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Understanding the regulation mechanisms of mesenchymal stem cells (MSCs) can assist in tissue regeneration. The histone
demethylase (KDM) family has a crucial role in differentiation and cell proliferation of MSCs, while the function of KDM3B in
MSCs is not well understood. In this study, we used the stem cells from the apical papilla (SCAPs) to test whether KDM3B
could regulate the function of MSCs. By an alkaline phosphatase (ALP) activity assay, Alizarin red staining, real-time RT-PCR,
and western blot analysis, we found that KDM3B enhanced the ALP activity and mineralization of SCAPs and promoted the
expression of runt-related transcription factor 2 (RUNX2), osterix (OSX), dentin sialophosphoprotein (DSPP), and osteocalcin
(OCN). Additionally, the CFSE, CCK-8, and flow cytometry assays revealed that KDM3B improved cell proliferation by
accelerating cell cycle transition from the G1 to S phase. Scratch and transwell migration assays displayed that KDM3B
promoted the migration potential of SCAPs. Mechanically, microarray results displayed that 98 genes were upregulated,
including STAT1, CCND1, and FGF5, and 48 genes were downregulated after KDM3B overexpression. Besides, we found that
the Toll-like receptor and JAK-STAT signaling pathway may be involved in the regulating function of KDM3B in SCAPs. In
brief, we discovered that KDM3B promoted the osteo-/odontogenic differentiation, cell proliferation, and migration potential of
SCAPs and provided a novel target and theoretical basis for regenerative medicine.

1. Introduction

With the development of the technique, the treatment out-
come of tooth loss and orofacial bone defects is improved
continuously. Nonetheless, the limited bone intrinsic regen-
erative ability or the impaired host regenerative ability will
affect the tissue repair and regeneration [1]. In recent years,
stem cell-based therapy is a prospecting strategy for repairing
and regenerating dental and orofacial bone defects [2].
Mesenchymal stem cells (MSCs) are attractive candidates
for tissue regeneration due to their capacity for self-renewal
and multiple differentiation potentials [3, 4]. At present, stem
cells are divided into odontogenic stem cells including

the stem cells from the apical papilla (SCAPs), stem cells
from the dental pulp (DPSCs) and periodontal ligament
(PDLSCs), and nonodontogenic stem cells including bone
marrow stem cells (BMSCs) [5, 6]. However, the underlying
molecular mechanism ofMSCs remains to be unveiled before
widespread clinical application in dental and orofacial bone
regeneration.

Histone methylation is a major regulator of epigenetic
modification, which could be critical for determining the cell
fate of MSCs [7, 8]. The status and location of lysine methyl-
ation determine that it acts as an activator or suppressor of
transcription, such as H3K4, H3K36, and H3K79 methyla-
tion activating transcription and H3K9, H3K27, and
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H4K20 methylation suppressing transcription, and is regu-
lated by histone methyltransferases and demethylases [8, 9].
Therefore, the function and balance between histone methyl-
transferases and demethylases determine gene expression.
The largest family of histone demethylase (KDMs) has the
Jumonic (JmjC) domain, including the KDM2-7 subfamily;
these histone demethylases are thought to have functions in
maintaining cell fate and genome stability [10, 11]. At pres-
ent, histone demethylation is an important epigenetic mech-
anism in dental and orofacial bone regeneration [12–14].
And mounting evidence shows that the KDM subfamily
may be linked to osteo-/odontogenic differentiation and cell
proliferation [12, 15–21].

The current results reflected that the loss of H3K9me2 is
associated with the activation of gene expression [22].
Lysine-specific demethylase 3B (KDM3B), also known as
JMJD1B, which is a JmjC domain-containing protein, was
regarded as a lysine demethylase for H3K9 demethylation
(H3K9me2) [22, 23]. Moreover, KDM3B is responsible for
the demethylation of H3K9me2 which has been shown to
change the state of chromatin modification and dynamically
regulate the gene expression of differentiated cells and regu-
late the proliferation of cells [19, 24–26]. Subsequently,
researchers confirm that KDM3B is also important for the
erasure of H4R3me2s which is also necessary for cellular pro-
cesses including osteogenic differentiation and cell cycle
potential of MSCs [22, 27], while the molecular mechanisms
by which KDM3B regulates osteo/-odontogenic differentia-
tion and self-renewal capacity in MSCs have not been well
characterized and need to be explored.

