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The potential use of bone marrow mesenchymal stromal cells (BM-MSCs) for the treatment of osteonecrosis in sickle cell disease
(SCD) patients is increasing. However, convenient BM-MSC quantification and functional property assays are critical factors for
cell-based therapies yet to be optimized. This study was designed to quantify the MSC population in bone marrow (BM)
samples from SCD patients with osteonecrosis (SCD group) and patients with osteoarticular complications not related to SCD
(NS group), using flow cytometry for CD271+CD45-/low cell phenotype and CFU-F assay. We also compared expanded BM-
MSC osteogenic differentiation, migration, and cytokine secretion potential between these groups. The mean total cell number,
CFU-F count, and CD271+CD45-/low cells in BM mononuclear concentrate were significantly higher in SCD than in NS
patients. A significant correlation between CD271+CD45-/low cell number and CFU-F counts was found in SCD (r = 0:7483; p =
0:0070) and NS (r = 0:7167; p = 0:0370) BM concentrates. An age-related quantitative reduction of CFU-F counts and
CD271+CD45-/low cell number was noted. Furthermore, no significant differences in the morphology, replicative capacity,
expression of surface markers, multidifferentiation potential, and secretion of cytokines were found in expanded BM-MSCs
from SCD and NS groups after in vitro culturing. Collectively, this work provides important data for the suitable measurement
and expansion of BM-MSC in support to advanced cell-based therapies for SCD patients with osteonecrosis.

1. Introduction

Osteonecrosis (ON), a common disabling disorder, affects
∼30% of people with sickle cell disease (SCD), in its early
adulthood [1, 2]. The pathogenesis of osteonecrosis presum-
ably involves abnormally adherent sickled erythrocytes to
endothelium and repeatedly impaired blood flow to osteo-
chondral bone, causing ischemic death and necrosis of the
bone and marrow [3, 4]. Osteonecrosis is initially asymptom-
atic in SCD patients but may rapidly progress to disabling
arthritis due to bone collapse, joint pain, and significant mor-
bidity. Indeed, treatment interventions for early-stage osteo-
necrosis should delay the progression and preserve the native
joint [5]. Accordingly, cell therapy with autologous bone

marrow aspirates or concentrates, which contains both
hematopoietic and mesenchymal stromal cells (BM-MSCs)
in addition to other cell types that may play a role in tissue
regeneration, represents a viable alternative for osteonecrosis
in SCD [6, 7].

Several studies have reported the biological mechanisms
underlying BM-MSC-based therapies in SCD. Lebouvier
et al. recently demonstrated that BM-MNCs from SCD
patients were viable, highly proliferative, and able to differen-
tiate into functional bone-forming osteoblastic cells in
ectopic implantation murine models [8]. Furthermore, the
immunoregulatory potential of MSCs from SCD patients
was functionally comparable with MSCs from healthy volun-
teers, produced immunosuppressive factors such as
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indoleamine 2,3-dioxygenase, and activated immunomodu-
latory pathways [9], which are important for balanced
immune response and successful bone healing. In addition,
BM-MSC from SCD patients secreted trophic factors and
angiogenic cytokines, causing the formation of new blood
vessels [10], which may subsequently improve osteogenesis
and tissue regeneration. Thus, these characteristics make
BM-MSCs promising candidates for enhancing bone healing
and tissue regeneration particularly in complicated condi-
tions such as osteonecrosis in SCD patients.

Inmost clinical studies for bone regeneration, the efficacy of
BM aspirates or concentrates depends on the quantity and qual-
ity of implanted BM-MSCs. However, native BM-MSCs are
usually applied without the quality assessment before transplan-
tation. The quantitative assessment of bone marrow samples is
crucial to compare the clinical outcome between studies and
improve the consistency of BM-MSC-based therapies [11–14].

Traditionally, BM-MSCs can be identified by their plastic
adherence and ability to form colony-forming unit fibro-
blasts (CFU-Fs) in vitro. The CFU-F assay is commonly per-
formed as an indicator of sample quality and to facilitate the
quantitative assessment of BM-MSC. However, it is time-
consuming, dependent on the culture conditions, and inap-
propriate for the routine use before cell culturing. Alterna-
tively, flow cytometry for CD271+ cell population has been
applied as a rapid and simple detection method of BM-
MSC content [15–19].

