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Pluripotency and self-renewal of embryonic stem cells (ESCs) are marked by core transcription regulators such as Oct4, Sox2, and
Nanog. Another important marker of pluripotency is the long noncoding RNA (lncRNA). Here, we ind that a novel long noncoding
RNA (lncRNA) Lx8-SINE B2 is a marker of pluripotency. LncRNA Lx8-SINE B2 is enriched in ESCs and downregulated during
ESC differentiation. By rapid amplification of cDNA ends, we identified the full-length sequence of lncRNA Lx8-SINE B2. We
further showed that transposable elements at upstream of lncRNA Lx8-SINE B2 could drive the expression of lncRNA Lx8-SINE
B2. Furthermore, ESC-specific expression of lncRNA Lx8-SINE B2 was driven by Oct4 and Sox2. In summary, we identified a
novel marker lncRNA of ESCs, which is driven by core pluripotency regulators.

1. Introduction

Most of the mammalian genome is composed of noncoding
sequences. Among them, transposable elements (TEs) con-
tribute to ~40% of the genome [1]. The majority of TEs are
silenced, however, a small percentage of TEs are expressed
during development and in diseases [2]. They play multiple
roles in these processes, including function as enhancers,
promoters, and long noncoding RNAs (lncRNAs) [3–6]. In
vertebrates, 70% lncRNAs are composed of TEs [7]. TEs also
confer tissue-specific expression on lncRNAs through the
recruitment of transcription factors [3, 4, 6]. TE-derived
lncRNAs actively participate in development. TE-derived
lncRNA ROR functions as a sponge to miRNA and also
works with hnRNPA1 to promote c-Myc expression during
reprogramming [8–10]. Endogenous retrovirus HERVH-
derived lncRNAs maintain pluripotency of human embry-
onic stem cells [3, 11–13]. Asymmetrical expression of
ERV1 and ERVK-derived lncRNA LincGET in two- to
four-cell mouse embryos biases cell fate toward inner cell
mass [14]. These findings all suggest an important role of
TE-derived lncRNA in development. Most of these findings
are based on human cell lines. We are still lack of under-
standing of TE-derived lncRNAs in mouse embryonic stem
cells (ESCs). In this study, we investigated the expression

and regulation of one representative lncRNA Lx8-SINE B2
in ESCs.

2. Methods

2.1. Cell Culture. Mouse ESCs (E14) were cultured on plates
coated with 0.2% gelatin (G1890, Sigma) in medium with
15% fetal bovine serum (FBS, SH30070.03, Hyclone),
2mML-glutamine (Gibco), 1% penicillin-streptomycin
(P1400, Solarbio), 0.1mM nonessential amino acids (Gibco),
0.1mM β-mercaptoethanol (M3148–250, Sigma), and
10ng/ml leukemia inhibitory factor (LIF; Z03077, Gen-
Script). Mouse embryonic fibroblasts (MEFs) and 3 -T3 cells
were maintained on plates (703001, NEST Biotechnology) in
Dulbecco’s modified Eagle’s medium (DMEM, Hyclone)
supplemented with 10% FBS, 2mML-glutamine, and 1%
penicillin-streptomycin. Cells were cultured at 37°C in CO2
incubator.

2i culturemedium contain 50%DMEM/F12 (BasalMedia),
50% Neurobasal media (Gibco), 1% N2 supplement, 1% B27
(Gibco), 0.1mM nonessential amino acids (Gibco), 2mML-
glutamine(Gibco), 1% penicillin-streptomycin (P1400, Solar-
bio), 0.1mM β-mercaptoethanol (M3148–250, Sigma), 1μM
MEK inhibitor PD0325901 (T6189, TargetMol), and 3μM
GSK3 inhibitor CHIR99021 (2520691, BioGems). 10ng/ml
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leukemia inhibitory factor (LIF; Z03077, GenScript) was added
for 2i/LIF condition.