In this study, our team aims to explore the potential func-
tion and mechanism of the KDM3B in MSCs by using
SCAPs. Our findings show that the KDM3B promotes the
osteo-/odontogenic differentiation, cell proliferation, and
migration potential in human SCAPs. Moreover, the candi-
date targets of KDM3B are identified and provide the novel
target and theoretical basis for tissue regeneration.

2. Materials and Methods

2.1. Cell Cultures. Apical papilla stem cells (SCAPs) were
used in these experiments following the ISSCR “Guidelines
for the Conduct of Human Embryonic Stem Cell Research,”
after obtaining patient consent, and the study was approved
by the ethics committee of Beijing Stomatological Hospital,
Capital Medical University. SCAPs were obtained as previ-
ously depicted [28, 29]. Briefly, the apical tissue was peeled
off rapidly after wisdom tooth extraction and digested with
3mg/mL type I collagenase (Worthington Biochemical
Corp., Lakewood, NJ, USA) and 4mg/mL Dispase (Roche
Diagnostics Corp., Indianapolis, IN, USA) at 37°C for
45min. In our previous study, we described the culture of
SCAPs [28, 29]. The cell images under the microscope are
shown in Figure S1.

2.2. Plasmid Construction and Viral Infection. Construction
of plasmids following standard techniques was confirmed
using restriction enzyme digestion analysis or sequencing.
A hemagglutinin (HA) tag combined with the full-length

sequence of KDM3B was subcloned into the pQCXIN
retroviral vector by the BamH1 and AgeI restriction sites.
Short hairpin RNA (shRNA) of KDM3B was subcloned into
the pLKO.1 lentiviral vector (Addgene). The scramble
shRNA (Scramsh) was purchased from Addgene. The target
sequence for the shRNA of KDM3B was 5′-AGGCACATT
ACATTTAGTC-3′.

2.3. Alkaline Phosphatase (ALP) and Alizarin Red Detection.
SCAPs were cultured in the osteogenesis differentiation
medium for 3 days, and ALP activity was detected with an
ALP activity kit (Sigma-Aldrich, St. Louis, MO, USA). Cells
were cultured in osteogenesis differentiation medium for 2
weeks and then stained with Alizarin red according to the
manufacturer’s instructions, as described in our previous
work [15].

2.4. Real-Time Reverse Transcriptase Polymerase Chain
Reaction (Real-Time RT-PCR). The extraction of total RNA
of SCAPs, the synthesis of cDNA, and the reactions of real-
time RT-PCR were tested as described in our previous study
[30]. By using the method of 2-△△CT, the expression of genes
was determined and normalized based on GAPDH. The
primers used in this study are listed in Table 1.

2.5. Western Blot Analysis. 25μg protein isolated from SCAPs
was diluted in PBS to a total volume of 25μL. The western
blot was performed as described in our previous study [30].
The primary antibodies used in the study are as follows:
KDM3B antibody (cat no. 19915-1-AP, Rabbit Polyclonal,
USA), RUNX2 antibody (cat no. ab76956, Abcam), OSX
antibody (cat no. ab209484, Abcam), OCN antibody (cat
no. bs-4917R, Bioss, China), DSPP antibody (cat no.
bs10316R, Bioss, China), and histone H3 antibody (cat no.
SC-56616, Santa Cruz Biotechnology, Santa Cruz, CA, USA).

2.6. CFSE Assay. To detect the proliferation ability of SCAPs,
carboxyfluorescein succinimidyl ester (CFSE) assays were
applied as previously described [30]. The proliferation ability
of SCAPs was tested by flow cytometry (FACSCalibur, BD
Biosciences, USA) after staining with CFSE reagents. The
results were documented using flow cytometry with a
488 nm laser. ModFit LT (Verity Software House, Topsham,
ME, USA) was applied to calculate the proliferation index.