CD271, known as low affinity nerve growth factor recep-
tor (LNGFR) or p75NTR (neurotrophin receptor), is a cell
surface marker that potentially defines a subset of MSC [20,
21]. Many studies have used CD271+ expression, in combi-
nation with other markers such as CD45, to quantify and sort
MSCs from different tissue sources and pathologies [22–24].
CD271 has been proposed to be a versatile marker to identify
a BM-MSC population with increased lymphohematopoietic
activity and osteo/chondro differentiation potential [20, 25].
Ghazanfari and colleagues recently demonstrated that
CD271+ MSCs display a different phenotypic, genetic, and
epigenetic profile in comparison to cultured MSCs [26]. Fur-
thermore, the combination of CD271+CD45-/low allowed to
identify a population of cells that was highly enriched for
CFU-F [27, 28]. Thus, the CD271 marker, although not spe-
cific for BM-MSCs, has been shown to detect all CFU-F in
normal human bone marrow [29]. Whether CD271 marker
is detected in bone marrow from SCD patients and correlates
with CFU-F counts is still poorly understood.

The present study explored the BM aspirates and concen-
trates from SCD patients with osteonecrosis and non-SCD
patients undergoing orthopedic surgery for primary osteoar-
ticular complications. We used CFU-F assay and flow cytom-
etry for CD271+CD45-/low phenotype to quantify BM-MSCs
and compared their frequency with donor-matched BM aspi-
rates and concentrates. We also used functional in vitro
assays for MSC expansion, osteogenic differentiation, migra-
tion, and secreted cytokines to demonstrate that MSCs from
SCD patients with osteonecrosis were equal or superior to
their non-SCD counterparts. These findings should contrib-
ute to optimize the autologous BM-MSC-based regenerative
therapies for SCD patients.

2. Materials and Methods

2.1. Patient Selection and Harvest of BM Aspirate. The study
was reviewed and approved by the institutional review board
of the Health Science Institute (Federal University of Bahia,
approval no. 67238317.0.0000.5662). All volunteers gave
written informed consent before participation.

Between August 2018 and November 2019, bone marrow
(BM) aspirates were obtained from 51 patients (24 male and
27 female) attending the outpatient facility and undergoing
elective orthopedic surgery at the Prof. Edgar Santos Hospital
Complex (Federal University of Bahia). Age ranged from 18
to 74 years (median 32 years). In this series, bone marrow
aspirates were obtained from sickle cell disease patients with
osteonecrosis (SCD group, N = 32) and from nonsickle cell
disease patients (NS group, N = 19), undergoing orthopedic
surgery for primary osteoarticular complications. The etiol-
ogy and patients’ characteristics are listed in the Online Sup-
plementary Table S1.

Autologous BM aspirate (BMA) was obtained by poste-
rior superior iliac crest aspiration as previously described
[30] and used immediately upon receipt. The frequency of
nucleated cells in BMA was measured manually by dilution
with Turk’s solution and counting on a hemocytometer.
Inclusion criteria were patients treated in our institution with
percutaneous autologous bone marrow transplantation for
the treatment of osteoarticular complications. Exclusion cri-
teria were patients with bone inflammation, immunosup-
pressive drug therapy, metabolic disease, systemic illness, or
neoplastic disease.

2.2. Bone Marrow Mononuclear Cell (BM-MNC)
Concentrate. BM-MNCs were isolated from the BM aspirate
(~20mL) on a Ficoll density gradient (1.077 g/mL) to reduce
erythrocyte contamination, according to the instructions of
the manufacturer (GE Healthcare, Biolab nordeste, Brazil).
Briefly, BM aspirates were diluted 1 : 2 in phosphate buffered
saline PBS and centrifuged for 30 minutes on Ficoll separat-
ing solution at 400 g. The mononuclear fraction (BM-MNC)
was carefully collected and further washed twice in Dulbec-
co’s modified Eagle’s medium (DMEM; Sigma-Aldrich, Bra-
zil). The final product consisted of 5mL BM-MNC
suspension; it was stored at room temperature until use.
Total leukocytes (WBC) and cell viability were determined
by Trypan blue exclusion in a hemocytometer.