2.2. RNA Extraction, Reverse Transcription, and Quantitative
PCR (qPCR). Total RNA was extracted with RNAiso Reagent
(B9109, Takara) as described [15] and treated with DNase I
to remove genomic DNA in DEPC water (B501005, Sangon
Biotech). The cDNA synthesis was carried out in RNase-
free tubes (401001, NEST Biotechnology) with the Transcrip-
tor First Strand cDNA Synthesis Kit (4897030001, Roche),
according to the manufacturer’s instructions. Quantitative
PCR (qPCR) reactions were performed using the Hieff qPCR
SYBR Green Master Mix (H97410, Yeasen) in a QuantStudio
6 Real-Time PCR System (Life Technologies). Primer
sequences for qPCR analysis are listed in Table 1.

2.3. Depletion of Gene Expression with shRNAs. For gene
knockdown, short hairpin RNAs (shRNAs) for luciferase
(control) or target genes were designed by an online tool
(http://sirna.wi.mit.edu/) and synthesized by GENEWIZ cor-
poration. The shRNA plasmids were constructed using the
pSuper-puro system and purified with a kit (1211-01, Bio-
miga). mESCs were transfected with DNA using Polyjet
(SL100688, SignaGen), according to the manufacturer’s pro-
tocol. Transfected ESCs were selected with 1μg/ml puromy-
cin from 24h after transfection. After four days of puromycin
selection, transfected cells were harvested. The sequences of
shRNAs are listed in Table 2.

2.4. 5′ and 3′ Rapid Amplification of cDNA Ends (RACE)
Analysis. For 3′ RACE, first-strand cDNA synthesis is initi-
ated at the poly(A) tail of total RNA using the anneal oli-
go(dT)-containing RT Adapter Primer (AP) to mRNA.
Gene-specific primer pF1 was designed based on the known
sequence. 3′ fragment was amplified by primer pF1 and
general primer gR1, the RACE PCR products were separated
on a 1.5% agarose gel.

For 5′ RACE, the first-strand cDNA was synthesized
from total RNA using a gene-specific primer (RT GSP1),
which was designed according to the 3′ known sequence. A
homopolymer tail was subsequently added to the 3′-end of
the cDNA using terminal deoxynucleotidyl transferase kit
(2230A, Takara), according to the manufacturer’s instruc-

tion. First-round PCR was performed based on poly(C) tail
designed dG adaptor primer to synthesize double-stranded
cDNA. Then, general primer gP1 and gene-specific primer
pR2 were used for second-round PCR to amplify the cDNA
5′ end sequence. The RACE PCR products were separated
on a 1.5% agarose gel and cloned into pEASY-T1 (TransGen
Biotech) for Sanger sequencing. The gene-specific RACE
primers used for mapping each end were from Sangon
Biotech and were listed in Table 3.

2.5. Dual-Luciferase Reporter Gene Assay. Mouse ESCs were
seeded at a density of 8 × 104 cells per well in a 24-well plate.
Luciferase assay was performed as previously described [16].
The total amount of 200ng of the various promoters of
lncRNA Lx8-SINE B2 or pGL4.23 empty vector was trans-
fected into each well of E14 ESC on a 24-well plate together
with 10ng of pCMV-Renilla. The medium was changed
12 h after transfection. After transfection of 36h, cells were
collected and lysed in 1x passive lysis buffer. The luciferase
activity was determined by Dual-Luciferase Reporter Assay

Table 1: Primer sequences for qPCR analysis.