2.7. CCK-8 Assay. To further test the proliferation ability of
SCAPs, the Cell Counting Kit-8 assay (Dojindo, Kumamoto,
Japan) was performed as previously described [30]. 7 × 103
cells/well were seeded into 96-well plates. After 24 h and

Table 1: Primer sequences used in the real-time RT-PCR.

Gene symbol Primer sequences (5′-3′)
GAPDH-F CGGACCAATACGACCAAATCCG

GAPDH-R AGCCACATCGCTCAGACACC

RUNX2-F TCTTAGAACAAATTCTGCCCTTT

RUNX2-R TGCTTTGGTCTTGAAATCACA

OSX-F CCTCCTCAGCTCACCTTCTC

OSX-R GTTGGGAGCCCAAATAGAAA
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Figure 1: Continued.
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48 h incubation, the culture medium was replaced with 10μL
CCK-8 reagent mixed with 100μL DMEM. 2h of incubation
later, the absorbance (OD) was measured with a multiwell
spectrophotometer at 450nm.

2.8. Flow Cytometry for the Cell Cycle. The flow cytometry
was applied for detecting the cell cycle. As previously
described [30], SCAPs (1 × 106) were placed in anhydrous
ethanol at 4°C overnight and then incubated with the mixture
of propidium iodide (50μg/mL, Sigma) and 10μg/mL RNase
in the dark for 30 minutes. Cell cycle fractions (G0/G1 phase,
S phase, and G2/M phase) were calculated by flow cytometry.
PI = ððS + G2Þ/MÞ/ððG0/G1Þ + S + G2MÞ was applied to cal-
culate the proliferation index.

2.9. Scratch Migration Assays. SCAPs were seeded in 6-well
culture plates with 4 × 105 cells per well and cultured in
serum-free medium for 48 h. Subsequently, the cells were
scratched with a 1000μL pipet tip (Axygen® Corning, NY,
USA) to create a wound and washed twice with PBS to clear
the floating cells and then continuously incubated in the
fresh culture medium. Scratch images were observed under
a microscope at 0 h, 24 h, and 48 h after wound scratch, the
degree of wound closure was tested, and the relative width
(RW) was calculated by the program of Image-Pro 1.49v
(National Institutes of Health, USA).

2.10. Transwell Chemotaxis Assays. To detect the chemotaxis
ability of SCAPs, 24-well chemotaxis chambers were applied
for this experiment. SCAPs suspended in 100μL serum-free
medium (Invitrogen, Carlsbad, CA, USA) were placed in
the upper chamber at a density of 2 × 104 cells, while
600μL of serum-free medium with the addition of 15% fetal
bovine serum (FBS) was added in the bottom chamber. The
chemotactic ability of the cells will cause the cells in the upper
chamber to migrate through the hole to the lower chamber.
After 24 and 48 hours, 10 visual fields were randomly selected
for counting transferred cell numbers using a microscope
(Olympus, Japan).

2.11. Microarray Analysis. The gene expression profile was
performed and analyzed by using the Human Gene 1.0 ST
Array (Affymetrix, USA). Abiding by the methods as
described previously [30], differentially expressed genes were
analyzed using the Affymetrix GeneChip Operating Software
(Affymetrix, USA). The selected threshold set for differen-
tially mRNAs was a fold change > 1:5 and a P value < 0.05.

