mechanisms, involving suppression of
inflammatory responses in myocardial cells and reduction
of cardiomyocyte death. These effects were greater compared
to those of adipose SC-CM and bone marrow MSC-CM,
owing to the significantly higher expression of HGF in
SHED-CM as compared to the other two cell sources [127].

4.3. SHED-CM in the Therapy of Hepatic Disorders (Table 2).
Intravenous administration of SHED-CM in a liver failure
mouse model exhibited a remarkable therapeutic effect that
was not observed in the fibroblast-CM [124, 125]. TNF-α,
IL-1β, and iNOS were strongly suppressed. Additionally,
SHED-CM suppressed carbon tetrachloride-induced apo-
ptosis in hepatocytes in vitro [124]. SHED-CM promoted
anti-inflammatory cytokines (IL-10 and TGF-β1), M2 cell
markers (CD206 and Arginase-1), angiogenic factor (VEGF)
and hepatocyte proliferation, and antiapoptosis factor (stem
cell factor and IGF-1) expression. Furthermore, SHED
upregulated the expressions of LPC activation genes,
including FGF 7, TWEAK, HGF, and Wnt3a [125]. These
data suggest that the active biomolecules within the
SHE-CM and endogenous tissue-repairing factors activated
by the SHED-CM administration could function together to
diminish liver failure-induced tissue destruction [124, 125].

4.4. SHED-CM in the Therapy of Diabetes Mellitus (Table 2).
The administration of the human SHED-CM and human
bone marrow MSC-CM intravenously in a streptozotocin-
induced diabetes model in rats resulted in the regeneration
of pancreatic β-cells, with an increase in insulin secretion in
the SHED-CM group. Moreover, the antidiabetic effect of
SHED-CM was found to be superior to the bone marrow
MSC-CM [128].

4.5. SHED-CM in the Therapy of Immunological Disorders
(Table 2). Human SHED-CM effect on rheumatoid arthri-
tis was also investigated. SHED-CM or bone marrow
MSC-CM injection intravenously in rats with induced
arthritis demonstrated marked anti-inflammatory effects, a
decrease in joint destruction and an overall improvement
in arthritis symptoms, especially in the SHED-CM group.
Additionally, SHED-CM inhibited osteoclastogenesis [129].
SHED-CMwas further effective in suppressing inflammation
and reducing inflammatory markers in chondrocytes cell
culture treated with proinflammatory factors [130].

Similarly, human SHED-CM showed promising results
in the treatment of alopecia in vivo and in vitro. In a study,
mice with dorsal area shaved with clippers were injected

subcutaneously with human SHED-CM or human hair folli-
cle stem cell-CM. For the in vitro study, skin samples were
obtained from the shaved dorsal skin of rats and cultured
with CM. Results demonstrated that SHED-CM resulted in
a faster stimulation of hair growth as compared to the hair
follicle stem cell-CM, through upregulating positive hair
growth-regulatory factors, stromal cell-derived factor-1, hair
growth factor, VEGF-A, and PDGF-B [131].

4.6. SHED-CM in the Therapy of Dental Pulpal Disorders
(Table 3). The angiogenic effect of SHED-CM was studied
on dental pulp in rats and on human umbilical vein endo-
thelial cell culture (HUVECs). Endodontic treatment was
performed on rats’ first molar tooth followed by overin-
strumentation with the last file to allow the blood clot to
infill the root canal, and SHED-CM was applied on top of
the blood clot. SHED-CM induced the formation of the vas-
cular connective tissue inside the root canal. A similar induc-
tive effect was observed in HUVEC cultures, indicating that
SHED-CM has a proangiogenic effect in both in vitro and
in vivo study models [123].

5. Dental Pulp Mesenchymal Stem/Progenitor
Cell-Derived
Secretome/Conditioned Medium

Dental pulp MSCs hold distinctive differentiation character-
istics into ectodermal, endodermal, and the traditional meso-
dermal cell lineages [132]. In addition to MSC markers,
dental pulp MSCs express neural stem cell-like markers,
including nestin and GFAP, which are believed to amplify
their multipotency and self-renewal abilities [133]. Remark-
ably, dental pulp MSCs express stemness-related markers as
Oct-3/4, Nanog, and sex-determining region Y- (SRY-) box
2 (SOX-2) [134], in addition to a variety of angiogenic factors
such as VEGF, PDGF, and FGF, with an interesting increase
of their expression after injury [135], as well as CSF, IL-8,
angiogenin, endothelin-1, angiopoietin-1, and IGF-binding
protein-3 [136–138]. Dental pulp MSCs demonstrate immu-
nomodulatory properties partly attributable to their expres-
sion of IL-8, IL-6, and TGF-β, which could inhibit T cell
function [139, 140]. Moreover, dental pulp MSCs secrete
many neurotrophic factors like BDNF [141], glial cell line-
derived neurotrophic factor [142], and NGF [143].

Although dental pulp MSCs and SHED originate from
dental pulpal tissues and share many common properties,
SHED demonstrated a higher proliferation rate but lower
osteogenic potential as compared to dental pulp MSCs
[144]. On the other hand, the proliferative potential and
telomerase activity of dental pulp MSCs were higher than
periodontal ligament MSCs [145]. The aforementioned
properties of dental pulp MSCs hallmark their distinctive-
ness, which is further reflected into the remarkable therapeu-
tic paracrine effect of their secretome/CM.