2.3. Flow Cytometry for BMA and BM-MNCs. To analyze the
expression of specific surface proteins, 50μL BMA or BM-
MNCs (2 × 105 cells) resuspended in 0.9% saline solution
were placed in FACS tube (Falcon) containing
fluorochrome-conjugated monoclonal antibodies and incu-
bated for 30min at room temperature. The phenotypic iden-
tification and frequency assessment of the “ex-vivo MSC”
using the CD271+CD45-/low7AAD- phenotype was per-
formed as previously described (see supplementary
figure S1 in the Supplementary Material) [31]. The
frequency of viable CD34+ cells was evaluated using a
gating strategy based on the basic ISHAGE protocol [32].
The appropriate combination of antibodies used at the
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manufacturers’ recommended concentrations was as follows:
anti-CD45 antibody (FITC, clone 2D1, mouse IgG1 κ,
Exbio), anti-CD271 antibody (PE, clone REA648, mouse
IgG1, Miltenyi Biotec), anti-CD34 antibody (PE, clone 581,
mouse IgG1 κ, Exbio), and anti-CD45 antibody (FITC,
clone 2D1, mouse IgG1 κ, Exbio). 7-Aminoactinomycin-D
(7AAD, BD Pharmingen) was added simultaneously in
order to distinguish between live and dead cells. After
staining, erythrocytes were lysed with 1mL lysing buffer
(Excelllyse Easy; Exbio) at RT for 5min and analyzed
immediately using FACSCalibur. A minimum of 50,000
events was collected for each sample. Unstained and single
antibody-stained controls were used to optimize the
cytometer voltage settings and spectral compensation, and
isotype controls (BD Pharmingen) were used. Absolute cell
count was generated by incorporating the leukocyte count
from an automated hematology analyzer (two-platform
method) as described [31, 33]. Flow cytometry data analysis
was performed using the Cell Quest software (BD
Biosciences).

2.4. CFU Assay. Colony-forming unit fibroblast (CFU-F)
assays were performed as described previously [31]. Briefly,
100μL BMA were seeded into duplicate 35-mm diameter 6-
well plates containing 3mL Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma-Aldrich, Brazil) supplemented
with 20% fetal bovine serum (Cultilab, Campinas, Brazil),
100U/mL penicillin, and 100μg/mL streptomycin (Sigma-
Aldrich, Brazil) and incubated in 5% CO2 at 37

°C. Medium
was renewed every third day. BM-MNCs were seeded at 1
× 106 cells/dish and cultured similarly [30]. After 14 days,
adherent cells were washed with PBS, fixed with 4% formal-
dehyde, and stained with 0.05% crystal violet (Sigma-
Aldrich, Brazil). Colonies containing ≥50 fibroblastic cells
were manually counted under at 10x magnification micros-
copy. Colonies were counted in replicates and subsequently
compared as mean data for each condition and donor. The
concentration of the CFU-F/mL of bone marrow was calcu-
lated based on the seeding number and the initial concentra-
tion of WBC [34].

2.5. MSC Isolation, Culturing, and Expansion. MSCs were
cultured as previously described [10]. BM-MNCs were plated
in complete Dulbecco’s modified Eagle’s complete medium
(DMEM, low glucose, 10% fetal calf serum and 100U/mL
penicillin/streptomycin) at 100,000 to 300,000 cell/cm2. The
medium was replaced after four days of culturing, and MSCs
were allowed to expand for 7-12 days. MSCs were passaged
weekly, and passages 3–6 were used in experimentation. To
compare growth expansion between SCD-MSC and NS-
MSC, 2:5 × 104 cells were seeded in triplicate into the 6-well
plates in complete DMEM (Sigma-Aldrich, Brazil), and via-
ble cell numbers were monitored for 7 days.

2.6. Immunophenotyping of Expanded Mesenchymal Stromal
Cells and Differentiation Capacity. MSCs (passage 3–6) were
stained with monoclonal fluorescein isothiocyanate- and
phycoerythrin-conjugated antibodies and analyzed using
FACSCalibur (BD Biosciences). The following antibodies

were used: CD29-FITC (clone TS2/16), CD90-FITC (clone
eBIO5E10), CD105-PE (clone SN6), and anti-CD146-PE
(BD Pharmingen®). Fluorochrome-conjugated mouse
immunoglobulins were used as isotype controls. For adipo-
genic and osteogenic multilineage differentiation capacity,
MSCs (passages 3-6) were seeded into 6-well plates (osteo-
genic and adipogenic seeding density of 2 × 104 cell/well)
and cultured in adipogenic or osteogenic-inducing medium
as previously described [30]. Differentiation medium was
changed every 3 days. After 21 days, cell monolayers were
fixed in 4% paraformaldehyde (PFA) for 15min at room
temperature. Alizarin red S (Sigma-Aldrich) was used to
detect mineralized matrix deposition (an early indicator of
osteogenic differentiation), and lipid droplets (indicator of
adipogenic differentiation) were detected with Oil Red O
solution (Sigma-Aldrich, Brazil). For chondrogenic differen-
tiation, MSCs at passage 3 were pelleted and induction was
performed in a modified high-density “micromass” culture
using a Chondrogenesis Differentiation Kit (Gibco) in accor-
dance with the manufacturer protocol. Culture medium was
changed every 3 days for 21 days. For histological examina-
tion, briefly, pellets were fixed overnight in 10% formalin
and processed according to the standard procedures for sam-
ple processing, embedding, and sectioning. Chondrogenic
differentiation was assessed by Alcian blue staining at
pH1.0, 4 weeks after initial chondrogenic induction. The
stained sections were mounted with mounting medium
(DAKO) and visualized with a light microscope (Eclipse
TS100, Nikon).