2.12. Statistics. Each experiment was done at least in tripli-
cate. All the data were analyzed by the SPSS17 statistical soft-
ware (SPSS Inc., Chicago, IL, USA). Significance was
determined using Student’s t-test. P ≤ 0:05 was regarded as
statistically significant.
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Figure 1: KDM3B enhanced the osteo-/odontogenic differentiation potential of SCAPs. (a) The knockdown efficiency of KDM3B in SCAPs
was tested by western blot. (b) KDM3B knockdown significantly depressed the ALP activity in SCAPs. (c) The Alizarin red staining and (d)
the quantitative calcium analysis showed that KDM3B knockdown reduced the mineralization capacity of SCAPs compared with the control
group. (e, f) Real-time RT-PCR analysis confirmed that KDM3B knockdown reduced the expression of (e) RUNX2 and (f) OSX in SCAPs. (g)
Western blot analysis showed the expression of RUNX2 and OSX in the KDM3B knockdown group and the control group. Histone H3 served
as an internal control. (h) Western blot analysis revealed that the expression of DSPP and OCN was decreased after KDM3B was knocked
down. Histone H3 served as an internal control. (i) The KDM3B overexpression was tested by western blot. (j) KDM3B overexpression
significantly enhanced the ALP activity in SCAPs. (k, l) The results of (k) the Alizarin red staining and (l) the quantitative calcium
analysis revealed that KDM3B overexpression enhanced the mineralization capacity of SCAPs compared with the control group. (m, n)
Real-time RT-PCR analysis revealed that KDM3B overexpression increased the expression of (m) RUNX2 and (n) OSX in SCAPs. (o)
Western blot analysis showed the expression of RUNX2 and OSX in the KDM3B overexpression group and the control group. Histone H3
served as an internal control. (p) Western blot analysis revealed that the expression of OCN and DSPP was enhanced after KDM3B was
overexpressed. Histone H3 served as an internal control. Statistical significance was determined using Student’s t-test. All error bars
represent SD (n = 3). P < 0:05. ∗∗P ≤ 0:01.

4 Stem Cells International



Scramsh

N
um

be
r

N
um

be
r

0

200

400

600

60 80 120 150 1800 60 80 120 150 1800
0

100

200

300

400

500

600

KDM3Bsh

Parent
Generation 2
Generation 3
Generation 4

Generation 5
Generation 6
Generation 7
Generation 8

(a)

0

2

4

6

8

10

12

14

Pr
ol

ife
ra

tio
n 

in
de

x

⁎⁎

Scramsh KDM3Bsh

(b)

24h 48h
0

0.5

1

1.5

O
D

 v
al

ue
(4

50
 n

m
)

⁎⁎

⁎⁎

Scramsh
KDM3Bsh

(c)

0

200

400

600

800

0 10 20

N
um

be
r

N
um

be
r

Scramsh

G0–G1: 48.79 %
S: 40.91 %
G2–M: 10.31 %

0

400

800

1200

1600

0 10 20

KDM3Bsh

G0–G1: 52.41 %
S: 36.05 %
G2–M: 11.55 %

(d)

G0–G1 S G2–M
0

0.1

0.2

0.3

0.4

0.5

0.6

C
ell

 cy
cle

 d
ist

rib
ut

io
n 

(%
)

⁎⁎

⁎

Scramsh
KDM3Bsh

(e)

Scramsh KDM3Bsh
0

10

20

30

40

50

60
⁎⁎

PI
 (%

)
(f)

150 200 250
0

200

400

HA–KDM3B

150 200 250
0

200

400

N
um

be
r

N
um

be
r

Vector

Parent
Generation 2
Generation 3

Generation 4
Generation 5
Generation 6

(g)

Vector HA–KDM3B
0

2

4

6

8

10

12
⁎

Pr
ol

ife
ra

tio
n 

in
de

x

(h)

Figure 2: Continued.
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3. Results

3.1. KDM3B Increased the Osteo-/Odontogenic
Differentiation Potential of SCAPs. To identify the potential
roles of KDM3B, we knock down KDM3B in SCAPs through
lentiviral transfection. The knockdown efficiency of KDM3B
in SCAPs was tested by western blot analysis after 3 days of
treatment of 2μg/mL puromycin (Figure 1(a)). At 3 days
after osteo-/odontogenic induction, we found that KDM3B
knockdown significantly depressed the ALP activity
(Figure 1(b)). The Alizarin red staining and the quantitative
calcium analysis were assessed after 2 weeks of in vitro cul-
turing in osteo-/odontogenic induction medium. The results
reflected that KDM3B knockdown reduced the mineraliza-
tion capacity of SCAPs (Figures 1(c) and 1(d)). Real-time
RT-PCR analysis confirmed that KDM3B knockdown
reduced the expression of RUNX2 and OSX (Figures 1(e)
and 1(f)). After osteo-/odontogenic induction, western blot
analysis showed downregulated RUNX2 and OSX in the