5.1. Dental Pulp MSC-CM in the Therapy of Neural Disorders
(Table 1). Similar to SHED-CM, dental pulp MSC-CM
demonstrated remarkable neural regenerative potentials,
with the ability to induce recruitment, neuronal maturation,
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and neuritogenesis of human neuroblastoma cells in vitro
[146], in addition to neurite outgrowth [106]. The regenera-
tive effect of dental pulp MSC-CM, bone marrow MSC-CM,
and adipose MSC-CMwere compared in an in vitro model of
retinal nerve damage. Dental pulp MSC-CM demonstrated
neuroprotection and neuritogenesis attributed to their
increased levels of different neurotrophic factors, including
NGF, BDNF, and VEGF [66]. Moreover, dental pulp
MSC-CM promoted proliferation, differentiation, and
migration of Schwann cells and inhibited their apoptosis, as
well as enhanced angiogenesis in an in vitro model of nerve
injury [147]. Dental pulp MSC-CM further revealed a neuro-
protective effect in an in vitro model of Alzheimer’s disease.
Their effect was attributed to the increase in the expression
of B-cell lymphoma 2 and the decrease in apoptosis regulator
Bax in neuroblastoma cells. Moreover, dental pulp MSC-CM
contains a high concentration of neprilysin, which cause the
degradation of amyloid-β peptide (one of the major
misfolded protein accumulated in Alzheimer’s disease), frac-
talkine (antiapoptotic factor), and VEGF compared to bone
marrow MSC-CM or adipose MSC-CM, in addition to
RANTES, FLT-3, GM-CSF, and MCP-1, which make them
a promising candidate in treating Alzheimer’s disease [148].
Dental pulp MSC-CM also provided a neuroprotective effect
in an in vitro model of hypoxic ischemic brain damage.
Dental pulp MSC-CM showed an increase in cell viability
and a decrease in cell apoptosis in comparison with bone
marrow MSC-CM. Moreover, dental pulp MSC-CM pro-
vided an increase in the number and total length of tubular
structures of HUVECs in an in vitro ischemia model [69].

The therapeutic potential of dental pulp MSC-CM sys-
temic administration in a mutant superoxide dismutase
mouse model of amyotrophic lateral sclerosis was demon-
strated [149]. Dental pulp MSC-CM improved neuromuscu-
lar junction innervation and motor neuron survival in
treating amyotrophic lateral sclerosis through different
trophic factors and cytokines [149]. Similarly, dental pulp
MSC-CM exhibited neuroprotective, anti-inflammatory,
and angiogenic actions when administrated into unilateral
hind limb skeletal muscles of a diabetic polyneuropathy rat
model [150]. Intrathecal administration of dental pulp
MSC-CM in a rat aneurysmal subarachnoid hemorrhage
model revealed improvement in cognitive and motor
impairments, microcirculation, and reduction of neuroin-
flammation. IGF-1, TGF-β, tissue inhibitor of metallopro-
teinase- (TIMP-) 1, and TIMP-2 were identified as
significant components in dental pulp MSC-CM that con-
tribute to these improvements [151].

Collectively, these data clearly demonstrated that dental
pulp MSC-CM harbors an array of neuroprotective and
angiogenic factors such as NGF, BDNF and VEGF [66],
RANTES, fractalkine, FLT-3, GM-CSF, MCP-1, and neprily-
sin [148], besides IGF-1, TGF-β, TIMP-1, and TIMP-2 [151],
which account for their promising abilities to induce tissue
regeneration in many neurological diseases.

5.2. Dental Pulp MSC-CMOsteogenic Potential (Table 4). The
surrounding microenvironment could impact on the osteo-
genic differentiation of dental pulp MSCs [152]. Dental pulp

MSCs cultured with dental pulp MSC-CM demonstrated
an enhanced mineralization potential [153]. In a further
study evaluating the regenerative potential of dental pulp
MSC-CM grown under different culture conditions in a dis-
traction osteogenesis mouse model, dental pulp MSC-CM
increased osteoblastic and chondrogenic markers’ expres-
sion, with accelerated bone healing especially in CM collected
under hypoxic conditions [154]. These findings indicate that
the paracrine influence of dental pulp MSCs could initiate
new bone formation through increasing the mineralization
potential by expressing TGF-β1 [153], in addition to upregu-
lating angiogenic factors (VEGF-A and angiopoietin-2), as
well as enhancing osteoblastic and chondrogenic marker
expression (osterix, SOX-5, and factor VIII) [154].

5.3. Dental Pulp MSC-CM in the Therapy of Hepatic
Disorders (Table 2). Another promising regenerative appli-
cation of dental pulp MSC-CM was demonstrated in the
field of hepatic therapy. Dental pulp MSC-CM remarkably
demonstrated the presence of various hepatic lineage pro-
teins, including hepatocyte nuclear factor, growth arrest
specific-protein, oncostatin M, and hepatocyte growth factor
receptor in vitro [64], thereby promoting hepatic repair
and regeneration.