2.7. Indirect Immunofluorescence Assay. SCD-MSC and NS-
MSC (2×104 cell/well) grown on glass cover slips were fixed
with 4% paraformaldehyde in PBS (pH7.4) for 15min at
room temperature and permeabilized with 1% Triton X-100
(Sigma-Aldrich, Brazil). Cells were incubated with the fol-
lowing primary antibodies in 3% calf serum, 0.1%Triton X-
100 in PBS (pH7.4): rabbit anti-vimentin (1 : 200; Vector
Laboratories) and mouse anti-SMA (1 : 200; Vector Labora-
tories). Cells were washed and incubated with secondary
antibodies goat anti-rabbit Alexa Fluor 555 (Invitrogen)
and goat anti-mouse Alexa Fluor 488 (Invitrogen) at 1 : 300
dilution. Nuclei were counterstained with DAPI (4,6-diami-
dino-2-phenylindole, 1 : 1000). Slides were examined with
fluorescence confocal microscope (Leica TCS SP5 software;
Leica Microsystems).

2.8. Intracellular Osteocalcin Detection. Osteocalcin intracel-
lular staining was performed as previously described [30].
Briefly, MSCs (2×105 cell/well) were grown in an osteoinduc-
tive medium for 10 days. Subsequently, cells were detached
with 0.125% Trypsin-EDTA, fixed with 4% paraformalde-
hyde, and permeabilized with saponin buffer for 10 minutes.
Next, cells were incubated with mouse anti-human osteocal-
cin- (OCN-) PE (R&D System) at 4°C for 40 minutes and
immediately analyzed using a FACSCalibur flow cytometer
(FACSCalibur, BD Biosciences) and a Cell Quest software
(Becton Dickinson). Results were expressed as median fluo-
rescence intensities (MFIs), corrected for background
fluorescence.
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2.9. Migration Assay in Boyden Chamber. The vertical migra-
tion of SCD-MSC and NS-MSC was analyzed using the
transwell migration assay in Boyden chambers. Transwell
inserts (8μm pore size; Millipore) were loaded with 5 × 104
cells into the upper chamber, and 500μL of DMEM supple-
mented with 10% FBS was added to the lower chambers.
The cells were allowed to migrate at 37°C in a humidified
incubator in 5% CO2 for 48h. After incubation, nonmigrat-
ing cells were removed from the top chamber using a cotton
swab and the cells that migrated to the lower surface were
fixed with 4% paraformaldehyde for 15min and stained with
0.1% crystal violet (Sigma-Aldrich, Brazil). Stained cells from
four randomly chosen fields were counted under a light
microscope. All experiments were performed at least three
times.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA). Inter-
leukin-8 (IL-8), stromal-derived factor-1α (SDF-1α), and
transforming growth factor-β (TGF-β) immunoreactivity
present in the supernatants were measured by specific ELI-
SAs. MSCs were seeded at a density of 1 × 105 cells per well
in 24-well plates. After 48 hours at 37°C in a 5% CO2 incuba-
tor, the supernatants were harvested and centrifuged to
remove cell debris. ELISA kit (R&D Systems) was performed
according to the manufacturer’s instructions.

2.11. Statistical Analysis. The normal distribution was deter-
mined for the data using the Shapiro-Wilk test and the
D’Agostino and Pearson goodness of fit test. Nonparametric
Mann–Whitney and Kruskal-Wallis tests were used as the
statistical methods to compare two and three groups, respec-
tively. Spearman’s correlation test was used to analyze corre-
lation coefficients between clinical assessment results and cell
factors. All statistical analyses were performed using the
GraphPad Prism software (version 6.0). A value of p < 0:05
was considered significant.