KDM3B knockdown group compared with the control group
at 0 and 7 days (Figure 1(g)). Moreover, we detected the
osteo-/odontogenic marker proteins at 2 weeks after osteo-
/odontogenic induction, and the western blot results reflected
that expression of OCN and DSPP was decreased after
KDM3B was knocked down in SCAPs (Figure 1(h)). To fur-
ther investigate the osteo-/odontogenic differentiation func-
tion of KDM3B in SCAPs, the HA-KDM3B sequence was
inserted into the retroviral vector which was used to infect
SCAPs. The KDM3B overexpression was tested by western
blot (Figure 1(i)). At 3 days after osteo-/odontogenic induc-
tion, we discovered that KDM3B overexpression significantly
enhanced the ALP activity (Figure 1(j)). At 2 weeks after
osteo-/odontogenic induction, the Alizarin red staining and
the quantitative calcium analysis revealed that KDM3B over-
expression enhanced the mineralization capacity of SCAPs
(Figures 1(k) and 1(l)). Real-time RT-PCR analysis con-
firmed that KDM3B overexpression promoted the expression
of RUNX2 and OSX (Figures 1(m) and 1(n)). After osteo-
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Figure 2: KDM3B enhanced the cell proliferation of SCAPs and regulated the cell cycle. The (a) CFSE assay and (b) quantitative analysis
results revealed that KDM3B knockdown decreased the cell numbers at 3 days in SCAPs. (c) The CCK-8 assay revealed that KDM3B
knockdown reduced the cell numbers at 24 h and 48 h in SCAPs. (d) Flow cytometric cell cycle analysis revealed that KDM3B knockdown
increased the proportion of cells in the G0/G1 phase and decreased the proportion of cells in the S phase. (e) Comparison of cell cycle
distribution between the KDM3B knockout group and the control group. (f) The proliferation index between the KDM3B knockout group
and the control group. The (g) CFSE assay and (h) quantitative analysis results revealed that KDM3B overexpression enhanced the cell
numbers at 3 days in SCAPs. (i) The CCK-8 assay revealed that KDM3B overexpression increased the cell numbers at 24 h and 48 h in
SCAPs. (j) Flow cytometric cell cycle analysis revealed that KDM3B overexpression decreased the percentage of cells in the G0/G1 phase
and increased the proportion of cells in the S phase. (k) Comparison of cell cycle distribution between the KDM3B overexpression group
and the control group. (l) The proliferation index between the KDM3B overexpression group and the control group. Statistical
significance was determined using Student’s t-test. All error bars represent SD (n = 3 or 6). P < 0:05. ∗∗P ≤ 0:01.
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Figure 3: Continued.
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/odontogenic induction, western blot analysis showed upreg-
ulated RUNX2 and OSX in the KDM3B overexpression
group compared with the control group at 0 and 7 days
(Figure 1(o)). In parallel, after 2 weeks of osteo-/odontogenic
induction, the western blot results revealed that the expres-
sion of OCN and DSPP was enhanced after KDM3B was
overexpressed (Figure 1(p)).