Gene Forward Reverse

lncRNA Lx8-SINE B2 GCTGTTATGACTTGTTTCCTGGT CTCTTCCTTGCAGGCTTAGAAC

Oct4 GTGGAAAGCAACTCAGAGG GGTTCCACCTTCTCCAACT

Sox2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT

Nanog TTGCTTACAAGGGTCTGCTACT ACTGGTAGAAGAATCAGGGCT

Esrrb GCACCTGGGCTCTAGTTGC TACAGTCCTCGTAGCTCTTGC

Prdm14 CTCTTGATGCTTTTCGGATGACT GTGACAATTTGTACCAGGGCA

Lysmd3 ACGGTTTCCCTCCCAGGAAT CATCAAGTCTATCTCTCGATGCG

Adgrv1 CAGCCCTGAATCACTCTTCGT CCCATCCAGGTCCGAGTCTA

LINE1 GGACCAGAAAAGAAATTCCTCCCG CTCTTCTGGCTTTCATAGTCTCTGG

SINE B2 GAGTAAGAGCACCCGACTGC AGAAGAGGGAGTCAGATCTCGT

Table 2: Targeting sequences of shRNAs.

Gene shRNA target sequence

Oct4 shRNA GTGGAAAGCAACTCAGAGG

Sox2 shRNA GCGGAGTGGAAACTTTTGTCC

Nanog shRNA TTGCTTACAAGGGTCTGCTACT

Table 3: RACE primers.

RACE primer name Sequence

RT-adaptor primer
GCGAGCACAGAATTAATACGACTC

ACTATAGG(T)18VN

gR1 GCGAGCACAGAATTAATACGAC

pF1 ATACCTTCCTAAAACTAATGTGGACT

RT GSP1 TGAAGAACTTTTAGCACAGCAGC

dG-adaptor primer
GACTCGAGTCGACATCGAGGGGGG

GGGGGGGGGGG

gP1 GACTCGAGTCGACATCG

pR2 CAACTGTTCTAAACGCTTCTTAG
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Figure 1: Mapping the full-length sequence of lncRNA Lx8-SINE B2. (a) Schematic of the 3′-rapid amplification of cDNA ends (RACE) (left)
and 3′ RACE result for lncRNA Lx8-SINE B2 (right). (b) Schematic of the 5′ RACE and its result for lncRNA Lx8-SINE B2. (c) DNA
sequencing of RACE using a universal primer in pEASY-T1 vector. (d) Validation of lncRNA Lx8-SINE B2 transcript size by PCR from
cDNA. M, DNA marker.
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System (#E1910, Promega) according to the manufacturer’s
instructions.

2.6. Statistical Analysis. Data were analyzed with Student’s t
-test (two-tailed). Significant differences were defined as ns
for nonsignificant, ∗∗p < 0:01, and ∗∗∗p < 0:001.

3. Results

3.1. Mapping the Full-Length Sequence of lncRNA Lx8-SINE
B2. Through mining the previous publication [17], it was
shown that lincRNA-1282 was expressed in ESCs and its
depletion leads to downregulation of c-Myc [17], which is
an important reprogramming factor. Therefore, we set out
to perform RACE to identify the full-length of lincRNA-

1282 [17], which is a partial sequence of lncRNA Lx8-SINE
B2. To identify the full length of Lx8-SINE B2, we performed
3′ RACE and 5′ RACE with primers as designed
(Figures 1(a) and 1(b)). Our amplicons for both 5′ and 3′
RACE were visible as a single DNA band without multiple
or unspecific bands (Figures 1(a) and 1(b)). Next, we
sequenced the amplicons and identified the sequences of
lncRNA Lx8-SINE B2 (Figure 1(c)). With the 5′ and 3′ ends
of lncRNA Lx8-SINE B2 found, we designed primers to
amplify the full length of lncRNA Lx8-SINE B2 and subcloned
the lncRNA into TA cloning vector (Figure 1(d)). The lncRNA
Lx8-SINE B2 was revealed to be a 734bp lncRNA.