3. Results

3.1. Higher Frequency of Clonogenic Stromal Cells in SCD
Samples. Bone marrow aspirates (BMAs) from sickle cell dis-
ease (SCD) and nonsickle patients (NS) undergoing orthope-
dic surgery were collected and immediately processed to
isolate mononuclear cells (BM-MNC). The average BMA
total cell number and BM-MNC were significantly higher
in SCD than in NS group. The BMA on average contained
15:5 ± 5:6 × 103/μL in SCD group and 10:4 ± 4:1 cells × 103/
μL in NS group (p < 0:01) (Figure 1(a)). After BM processing,
a significant larger BM-MNC number was observed in SCD
than in NS group (96:7 ± 53:4 vs. 34:8 ± 15:3 cells × 103
cells/μL, p < 0:001) (Figure 1(b)). To investigate whether
the number of mesenchymal progenitor cells were also
increased in BM SCD samples, the clonogenic stromal cells
were quantified using the standard CFU-F assay after 14 days
in culture. The BMA contained a significant higher number
of CFU-F colonies in SCD samples (median 110 CFU-
Fs/mL) in comparison to NS samples (15 CFU-Fs/mL)
(p < 0:01) (Figure 1(b)). After BM processing, the median
CFU-F/mL number was 238.2 CFU-Fs/mL (IQR 72–553) in

SCD samples compared with 46.5 CFU-Fs/mL (IQR 21–66)
in NS samples (p < 0:05) (Figure 1(d)). A significant CFU-F
enrichment was observed for both SCD (1.96-folds; p = 0:02
) and NS (3.0-folds; p = 0:03) samples after BM processing
(Table 1). Consistent with previously reported findings, a
high donor-to-donor variation was observed in both groups,
potentially due to factors related to donor age or the harvest-
ing technique during the aspiration procedure [19, 34].
Microscopical analysis demonstrated that CFU-Fs exhibited
intra- and interdonor heterogeneity in both SCD and NS
groups, with either large or small colonies formed by fibro-
blastoid cells (Figure 1(e)). These findings indicate an effec-
tive enrichment of CFU-F in BM-MNC samples from
patients with osteonecrosis, which is consistent with previous
reports [8, 35].

3.2. Frequency of CD271+CD45-/low and CD45dim/CD34+ Cells
in SCD Samples. CFU-Fs in human BMA samples are
described as a rare cell population characterized by CD271+-

CD45-/low phenotype [29]. To investigate the frequency
CD271+CD45-/low phenotype, BM samples were enumerated
using flow cytometry. Cell viability was monitored with
7AAD nuclear dye, and a minimal 95% value was obtained.
In fresh BMA, the median CD271+CD45-/low counts in the
SCD group were comparable to that found in the NS group
(Figures 2(a) and 2(b) and Table 1). After BM processing,
the median CD271+CD45-/low cell count was 67:1 × 103
cell/mL (IQR 15.0 to 237:5 × 103 cell/mL) in SCD group
while 21:6 × 103 cell/mL (IQR 18.2 to 54:2 × 103 cell/mL) in
the NS group, a pattern similar to CFU-F counts, reaching
statistical significance (p = 0:04) (Figure 2(b)). A significant
enrichment in the CD271+CD45-/low cell counts was
observed for both SCD (mean, 12.6-folds; 95% CI, 1.8 to
44.1-folds; p < 0:0005) and NS (mean, 10.3-folds; 95% CI,
1.0 to 43.1-folds; p < 0:005) groups after BM processing
(Figure 2(c)).

Further, we asked whether the higher frequency of CFU-
Fs/mL correlates with the numbers of CD271+CD45-/low cell
phenotype in each study group. Linear regression analysis
revealed a moderate but significant correlation between
CD271+CD45-/low cell number and CFU-F counts in SCD
(r = 0:7483; p = 0:0070) and NS samples (r = 0:7167; p =
0:037) after BM processing. These data suggest a possibility
of using flow cytometry for quantification of CD271+CD45-
/low in BM aspirates and enriched BM-MNC fractions of
sickle cell disease patients with osteonecrosis.