3.2. KDM3B Enhanced the Proliferation Ability of SCAPs. To
detect the effects of KDM3B on cell proliferation potential of
SCAPs, the CFSE assay, CCK-8 assay, and flow cytometric
cell cycle analysis were performed. After culturing for 3 days,
the result of the CFSE assay confirmed that the proliferation
potential of SCAPs was suppressed following KDM3B
knockdown (Figures 2(a) and 2(b)). The result of the CCK-
8 assay showed that cell numbers in the KDM3B knockdown
group were significantly reduced compared with those in the
control group at 24 h and 48 h (Figure 2(c)). Then, after
culturing for 3 days, flow cytometric cell cycle analysis was
carried out. The results revealed that KDM3B knockdown
increased the proportion of cells in the G0/G1 phase and
decreased the percentage of cells in S phases (Figures 2(d)
and 2(e)). After calculation, the proliferation index was
significantly lower in the KDM3B knockdown group than
in the control group (Figure 2(f)). To further prove whether
KDM3B could affect the proliferation potential of SCAPs,
the CFSE assay, CCK-8 assay, and flow cytometric cell cycle
analysis were performed in KDM3B overexpression SCAPs.
After culturing for 3 days, the CFSE assay showed that the
proliferation potential of SCAPs was enhanced in the
KDM3B overexpression group compared with the control
group (Figures 2(g) and 2(h)). The result of the CCK-8 assay
showed that cell numbers in the KDM3B overexpression
group were significantly increased compared with those in

the control group at 24 h and 48 h (Figure 2(i)). Also, after
culturing for 3 days, flow cytometric cell cycle analysis was
carried out in SCAPs. The results showed that KDM3B over-
expression decreased the proportion of cells in the G0/G1
phase and increased the proportion of cells in the S phase
(Figures 2(j) and 2(k)). Consistently, the proliferation index
was higher in the KDM3B overexpression group than in the
control group (Figure 2(l)).

3.3. KDM3B Enhanced the Migration and Chemotaxis
Potential of SCAPs. To test whether KDM3B could regulate
the migration potential of SCAPs, the scratch migration
and transwell chemotaxis assays were performed. Scratch
migration assays demonstrated that KDM3B knockdown
led to a significant decrease in the migration ability of SCAPs
at 24h and 48 h (Figures 3(a) and 3(b)). Similarly, the results
of the transwell chemotaxis assay confirmed that KDM3B
knockdown led to a decrease in the chemotaxis ability of
SCAPs at 24 h and 48 h (Figures 3(c) and 3(d)). To further
confirm the function of KDM3B in the regulation of the
migration of SCAPs, the scratch migration and transwell che-
motaxis assays were performed in KDM3B overexpression
SCAPs. Scratch migration assay results revealed that KDM3B
overexpression led to a significant increase in the migration
ability of SCAPs at 24 h and 48 h (Figures 3(e) and 3(f)).
The results of the transwell chemotaxis assay confirmed that
KDM3B overexpression led to a significant increase in the
chemotaxis ability of SCAPs at 24h and 48h (Figures 3(g)
and 3(h)).

3.4. Differentially Expressed Genes and Bioinformatic
Analysis in KDM3B overexpression SCAPs. Subsequently, dif-
ferentially expressed genes between KDM3B overexpression
SCAPs and the control group were identified by microarray
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Figure 3: KDM3B enhanced the migration and chemotaxis potential of SCAPs. The (a) scratch migration assay and (b) quantitative analysis
results demonstrated that KDM3B knockdown led to a significant decrease in the migration ability of SCAPs at 24 h and 48 h. The (c)
transwell chemotaxis assay and (d) quantitative analysis results showed that KDM3B knockdown led to a decrease in the chemotaxis
ability of SCAPs at 24 h and 48 h. The (e) scratch migration assay and (f) quantitative analysis results demonstrated that KDM3B
overexpression led to a significant increase in the migration ability of SCAPs at 24 h and 48 h. The (g) transwell chemotaxis assay and (h)
quantitative analysis results showed that KDM3B overexpression led to an increase in the chemotaxis ability of SCAPs at 24 h and 48 h.
Statistical significance was determined using Student’s t-test. All error bars represent SD (n = 3 or 6). P < 0:05. ∗∗P ≤ 0:01.
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analysis. The microarray analysis results suggested that there
were 146 differential genes in the KDM3B overexpression
SCAPs compared with the control group. In these differen-
tially expressed genes, 98 genes were upregulated while 48
genes were downregulated in the KDM3B overexpression
SCAPs compared with the control group (Table S1). The
upregulated genes include TGM2, ITGA2, STAT1, CCND1,
FGF5, and SEMA3A, while the downregulated genes
include COL3A1, C5AR2, and SERPINF1.