5.4. Dental Pulp MSC-CM in Dental Tissue Regeneration
(Table 3). EXs derived from dental pulp MSCs demonstrated
a potent stimulatory effect on odontoblastic differentiation
in vitro and triggered regeneration of dental pulp-like tissue
in vivo in an ectopic tooth transplantation model [155]. Den-
tal pulp MSC-CM enhanced the proliferation and migration
of the myoblast [156] and fibroblast [157] in vitro, which was
confirmed in vivo in an ectopic tooth transplantation model
[107]. The addition of G-CSF to CM from mobilized dental
pulp MSCs [157] improved the proliferation and migration
effect of dental pulp MSC-CM. Dental pulp MSC-CM pro-
moted dental pulp MSC differentiation into odontoblasts
in vitro [62]. These results could be attributed to high con-
centrations of NT-3 or BMP in dental pulp MSC-CM
[105]. On the other hand, dental pulp MSC-CM alone
failed to induce odontoblastic differentiation in cells of
nondental origin like myoblast [156]. The regenerated tis-
sues by dental pulp MSC-CM demonstrated the expression
of pulp tissue markers including syndecan 3, thyrotropin-
releasing hormone-degrading enzyme, CXCL14, G-CSF,
BDNF, neuropeptide Y, IL-1α, IL-6, IL-8, IL-16, MCP-1
[107], BMP2, BMP9, TGF-β, PDGF, runt-related transcrip-
tion factor 2 (RUNX2), and dentin sialophosphoprotein
[155] in addition to enamelysin as well as periodontal tissue
markers, including periodontal ligament-associated protein
(PLAP-1) and periostin [156].

Several studies were carried out comparing the regen-
erative capacity of dental pulp MSC-CM to that of other
cell sources. Pulp regeneration was assessed using an
ectopic tooth model seeded with bone marrow MSC-CM,
adipose MSC-CM, and dental pulp MSC-CM. Dental pulp
MSC-CM showed the highest volume of regenerated pulp
tissues as compared to CM from other cell sources. Dental
pulp MSC-CM showed angiogenic effect in an in vitro
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pulp disease model of HUVECs [62, 156] and embryonic
muscle myoblast cells [107] as well as antiapoptotic activ-
ity on mouse embryonic fibroblast cell line (NIH3T3)
[106]. Dental pulp MSC-CM promoted neovascularization
as compared with bone marrow MSC-CM and adipose
MSC-CM [107]. Dental pulp MSC-CM had no significant
effect on the proliferation of endothelial cells but enhanced
their migration in vitro [138]. Moreover, dental pulp
MSC-CM inhibited apoptosis in HUVECs [158] and fibro-
blast cell line through modulating caspase-3 activity [157].
Various angiogenic factors were identified in dental pulp
MSC-CM such as VEGF, IGF-binding protein 3, IL-8, endo-
statin [138], MCP-1 [107, 138], and chemokine CXCL 14
[107]. The aforementioned studies highlight dental pulp
MSC-CM as a new promising therapeutic tool for dental
tissue regeneration through different mechanisms of action,
including promoting odontoblastic differentiation, angio-
genesis, and antiapoptotic factors. Exploring their therapeu-
tic potential in nondental tissue regeneration will be of a
great benefit.

6. Gingival Mesenchymal Stem/Progenitor Cell-
Derived Secretome/Conditioned Medium

Gingival MSCs are a subpopulation of MSCs that could be
isolated from the lamina propria of gingival connective tis-
sues [49, 159, 160], with remarkable regenerative properties
[161, 162]. Compared to other MSCs, gingival MSCs are
abundant, homogenous, and easily obtainable with faster
proliferation rate [48]. Gingival MSCs preserve normal kar-
yotyping and maintain stable morphology in later passages
as compared to bone marrow MSCs, with remarkable multi-
directional differentiation potential and immune regulatory
properties [48, 160, 163–166]. In addition to MSC surface
markers, gingival MSCs express CD13, CD38, CD44, CD54,
CD117, CD144, CD146, CD166, Sca-1, STRO-1, SSEA-4,
Oct-3/4, Oct-4A, Nanog, nestin, integrin β1, and vimentin
[49, 159, 167]. In addition, gingival MSCs could release an
array of secretomewith various biological therapeutic actions.

6.1. Gingival MSC-CM in the Therapy of Neural Disorders
(Table 1). Various investigations suggested that gingival
MSC-derived EXs, EVs, or CM could represent novel thera-
peutic interventions in managing peripheral nerve injury
[168, 169], motor neuron injury [170], and skin [171] and
bone defects [172]. The results were comparable with effects
conferred by direct transplantation of gingival MSCs
[168, 169]. The regenerative effect of EXs derived from
human gingival MSCs combined with biodegradable chitin
conduits on peripheral nerve injurywas investigated. Gingival
MSC-EXs significantly promoted the in vitro proliferation of
Schwann cells as well as the growth of a DRG axon. In vivo
assessment of the repair of a 10mm defect of the sciatic nerve
in rats revealed a significant increase in the thickness of nerve
fibers and the myelin sheath. Besides, the muscle and neuro-
muscular functions were recovered [169]. In an in vitro
study, the gingival MSCs derived EVs embedded on locally
wrapping gel-foam proved to exert beneficial effects on the
functional recovery and axonal repair/regeneration of the

crush-injured sciatic nerve in mice. The gingival MSC-EVs
robustly upregulated the expression of several repair Schwann
cell-related genes c-JUN, Notch1, GFAP, and SOX-2, sig-
nificantly blocking the activity of c-JUN/N-terminal kinase
(c-JUN/JNK), which normally abolishes the upregulation
of Schwann cell repair genes [168]. The neuroprotective
capability of human gingival MSC-CM on scratch-injured
motor-neuron-like NSC-34 cells was evolved by suppressing
apoptotic markers (cleaved caspase-3 and Bax), oxidative
stress markers (superoxide dismutase- (SOD-) 1, iNOS),
while upregulating anti-inflammatory cytokine (IL-10) and
neurotrophic factor (BDNF and NT-3) expressions. In addi-
tion, NGF, NT-3, IL-10, and TGF-β were detected in human
gingival MSC-CM [170].