As hematopoietic stem/progenitor cells (HSPC), identi-
fied as CD45dim/CD34+, and MSCs are simultaneously aspi-
rated during bone marrow harvesting [34], we investigated
if CD271+CD45-/low phenotype could be correlated with
HSPC after BM processing. The HSPC counts showed no sig-
nificant difference between SCD and NS group (Figure 3(a)).
After BM processing, the median HSPC concentration was
485.3 cells/μL in the SCD group (IQR 53 to 1479 cells/μL)
and 435.1 cells/μL in the NS group (range from 105 to 3763
cells/μL) (Figure 3(a) and Table 1). We did not observe a sig-
nificant correlation between CD45dim/CD34+ cells and
CD271+CD45-/low cell counts in SCD group and NS group
(data no shown).
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Figure 1: Frequency of CFU-F and BM-nucleated cells. Quantification of (a, b) nucleated cells and (c, d) CFU-F counts in bone marrow
aspirate (BMA) or mononuclear fraction (BM-MNC). (e) Typical CFU-F plates from representative donors showing colonies from
different sizes after crystal violet staining. Statistical analyses (Mann–Whitney U test) were performed between values, and the data are
reported as the median and interquartile range. ∗∗p < 0:01; ∗∗∗p < 0:005.

Table 1: Distribution of cell number, progenitor cell populations, and frequency of CFU-F with BM processing.

BMA BM-MNC
SCD NS p SCD NS p

Cell number × 103/μL (mean ± SD)§ 15:5 ± 5:6 10:4 ± 4:1 <0.01 96:7 ± 53:4 34:8 ± 15:3 <0.001
CFU-F/mL 110 (34-278) 15 (10-45) <0.01 216 (72-553) 46 (21-66) <0.001
CD271+CD45−/low × 103/mL 7.8 (3.4–14.4) 6.7 (2.9–11.0) >0.05 66.7 (14.2–260) 21:6 × 18:2‐54:2ð Þ <0.05
CD34+CD45low × 103/μL 155 (120.5-189.5) 126 (94-173) >0.05 485.3 (53.4 -1479) 435.1 (105-3763) >0.05
Demographic and baseline biochemical characteristics of patients. Variables presented as median (interquartile range). §Except where noted otherwise.
Abbreviations: BMA: bone marrow aspirate; BM-MNCs: bone marrow mononuclear cells; CFU-Fs: colony-forming unit fibroblasts.
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Next, the data from both SCD and NS groups were fur-
ther analyzed according to the age of the bone marrow
donors. Independent of osteoarticular complication, there
was a moderate but significant gradual decline in the number

of CFU-F colonies (r = −0:4817; p = 0:0315; N = 20) with
increasing age of the donor (see supplementary Table S2).
This pattern was also consistently observed between the age
of the donor and the number of CD271+CD45-/low
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measured by flow cytometry (r = −0:4731; p = 0:0350; N = 20
) (Figure 3(b)). In sum, putative MSCs, identified as
CD271+CD45-/low cell counts, were quickly quantified in
BM aspirates and enriched BM-MNC fractions of sickle cell
disease patients with osteonecrosis and positively correlated
with CFU-F colonies.

3.3. Phenotypic Characterization and In Vitro Growth
Capacity of BM-MSCs. Our assessment of MSC frequency
indicated that the number of CFU-F/mL was increased in
BM samples from SCD patients in comparison to NS
patients, which is consistent with previous reports [8, 25].
Then, an extended analysis of cultured MSC was undertaken
to identify any potential difference in terms of morphology,
immunophenotype, multilineage potential, and functional
characteristics after in vitro culturing and expansion. For
the following experiments, only BM-MSC between passages
3 and 6 from young to adult (19-40 years old) donors were
included, since previous reports that increasing donor age
accelerated changes in BM-MSC morphology and prolifera-
tion [19, 36]. BM-MSC from SCD (SCD-MSC) and NS
(NS-MSC) patients exhibited similar spindle-shaped fibro-
blastoid morphology up to the first six passages. In the initial
phases of cultivation, we found that the growth ability of
SCD-MSC was slightly higher but not significantly different
than NS-MSCs (Figure 4(a)). BM-MSC from SCD and NS
patients displayed typical mesenchymal markers equally pos-
itive for CD29, CD90, and CD105 (Figure 4(c)) while lacking
expression of hematopoietic markers (HLA-DR, CD14,
CD34, and CD45) (data not shown) over the first six pas-
sages, in accordance with the minimal criteria for BM-MSC
[37]. Representative markers, such as vimentin and SMA
were also detected in both BM-MSCs. No significant differ-
ences in the expression of any of these markers were observed
between SCD-MSC and NS-MSC (Figure 4(b)). In addition,
cultured cells from both groups exhibited similar differentia-
tion potential in vitro toward the osteoblastic (Alizarin red
staining), chondroblastic (Alcian blue), and adipogenic (Oil
Red O staining) lineages (Figure 4(d)).