Then, gene ontology (GO) analysis and pathway analysis
were carried out. First, GO analysis was used to identify a sta-
tistical enrichment of various biological functions and path-
ways from the differentially expressed genes in the HA-
KDM3B group. By GO analysis, the upregulated GO func-
tions included positive regulation of cell migration, positive
regulation of cell motility, positive regulation of cellular com-
ponent movement, and positive regulation of response to
external stimulus (Figure 4(a)). Some important downregu-

lated GO functions included negative regulation of TOR sig-
naling and negative regulation of cell migration (Figure 4(b)).

We then used the KEGG database to enrich the pathways
of significant alterations in differentially expressed genes and
identified the pathways of significant changes associated with
differentially expressed genes which may play an important
role in function regulation of KDM3B (Table S2). After
analysis, the Toll-like receptor and the JAK-STAT signaling
pathway associated with upregulated genes as well as focal
adhesion and the TGF-beta signaling pathway associated
with downregulated genes were identified (Figure 5,
Table S3).

To further examine the global network, we calculated
connectivity of each gene in the network and determined
the node with the highest connectivity by Signal-net analysis.
Through the analysis of the significantly regulated GOs and
pathways, we found 12 core genes (CCND1, CLDN1,
CLDN11,DDX58, FGF5, ISG15,MET,MYD88, PLAT, PLAU,

Difgene Sin GO

0 2 4

(–LgP)

Type
Biological process

Cellular component

Molecular function

SMAD binding

Axon hillock
Vacuolar lumen

Collagen trimer

Collagen catabolic process
Negative regulation of locomotion

Cellular response to amino acid stimulus
Negative regulation of cellular component movement

Negative regulation of cell motility
Negative regulation of cell migration

Negative regulation of TOR signaling
Collagen fibril organization
Response to acid chemical

Cellular response to acid chemical
Cysteine–type endopeptidase activity

Monocarboxylic acid binding
Proteoglycan binding

Fatty acid binding
Fibronectin binding

Platelet–derived growth factor binding
Complement receptor activity

Extracellular matric structural constituent
Collagen binding

Endolysosome lumen
Lysosomal lumen

Proteinaceous extracellular matrix
Complex of collagen trimers

Extracellular matrix component
Banded collagen fibril

Fibrillar collagen trimer

G
en

e o
nt

ol
og

y 
ca

te
go

ry

(b)

Figure 4: Significant gene ontology (GO) analyses of differentially expressed genes in KDM3B overexpression SCAPs compared with the
control group. (a) The significant GO functions of upregulated genes during KDM3B overexpression. (b) The significant GO functions of
downregulated genes during KDM3B overexpression. The y-axis represents the GO category, and the x-axis represents the negative
logarithm of the P value (−LgP). A larger −LgP indicated a smaller P value for the difference.
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and SERPINE1) in the KDM3B overexpression group com-
pared with the control group according to the degree of gene
interaction (Figure 6, Table S4).

4. Discussion

Dental and orofacial bone regeneration depends on the
MSCs [31]. Under the condition of osteogenesis, dental
tissue-derived MSCs expressed typical osteoblastic markers
such as mineralized matrix nodules and differentiate into
an osteoblastic/odontoblastic lineage [32]. The maintenance
of self-renewal and differentiation potential is essential in
MSC-based therapy, but expansion in vitro may lead to the
loss of these characteristics [32]. Therefore, improving the
function of MSCs will effectively improve the therapeutic
efficacy of MSCs.

ALP activity is an early marker of osteo-/odontogenic
differentiation. In our study, we proved that KDM3B pro-
motes osteo-/odontogenic differentiation by increasing the
expression of ALP. In vitro mineralization represents a late
marker of osteogenesis. The results of Alizarin red staining
and the quantitative calcium analysis revealed that KDM3B
enhanced the mineralization in SCAPs. These results all
consistent with the data reported in the literature revealed
that KDM3B is the key factor of osteogenic differentiation
in MSCs [33]. In our study, we found that KDM3B pro-
motes the gene expressions of SCAPs which are involved
in the process of cell differentiation. These genes, including
RUNX2 and OSX, have been identified as key transcription
factors in the early stage of osteo-/odontogenic differentia-
tion [34, 35]. Besides, KDM3B also promoted the expres-
sions of OCN and DSPP in SCAPs. These proteins
represent a commitment to differentiate into an osteogenic
cell lineage [36–38]. The above results suggested that
KDM3B is a potential enhancer of osteo-/odontogenic dif-
ferentiation in SCAPs.