In critical-sized tongue defect model in rats, involving the
combinative transplantation of small intestinal submucosa-
extracellular matrix with gingival MSCs or their derivative,
EXs proved to regenerate tongue lingual papillae and taste
buds, with an increasing expression of CK14+ (basal epithe-
lial progenitor cells’ marker); CK8+ (intragemmal cells’
marker); type I, II, and III taste bud cells’ markers (NTPdase
2, PLC-β2, and AADC, respectively), in addition to nerve
fiber markers (UCH-L1/PGP9.5 and P2X3 receptor). More-
over, the expression of two key trophic factors (BDNF and
Shh), with remarkable roles in the proliferation and differen-
tiation of basal epithelial progenitor cells into taste bud cells
and the reconstruction of submucosal connective tissues
[173], was promoted. The faster wound healing rate in the
gingiva was primarily attributed to the gingival MSCs and
their unique secretory mechanism through the Fas/Fas-
associated phosphatase-1 (Fap-1)/caveolin-1 (Cav-1) com-
plex that triggers SNARE-mediated membrane fusion to
secrete a large quantity of IL-1 receptor antagonist-
(IL-1RA-) expressing EVs, inhibiting the proinflammatory
cytokine IL-1β [174]. This finding represents an auspicious
application potential for tongue reconstruction in patients
suffering from tongue cancer. All these studies propose
gingival MSCs’ secretome/CM as a simple and autologous
therapeutic tool to repair/regenerate nerve injuries, mainly
through increasing the expression of anti-inflammatory
cytokines (IL-10), antiapoptotic cytokine (Bcl2) [170], and
markers denoting neural growth (BDGF, NT-3, Neurofila-
ment 200, S100) [168–170, 173], as well as enhancing prolif-
eration and regeneration of nerve cells detected by PCNA
[168], CCK-8 [169], and Shh [173] aside from a suppres-
sion of proinflammatory cytokine TNF-α [170], IL-17,
IFN-γ [175, 176], and proapoptotic (Bax and cleaved
caspase-3) and oxidative stress markers (SOD-1, iNOS,
COX-2) [170].

6.2. Gingival MSC-CM in the Therapy of Skin Injuries
(Table 2). The implementation of gingival MSC-derived
EXs in skin repair proved to be of practical value. Isolated
EXs with an average diameter of 127 nm derived from gingi-
val MSCs loaded on chitosan/silk hydrogel sponge effectively
promoted healing of skin defects in diabetic rats detected by
the formation of neoepithelium and collagen as well as a rise
in the microvessels’ number detected by CD34 in the wound
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bed and neuronal ingrowth detected by neurofilament heavy
chain (NEFH), two weeks postsurgery [171].

6.3. Gingival MSC-CM Osteogenic Potential (Table 4). In
bone regenerative medicine, the osteogenic regenerative
potential of a poly-(lactide) (3D-PLA) scaffold supplemented
with human gingival MSCs and human gingival MSC-CM
was explored in rat calvaria bone defects, demonstrating a
marked increase in bone contact after six weeks. Moreover,
in vitro next-generation sequencing confirmed the increase
in the genes involved in ossification (ASF1A, GDF5, HDAC7,
ID3, INTU, PDLIM7, PEX7, RHOA, RPL38, SFRP1, SIX2,
SMAD1, SNAI1, SOX-9, and TMEM64) in the 3D-PLA
loaded with the gingival MSC-CM group [172]. This was
basically attributed to the growth factors and cytokines con-
tained in the CM that could activate mobilization and osteo-
genic differentiation of both endogenous MSCs and gingival
MSCs [28–31, 172]. In a further study, EVs derived from
human gingival MSCs were complexed with polyethylenei-
mine (PEI) to improve their internalization and perfor-
mance. The PEI-engineered EVs were similarly loaded on
3D-PLA combined with human gingival MSCs. In vitro, the
3D-PLA+PEI-EVs+human gingival MSCs demonstrated
greater osteogenic capabilities as emphasized by more
calcium depositions six weeks later. In the 3D-PLA+PEI-
EVs+human gingival MSCs construct, transcriptomic analy-
sis demonstrated an upregulation of 31 genes involved in
ossification processes as well as 21 genes involved in the
regulation of adhesion molecules. Also, in vivo computed
tomography (CT) revealed the formation of new bone
spicules and blood vessels in rats’ calvarial bone defects
implanted with 3D-PLA+PEI-EVs+human gingival MSCs
and 3D-PLA+PEI-EVs. It was hypothesized that the osteo-
genic potential of PEI-EV-human gingival MSCs loaded on
3D-PLA was mediated mainly by TGF-βR1, SMAD1,
BMP2, MAPK1, MAPK14, and RUNX2 through TGF-β
signaling [177].

Hence, harvesting human gingival MSCs and their secre-
tome/CM is easy and harmless to the patients and relatively
inexpensive. The previous findings provide a promise for
their utilization in bone tissue engineering, especially in the
repair of cranial bone defects.