3.4. BM-MSCs from SCD and NS Patients Had Similar
Characteristics when Culture Expanded. Previous studies
have indicated that functional characteristics of MSCs are
not impaired in patients with osteonecrosis [8, 38], while
others have observed a decline in the proliferation rate and
osteogenic activity [39–41]. As stem cell-guided migration
is a vital step in the bone healing process, we used Boyden
chamber assays to compare SCD-MSC and NS-MSC migra-
tion in response to serum-mediated chemoattraction. After
a 20-hour incubation, migrated cells on the underside of
the filter were 10% formalin fixed and quantified with 1%
crystal violet staining. As shown in Figure 5(a), both SCD-
and NS-MSC exhibit equally a high level of migratory
response toward 10% FBS. The negative control samples
showed negligible cell migration. Additionally, MSC
response to serum was observed in a dose-dependent manner
with 15% FBS having the greatest effect (not shown). Next,
we investigated the expression level of osteocalcin, a marker
of developing osteoblasts. After 10 days in the presence of

osteogenic inducers, no significant difference between SDC-
and NS-MSC was observed (Figure 5(b)).

MSCs secrete trophic factors and cytokines that report-
edly promote cell survival and bone regeneration. Then, we
investigated if the levels of IL-8, TGF-β, and SDF-1α in the
supernatant of SCD- and NS-MSCs were also equivalent.
We found that BM-MSCs grown under control conditions
secreted significant amounts of IL-8, TGF-β, and SDF-1α,
although no significant different levels between SCD and
NS-MSCs were observed (Figure 5(c)). These results indicate
that BM-MSCs from SCD and NS patients are equally capa-
ble of producing tissue repair cytokines and growth factors.

In sum, culturing did not result in any detectable changes
with respect to in vitro characteristics evaluated in both BM-
MSCs from SCD and NS patients.

4. Discussion

Cell-based therapies with autologous BM aspirates or con-
centrates as a source of osteoprogenitors have emerged lately
with great popularity for the treatment of osteonecrosis and
other osteoarticular injuries in SCD patients. However, the
quality of these BM-MSCs is poorly understood, and the
pathophysiology associated with SCD may result in their
functional impairment and limited repair capacity. In this
study, we comprehensively measured the abundance of
CD271+CD45-/low cell phenotype and compared with CFU-
F frequency, the gold standard assay indicative of osteopro-
genitors in BM samples. We demonstrated that the preva-
lence of CFU-Fs was positively correlated to CD271+CD45-
/low counts in BM preparations from SCD patients with
osteonecrosis. Consistent with published studies [8, 9], our
data also suggested that BM-MSCs isolated and expanded
from SCD patients with osteonecrosis were equivalent to
BM-MSCs from the control groups in terms of their pheno-
typic and functional properties. Collectively, this work pro-
vides important data for the quick measurement of putative
BM-MSC in support to advanced cell-based therapies for
SCD patients with osteonecrosis.

To our knowledge, this study is the first to evaluate
CD271+CD45-/low cell phenotype in SCD patients with osteo-
necrosis. CD271 has been proposed as one of the characteristic
markers of native BM-MSCs, with prominent osteogenic activ-
ity [21, 42]. Their gene expression profile indicated a predilec-
tion for bone formation as evident by the elevated levels of
numerous osteogenic-lineage molecules [25]. Several indepen-
dent studies have confirmed that CD271+CD45-/low cells are
often abundant in fresh BM samples from adult healthy donors
[16, 31, 43, 44] but its presence has been less extensively
researched in systemic or hematologic diseases. Here, we
showed that the number of CD271+CD45-/low cells was highly
variable but comparable between SCD and control samples.
The variability observed herein could not be correlated with
sex or disease condition but was consistent with the findings
of other works [19]. Alvarez-Viejo et al. reported a low percent-
age (0.0042%) and high variability of CD271+CD45- cell phe-
notype in the BM aspirates of diabetic patients with foot
ulcers compared to healthy donors [11]. Conversely, in chronic
osteoarthritis patients, the frequency of CD271+CD45low cells,
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their telomere status, and osteogenic abilities were similar to
that in healthy individuals [45]. Among healthy patients who
underwent orthopedic surgery, the prevalence of CD271+-

CD45- cells was also described as highly variable [34]. Such var-
iability could be explained by different BM harvesting
protocols, different enumeration methods, or limited number
of samples [17, 34].