Moreover, new bone formation and graft integration rely
on the recruitment of stem cells to target sites and obtained
more stem cells for successful directed differentiation in the
microenvironment [39]. In the present study, we also con-
firmed that KDM3B enhanced the proliferation ability of
SCAPs by promoting the rapid transition from the G1 phase
to the S phase. We also discovered that KDM3B enhanced
the migration and chemotaxis ability of SCAPs. This is
consistent with the previous report in B cells and liver
cells [19, 25]. Combined together, these results suggest that
KDM3B has a positive role for the recruitment of SCAPs
and facilitates cell expansion.

Previously, Li et al. found that KDM3B demethylates
H4R3me2s and H3K9me2 in different promoter regions to
facilitate gene expression for the development of hematopoi-
etic stem cells [22]. To further explore its regulatory mecha-
nism, we carried out microarray analysis and identify the
significantly differential genes after enhanced expression of
KDM3B. After bioinformatic analysis, the GO analysis indi-
cated that some upregulated GO functions might be linked
to osteo-/odontogenic differentiation, cell proliferation, and
migration potential including positive regulation of cell
migration, positive regulation of cell motility, positive regula-

tion of cellular component movement, and positive regula-
tion of response to external stimulus. Then, the Path-net
analysis results suggest that the Janus kinase signal trans-
ducer and activator of transcription (JAK-STAT) and Toll-
like receptor signaling pathways may be involved in the func-
tional regulation of KDM3B. At present, some researches
have shown that the JAK-STAT pathway can modulate cell
migration potentials of BMSCs [40] while regulating bone
regeneration and promoting angiogenesis [41–43]. Among
them, the STAT1-CCND1/CDK6 axis promotes prolifera-
tion by accelerating the transition from the G0/G1 phase to
the S phase [44, 45]. These genes are believed to be key factors
in cell proliferation. Besides, it is generally known that MSCs
are recruited to the injured or inflamed sites through TLR
receptor-mediated interactions to promote tissue repair and
regeneration [46]. It has been confirmed that potent agonists
of TLR2, TLR3, and TLR4 enhanced the ability of MSCs to
differentiate into osteoblasts [47]. As a key receptor of TLRs,
MYD88 can enhance the expression of RUNX2 and ALP
activity induced by TLR4 [48]. MSCs isolated from Myd88-
deficient mice cannot differentiate into osteoblasts [49]. This
indicates that KDM3B may enhance the osteo-/odontogenic
differentiation ability of SCAPs by promoting the expression
of MYD88, but further study is needed. Meanwhile, other
core genes also play an important role in regulating the func-
tion of MSCs. FGF5 promotes osteogenic differentiation and
cell proliferation potential of BMSCs by activating ERK1/2
[50]. Proteolytic enzymes, such as PLAU, may play a crucial
role in cell migration and tissue remodeling during tissue
regeneration. However, SERPINE1 can reverse the function
of PLAU as an inhibitor of PLAU [51]. In general, our find-
ings confirmed that KDM3B may affect the biological func-
tion of SCAPs by regulating some candidate downstream
genes, but the molecular mechanism and regulation function
remain to be further studied.

5. Conclusions

In conclusion, we identified that KDM3B promoted the
osteo-/odontogenic differentiation, cell proliferation, and
migration potential of SCAPs. We also identified the key
downstream genes and possible pathways of KDM3B
involved in these processes. These discoveries contribute to
the understanding of the function and mechanism of
KDM3B and provide a novel target for the regulation of
MSCs and promoted MSC-mediated bone and tooth
regeneration.
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