7. Periodontal Ligaments Mesenchymal
Stem/Progenitor Cell-Derived
Secretome/Conditioned Medium

The periodontal ligament is considered a potent source of
stem/progenitor cells for tissue regeneration that can differ-
entiate into several types of cells [178–180]. They are the
most favorable stem/progenitor cell population utilized in
periodontal regeneration [181], due to their high expression
of scleraxis, a protein responsible for the formation of the
cementum-periodontal ligament complex [37]. Human peri-
odontal ligament MSCs are similar to bone marrow MSCs,
with high proliferative rate, immunomodulatory functions,
and an in vitro differentiation ability into osteogenic, adipo-
genic, chondrogenic, and neurogenic cell lineages [182–184].
Periodontal ligament MSCs express proteins that are not

present in bone marrow MSCs including CLPP, NQO1,
SCOT1, a new isoform of TBB5, and DDAH1, explaining
the unique properties of periodontal ligament MSCs
[185–187].

Similar to other MSCs, the therapeutic effects of human
periodontal ligament MSCs and their key role in alveolar
bone and periodontal ligament homeostasis could be medi-
ated through secreted paracrine signaling molecules [175].
Human periodontal ligament MSCs were demonstrated
to regulate the osteogenic and adipogenic differentiation of
alveolar bone MSCs and inhibit alveolar bone MSC-induced
osteoclastogenic differentiation of human peripheral blood
mononuclear cells [188]. Additionally, periodontal ligament
cell-CM can modulate the expression of genes responsible
for cell proliferation and bone homeostasis from MSCs
upon coculturing with BMP-2 [189].

The analysis of the cytokine profile of permanent and
deciduous periodontal ligament cells revealed that proteins
concerned with immune responses and degradation were
detected more strongly in deciduous periodontal ligament-
CM, while cytokines related to angiogenesis (epidermal
growth factor and IGF-1) and neurogenesis (NT-3 and
NT-4) were contained in permanent periodontal ligament-
CM making them a potential candidate for tissue regenera-
tion [190]. Moreover, the cytokine analysis of epithelial cell
rests of Malassez, harbored within the periodontal ligament,
revealed the expression of significant amounts of chemo-
kines; growth factors and related proteins as IL-1, IL-6,
IL-8, and IL-10; GM-CSF; MCP-1, 2, and 3; amphiregulin,
glial cell line-derived neurotrophic factor, and VEGF and
IGF-binding protein 2 [191].

7.1. Periodontal Ligament MSC-CM in the Therapy of Neural
Disorders (Table 1). The immunosuppressive effects of
human periodontal ligament MSCs and their secretome in
managing multiple sclerosis were investigated [175, 192].
In vitro characterization of human periodontal ligament
MSC-CM showed an increased level of IL-10, TGF-β,
and stromal cell-derived factor 1α [175]. In an in vivo study,
the reverse in disease progression and remyelination of the
spinal cord in an experimental autoimmune encephalomyeli-
tis model was assigned to the EXs/MVs (EMVs) fractions
of human periodontal ligament MSC-CM. Periodontal lig-
ament MSC-CM and periodontal ligament MSC-EMVs
reduced proinflammatory cytokines TNF-α, IL-17, IL-6,
IL-1β, and IFN-γ and induced anti-inflammatory IL-10
expression, as well as attenuated the expression of
apoptosis-related markers Bax, STAT1, caspase-3, and p53
in the spleen and spinal cord [175]. In a more recent study,
downregulated expressions of NALP3 inflammasome,
cleaved caspase-1, IL-1β, IL-18, Toll-like receptor- (TLR-) 4,
and nuclear factor- (NF-) κB were demonstrated in an exper-
imental autoimmune encephalomyelitis mouse spinal cord
after treatment with human periodontal ligament MSC-CM
and EMVs. Finally, it was concluded that both human
periodontal ligament MSC-CM and purified EMVs exerted
comparable immunosuppressive effects and that CM alone
may serve as an effective and economical therapeutic tool in
multiple sclerosis treatment [192].
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Similarly, the ability of human periodontal ligament
MSC-CM under hypoxic condition to repress induced
experimental autoimmune encephalomyelitis in a murine
model was studied [176]. Hypoxic human periodontal liga-
ment MSC-CM was injected through the tail vein of the
mice. The clinical and histological features of the disease
were diminished accompanied by a marked expression of
anti-inflammatory and antiapoptotic (cytokine IL-37 and
protein Bcl-2, respectively) as well as suppression of
pro-inflammatory and pro-apoptotic markers (cleaved
caspase-3 and Bax, respectively). Moreover, treating the
in vitro scratch injury model-exposed neurons NSC-34 via
hypoxic-human periodontal ligament MSC-CM demon-
strated therapeutic action [176]. The aforementioned studies
propose periodontal ligament MSC-CM as a new pharmaco-
logic tool for managing multiple sclerosis through a
remarked expression of anti-inflammatory cytokines (IL-10,
TGF-β) [175, 176] and antiapoptotic cytokine (Bcl2)
[170, 176] and subsequent suppression of proinflammatory
mediators (IL-4, IL-17, IFN-γ, TNF-α, IL-6, and IL-1β)
[175, 176], proapoptotic markers (Bax and cleaved caspase-3)
[170, 175, 176], p53, STAT1 [175], cleaved caspase-1 [192],
and oxidative stress markers (SOD-1, iNOS, and COX-2)
[170, 176]. A reduction in the NALP3, IL-1β, IL-18, TLR-4,
and NF-κB expressions were reported to mediate the nerve
regenerative effect of periodontal ligament MSCs [192].
Moreover, periodontal ligament MSC-CM upregulated
expression of markers denoting neural growth such as IL-37,
BDNF, and NT-3, besides markers of autophagy (Beclin-1,
LC3) [176].