To date, there is no standardized enumeration method for
BM-MSCs before cell culturing. Instead, a cytometric assay for
CD271+CD45-/low phenotype has been used reliably to predict
the frequency of BM-MSC in BM samples [11, 16]. However,
this correlation has not been demonstrated in BM preparation
from SCD patients with osteonecrosis. In our study, we
observed a positive correlation between the CD271+CD45-
/low cell phenotype and CFU-F counts in SCD and NS groups
after BM concentration. Our results demonstrated that after
bone marrow processing, the CD271+CD45-/low cell counts
and CFU-Fs could be significantly enriched. Compared with
our data, El-Jawhari et al. showed a strong linear correlation
between the enrichment of CD271+CD45low cell counts and
CFU-Fs in bone marrow concentrates [16]. Furthermore,
findings by Rebolj and colleagues suggested that the CD271+-

CD45- cell population correlates better with CFU-F numbers
than another more stringent MSC phenotype, such as
CD45-CD73+CD90+CD105+ cells [34]. Another recent study
showed that commercial BM processing systems produced

CFU-F and CD271+CD45low enrichment between 4.4- and
41.2-folds, but dissimilar levels of growth factors and hemato-
poietic progenitors [46]. These results emphasize the potential
value of CD271+CD45-/low measurement to predict the fre-
quency of MSC content in BM concentrates for cell-based
therapies. The cytometric assessment of CD271+CD45-/low

cells on routine practice would ensure that a therapeutic dose
of MSCs could be adjusted before implantation, which is cur-
rently not possible.

The mean concentration of CD271+CD45-/low cells/mL
measured with flow cytometry in our study was much higher
than the concentration of MSC predicted with CFU-F assay.
We noted 70 times more CD271+CD45-/low cells/mL with
the flow cytometric method than putative MSCs quantified
by CFU-F assay. This suggests that not all CD271+CD45-/low

cells could form colonies, which is in agreement with previous
studies [19, 47]. Also, we have followed optimal and consistent
culture conditions by using complete media and batch-tested
bovine serum for the CFU-F assays. Thus, the possibility of
the underestimation of CFU-Fs is small, but still exists.

Previous independent studies have documented an age-
related decline in BM-MSC numbers, measured either as
CFU-F or CD271+CD45- counts, in healthy individuals [16,
19, 34]. Based on these results, some studies have suggested
that the amount of harvested bone marrow should be
adjusted according to the age of the patient, in order to
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achieve a target BM-MSC number for bone repair [34, 48]. In
our study, we have observed a slightly inverse correlation
between donor age and the BM-MSC numbers in fresh sam-
ples. Given the small number of patient samples evaluated in
our study and the large donor-to-donor variability, addi-
tional studies are needed to validate our results.

We next focused on the in vitro culturing and expansion
in order to identify any potential difference in terms of
immunophenotypic and functional characteristics of BM-
MSCs. No significant differences in the morphology, expan-
sion capacity, expression of surface markers, multidifferen-
tiation potential, and secretion of cytokines were found in
BM-MSCs from SCD and control group samples, which is
consistent with previous reports [8, 38, 49]. In contrast, a
decreased osteogenic ability and enhanced adipogenesis were
demonstrated in native BM-MSC from patients with
corticosteroid-related osteonecrosis [40, 41]. In our case
series, this comparison was not made because none of the
patients suffered from corticosteroid-induced osteonecrosis.

Accumulated evidence has indicated that the therapeutic
benefit of MSCs is attributable not only to their differentia-
tion potential but also to their secreted factors [50, 51]. In line
with this, many reports have demonstrated the transplanta-
tion of MSC-derived secretome-enhanced blood vessel
regeneration and bone reconstruction in a preclinical model
of osteonecrosis and bone defects [52–54]. Our study dem-
onstrated that SCD-MSC and NS-MSC under standard cul-
ture conditions secreted high levels of IL-8, TGF-β, and
SDF-1α; cytokines involved with bone tissue [55–57].

The primary limitation of this study is related to sample
size and age distribution. BM samples from NS patients were
not routinely obtained, which resulted in a smaller sample
size and older patients in this group.

In conclusion, the results presented here showed that the
quantification of CD271+CD45-/low cell phenotype was a fast
and suitable approach to predict MSC number, with positive
correlation with CFU-Fs in SCD BM concentrates. In rela-
tion to possible therapeutic applications of cultured BM-
MSCs, our data indicated that expanded BM-MSC did not
have their functional properties impaired in regard to multi-
potential, proliferative, migration, and paracrine ability.
Thus, this work provides important preclinical data that is
necessary to help indicate the “number” of MSCs in bone
marrow samples prior to their use in cell-based therapies
for SCD patients with osteonecrosis.
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