7.2. Periodontal Ligament MSC-CM Osteogenic Potential
(Table 4). Bone regeneration and angiogenic potential of a
3D collagen membrane (3D-COL) loaded with human peri-
odontal ligament MSCs and CM or EVs or EVs treated with
PEI (PEI-EVs) in calvarial defects in rats were studied. In
vitro results demonstrated an initially increased expression
of osteogenic markers (RUNX2 and BMP-2/4) in human
periodontal ligament MSCs cultured within the 3D-COL
and PEI-EVs, associated with increased protein levels of
VEGF, VEGF receptor-2 (VEGFR-2), and collagen type 1.
The increased expression of these proteins was confirmed
in clavarial defects implanted with the 3D-COL loaded with
human periodontal ligament MSCs and PEI-EVs. Moreover,
histological examination and micro-CT imaging confirmed
this regenerative ability [193]. Likewise, Evolution (Evo)
(a commercially available collagen membrane) loaded with
human periodontal ligament MSCs enriched with EVs and
PEI-EVs demonstrated high biocompatibility and osteogenic
properties in vitro and in rats’ calvarial defects. A quantitative
reverse-transcription polymerase chain reaction showed
upregulation of osteogenic genes MMP-8, TGF-β1, TGF-β2,
tuftelin-interacting protein (TFIP11), tuftelin 1 (TUFT1),
RUNX2, SOX-9, and BMP2/4 in the presence of PEI-EVs.
The increased expression of BMP-2/4 was confirmed for the
collagen membrane loaded with PEI-EVs and human peri-
odontal ligament MSCs both in vitro by Western blot and
in vivo by immunofluorescence [194]. Ultimately, these
results demonstrated that human periodontal ligamentMSCs

might be an effectual strategy in bone regenerative medicine,
consequent to its potential to increase osteogenic and angio-
genic mediators through the TGF-β-BMP signaling pathway.

7.3. Periodontal Ligament MSC-CM in Dental Tissue
Regeneration (Table 3). In treating periodontal tissue defects,
transplanted periodontal ligament MSC-CM as compared to
fibroblast-CM was investigated in a rat periodontal defect
model. Periodontal ligament MSC-CM transplantation
enhanced periodontal tissue regeneration via suppressing
the inflammatory response induced by TNF-α, IL-6, IL-1β,
and COX-2. Proteomic analysis revealed that extracellular
matrix proteins, angiogenic factors, enzymes, growth fac-
tors, and cytokines were contained in periodontal ligament
MSC-CM [181].

8. Dental Follicle Mesenchymal
Stem/Progenitor Cells (Dental Follicle MSCs),
Mesenchymal Stem/Progenitor Cells from the
Apical Papilla (MSCs from the Apical Papilla)
and Tooth Germ Progenitor Cell-Derived
Secretome/Conditioned Medium (Tables 1, 2,
and 4)

Expressing Nestin, Notch1, collagen type I, bone sialo-
protein, osteocalcin, and fibroblast growth factor receptor
1-IIIC [39], dental follicle MSCs demonstrated osteogenic
and cementogenic differentiation capacity in vitro and
in vivo [39, 195, 196]. Similar to dental follicle MSCs, MSCs
from the apical papilla possess odontogenic and adipogenic
differentiation ability [43, 197] and express neurogenic
markers in vitro without induction [197]. Being the primary
source of odontoblasts at root region, MSCs from the apical
papilla have the ability to differentiate into dentin-pulp
complex [198]. MSCs from apical papilla and dental folli-
cle MSCs revealed comparable hepatogenic differentiation
potential and superior neurogenic ability to bone marrow
MSCs [65, 169].

The regenerative potential of human dental pulp
MSC-CM, human dental follicle MSC-CM, and human
MSCs from apical papilla-CM in nerve [65], liver [64], and
bone regeneration [63] was investigated in vitro. Human
dental pulp MSC-CM, human dental follicle MSC-CM,
human MSCs from apical papilla-CM, and human bone
marrow MSC-CM were collected and cultured with preneur-
oblast cell line IMR-32. Dental MSC secretome stimulated
colony formation in IMR-32 and neurite differentiation
with a significant increase in neural gene expression
(MFI, MAP-2, β-tubulin III, nestin, and SOX-1) more effi-
ciently as compared with bone marrow MSCs’ secretome.
Moreover, the dental MSCs’ secretome showed a significantly
higher expression of growth factors and cytokines involved in
neural regeneration (CSF, IFN-γ, TGF-β, NGF, NT-3, and
BDNF) as compared to bone marrowMSCs. On the contrary,
IL-17 expression was higher in bone marrow MSC-CM as
compared to dental pulp MSC-CM [65].

Dental MSC-CM could further provide a valuable tool for
liver regeneration. The presence of hepatic lineage proteins
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GAS6 in the secretome of dental pulp MSCs, MSCs from the
apical papilla, and dental follicle MSCs and different LDL
receptor (LRP) proteins in the secretome of dental pulp
MSCs and MSCs from the apical papilla reflected their role
in controlling lipid metabolism and transport as well as
hepatic differentiation. Interestingly, oncostatin M and hepa-
tocyte growth factor receptor, which are important inducers
for hepatic lineage differentiation were detected solely in
dental follicle MSC secretome [64].

The presence of osteogenic lineage proteins was demon-
strated in high amounts in human dental pulp MSC-CM
which contained seven proteins, including BMP7 and dentin
sialophosphoprotein; human dental follicle MSC-CM which
contained six proteins, including proteins regulating endo-
chondral ossification (MINPP1), bone turnover (WISP2)
and mineralization (enamelin); and human MSCs from api-
cal papilla-CM, which contained 14 proteins including four
of the five proteins detected in bone marrow MSC-CM,
among them, FBN1, DDR2, and Zinc finger protein- (ZNF-)
423 that play important roles in osteoblastic maturation,
activation of BMPs, and differentiation of bone osteocytes,
respectively [63]. The expression of these osteogenic proteins
could open numerous possibilities for applications of dental
MSC-CM in the regeneration of bone disorders.

9. Dental MSC-CM Biological Effects

9.1. Immunomodulatory and Anti-inflammatory Effects. It
is well known that the immunomodulatory and anti-
inflammatory effects of MSC-CM are mediated through sol-
uble immune-regulatory molecules. Dental MSC-CM induce
an immunoregulatory activity by converting the proinflam-
matory conditions and induced anti-inflammatory M2-like
macrophage differentiation, thereby treating neural diseases
[111, 112, 115, 117, 118, 122], lung injury [126], and liver fail-
ure [125]. Dental MSC-CM promoted anti-inflammatory
cytokines (IL-10 and TGF-β1) as well as M2 cell markers
(CD206 and Arginase-1) [125]. Moreover, dental MSC-CM
suppressed the expression of the proinflammatory cytokines
TNF-α [170, 175, 176, 181]; IL-4, IL-17 and IFN-γ [175, 176];
IL-6 and IL-1β [175, 176, 181]; COX-2 [181]; and NALP3,
IL-18, TLR-4, and NF-κB [192]. The balance between these
anti-inflammatory and proinflammatory cytokines may
determine the final effect.

9.2. Neuroprotective and Neurotrophic Effects. Although neu-
rodegenerative diseases and other neural insults represent a
major challenge as they currently do not have an effective
treatment, dental MSC-CM opened the way for treating these
challenging conditions. Several studies supported the neuror-
egenerative effects of dental MSC-CM [66, 69, 109, 110, 112,
116, 168–170, 173]. The key role of dental MSC-CM as a
modulator of the neurogenic microenvironment is through
the release of multiple growth factors promoting neural
growth and differentiation like NGF [65, 66, 110, 117]; BDNF
[65, 66, 110, 117, 168–170, 173, 176]; NT-3 [65, 110,
168–170, 173, 176]; CNTF, GDNF, and HGF [110]; IGF
[117, 151]; MFI, MAP-2, β-tubulin III, nestin, and SOX-1
[65], besides Neurofilament 200 and S100 [168–170, 173].

Moreover, dental MSC-CM contained factors involved in
the reduction of neurotoxicity such as VEGF, RANTES,
FRACTALKINE, FLT-3, and MCP-1 and Aβ-degrading
enzyme neprilysin [148]. All these factors combined or in
isolation act to ameliorate and treat the neural diseases.

9.3. Osteogenesis. Dental MSC-CM promotes osteogenesis
through enhancing the migration and mineralization poten-
tial of MSCs by TGF-β1 [153] as well as the upregulation of
their osteoblastic and chondrogenic marker expression
(Osterix, SOX-5, factor 8) [154]. In this context, TGF-β-
BMP signaling pathway plays a pivot role in osseous regener-
ation induced by dental MSCs and their secretome through
upregulating the expression of TGF-β1, TGF-β2, BMP2,
BMP4, MMP8, TUFT1, TFIP11, RUNX2, and SOX-9 was
detected [194], as well as VEGF, VEGFR2, and COL1A1
[193]. The osteoblastic differentiation potential is primarily
mediated by TGF-βR1, SMAD1, BMP2, MAPK1, MAPK14,
and RUNX2 through the TGF-β signaling pathway [177].
Interestingly, 15 genes involved in the ossification process
were only detected in dental MSC-CM [172]. Dental
MSC-CM contained BMP7 and DSPP that play a key role in
bone formation and mineralization as well as protein regulat-
ing, endochondral ossification (MINPP1), bone turnover
(WISP2), mineralization (enamelin) and FBN1, DDR2, and
ZNF423 that play important roles in osteoblastic maturation,
activation of BMPs, and differentiation of bone osteocytes,
respectively [63]. Thus, dental MSC-CM possesses pivotal
biomolecules to greatly promote the cellular osteogenic
potential.

9.4. Hepatic Regeneration. Currently, in terminal stages of
fibrosis, liver transplantation is the only effective treatment
modality. Yet, due to the accompanying clinical obstacles,
including low supply of suitable donors and transplant rejec-
tion, the development of therapeutic approaches for liver
fibrosis are seriously required [124]. The described therapeu-
tic effect of dental MSC-CM in liver fibrosis is primarily
ascribed to numerous factors involved in antiapoptosis/hepa-
tocyte protection (SCF and IGF-1), angiogenesis (VEGF),
macrophage differentiation, and the proliferation/differen-
tiation of hepatic lineage and LPCs including OSM and
HGFR [64, 125].

9.5. Angiogenic Effect. The molecular and cellular events of
angiogenesis are tightly controlled by a delicate balance
between stimulatory and inhibitory signals. Dental MSC-CM
promoted angiogenesis through the secretion of proangiogenic
factors including VEGF-A, angiopoietin-2, MMP3, G-CSF
GM-CSF, G-CSF, IL-8, MCP-1, uPA, TIMP-1, and PAI-1,
aside from endogenous angiogenesis inhibitors (IGFBP-3
and endostatin). These factors play important roles in pro-
moting hair growth [131], new bone formation [154], and
dental tissue regeneration [138, 158].

9.6. Anti-Apoptotic Effect. Dental MSC-CM may provide
substantial therapeutic benefits through its antiapoptotic
action via the release of antiapoptotic markers that
increase cell survival, including Bax and cleaved caspase-3
[170, 175, 176]; p53 and STAT1 [175]; cleaved caspase-1
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[192]; SCF; and IGF-1 [125] and through modulating
caspase-3 activity [157].

9.7. Modulation of Oxidative Stresses. A delicate balance
normally exists between antioxidants and oxidants in human
tissues, where excessive reactive oxygen species (ROS) are
effectively neutralized by antioxidants [199, 200]. Low con-
centrations of ROS could be beneficial, aside from
oxidation-reduction (redox) reactions, which may have a
regulatory function, in protecting cells from apoptosis [201].
On the contrary, higher concentrations of ROS may cause
direct cells’ oxidation, aggravated inflammation, unregulated
autophagy activity, and drives apoptosis, eventually resulting
in tissue damage and dysfunction [199, 200, 202]. Based on
such phenomenon, oxidative stress-related diseases such as
burning mouth syndrome could be effectively treated by
antioxidants [203].

Among the major challenges concerning the clinical
application of MSCs is to maintain their genetic integrity
[204, 205] against ROS that generate DNA damage in vitro,
resulting in an oxidative modification of DNA bases or spon-
taneous hydrolysis of nucleosides [206]. Adipose MSC-CM
incubation with human dental fibroblast cells helped these
cells to release antioxidant enzymes and resist oxidative free
radicals [207]. Additionally, treating mouse ischemic/-
perfused hearts and utilizing MSC-derived EXs increased
ATP and NADH levels and decreased oxidative stress [208].

The ability of dental MSC-CM to modulate oxidative
stresses has further been proposed as a possible therapeutic
mechanism. It has been reported that periodontal ligament
MSC-CM [176] and gingival MSC-CM [170] significantly
reduced markers of oxidative stresses as SOD-1, iNOS, and
COX-2, in an in vitro model of multiple sclerosis and
together with their immunomodulatory and antiapoptotic
properties significantly reduced neural cells’ death [170, 176].
Similarly, dental pulp MSC-CM and SHED-CM effectively
reduced ROS production in neural cells [209], a mouse
model of Alzheimer’s disease [117] and multiple sclerosis
[118]. In treating periodontal defects, periodontal ligament
MSC-CM suppressed COX-2 levels, suggesting a close rela-
tionship between periodontal ligament MSC-CM transplan-
tation, reduction in inflammation, and periodontal tissue
regeneration [181].

10. Conclusion

Dental MSC-derived secretome holds a multitude of capaci-
ties for tissue engineering and regenerative medicine. Utiliz-
ing stem/progenitor cells secretome in regenerative medicine
is further considered advantageous and can overcome limita-
tions associated with stem cell-based therapies. Following
transplantation, stem/progenitor cells demonstrate a low
survival rate [210] and a potential risk of malignant trans-
formation, particularly subsequent to their in vitro expan-
sion to acquire the adequate number of cells for clinical use
[73, 211]. A cell-free secretome/CM therapeutic strategy
could restore back the function of damaged tissues via the
activation of signaling pathways based on the transfer of
bioactive molecules, proteins, and mRNAs to the affected

tissues. Such a therapy could avoid the risks of tumorgenicity,
antigenicity, host rejection, and infection associated with
stem cell-based therapies, constituting a safer and more
convenient source for regenerative bioactive molecules as
compared to stem/progenitor cells engraftment.

Dental MSC secretome/CM demonstrate numerous
advantages. In accordance with their origin, dental MSC
secretome/CM expresses significantly higher levels of cyto-
kines related to odontoblastic differentiation. Compared to
nodental MSC secretome/CM, dental MSC secretome/CM
demonstrate higher levels of metabolic, transcriptional,
and proliferation-related proteins, chemokines, and neuro-
trophins, while lower levels of proteins responsible for
adhesion and extracellular matrix production. Dental MSC
secretome/CM show higher antiapoptotic, angiogenic, neur-
ite outgrowth, migration activity, vasculogensis, and immu-
nomodulatory effects. They further demonstrate superior
nerve regenerative, differentiation, and maturation poten-
tials, with significantly higher colony formation and neurite
extension.

Even though stem cell secretome has many potential
applications in tissue regeneration, several issues should be
addressed to facilitate its translation into clinical trials.
Developing a manufacturing protocol compliant with good
manufacturing practice, without using any animal-based
products, in addition to determining the exact dosage, fre-
quency of administration, exact protein composition, and
mechanism of action are a must before carrying secretome
application into human patients. With accumulating tech-
nology and experience, the clinical applications of dental
MSC secretome still warrant further research to explore the
full potentials of dental MSCs’ secretome in the regeneration
of different oral and extra oral tissues.
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