3.2. Expression Pattern of lncRNA Lx8-SINE B2.We searched
the sequences of lncRNA Lx8-SINE B2 against the mouse
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Figure 2: Genomic location and expression of lncRNA Lx8-SINE B2. (a) Schematic of the mouse lncRNA Lx8-SINE B2 locus on chromosome
13. lncRNA Lx8-SINE B2 is between Adgrv1 and Lysmd3. There are three exons and some retrotransposon fragments of LINE or SINE in
lncRNA Lx8-SINE B2. RT–qPCR primers were indicated below. (b) The expression level of lncRNA Lx8-SINE B2, Oct4 Sox2, and Esrrb in
mESCs in the presence or absence of LIF for 2-4 days, as measured by RT–qPCR and normalized to Gapdh levels. Biological-triplicate
data (n = 3 dishes) are presented as mean ± s:e:m. (c) qPCR analysis of the expression level of lncRNA Lx8-SINE B2 in mouse ESCs and
MEF cells. ∗∗∗p < 0:001 according to two-sided Student’s t-test (d) Expression analysis of lncRNA Lx8-SINE B2 in ESCs cultured under
serum/LIF, 2i/LIF or 2i condition. Biological-triplicate data (n = 3 extracts) are presented as mean ± s:e:m.
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genome (mm10) and discovered that lncRNA Lx8-SINE B2
contained 3 exons, which are located between Adgrv1 and
Lysmd3 gene (Figure 2(a)). Exon 1 of lncRNA Lx8-SINE B2
overlapped with LINE1 family Lx8 and its third exon over-
lapped with SINE B2 (Figure 2(a)); therefore, we named this
lncRNA as Lx8-SINE B2. We designed primers on the nonre-
peat region of exon 2 and 3 to detect the expression of
lncRNA Lx8-SINE B2. Interestingly, it is noticed that lncRNA
Lx8-SINE B2was downregulated during ESC differentiation,
similar to the pluripotency gene Oct4, Sox2, and Esrrb,
according to qPCR results (Figure 2(b)). We also found that
lncRNA Lx8-SINE B2 was also expressed in ESCs instead of
differentiated cells such as MEF (Figure 2(c)). Furthermore,
we demonstrated that the expression of lncRNA Lx8-SINE
B2was not affected by the alternation of ESC culture condi-
tion. Its expression was slightly upregulated in the presence
of 2i/LIF or 2i condition in contrast to the serum/LIF culture
condition (Figure 2(d)). These suggest lncRNA Lx8-SINE B2
as a marker of ESC.

3.3. Promoter Structure of lncRNA Lx8-SINE B2. After that,
we examined how the specific expression of lncRNA Lx8-
SINE B2 was achieved. The upstream 1kb promoter region
of lncRNA Lx8-SINE B2 contains ORR1D2 and SINE B1
(Figure 3(a)). To study how Lx8-SINE B2 is regulated in
ESCs, we cloned -623 bp to +327 bp of lncRNA Lx8-SINE
B2 gene into luciferase reporter (Figures 3(a) and 3(b)). We
also created various truncation versions of this region to
identify the core promoter of Lx8-SINE B2 (Figure 3(b)).
The region corresponding to ERV, origin-region repeat 1

type D2 (ORR1D2, -157 bp to +3 bp) carried the strongest
promoter activity in contrast to those of other truncations
(Figure 3(c)). The promoter activity of ORR1D2 was specific
to ESCs but inactivated in 3T3 fibroblasts (Figure 3(d)).
These results support that lncRNA Lx8-SINE B2 is driven
by ERV ORR1D2, implicating that TEs not only contribute
to the exons of lncRNAs but also the promoter of lncRNAs.

3.4. Transcriptional Regulation of lncRNA Lx8-SINE B2 by
Oct4 and Sox2. To identify which transcription factor
activates lncRNA Lx8-SINE B2, we depleted three core
pluripotency transcription factors (Oct4, Sox2, and Nanog)
(Figures 4(a)–4(c)). Depletion of Oct4 or Sox2, but not
Nanog, strongly suppressed lncRNA Lx8-SINE B2 expression
(Figures 4(a)–4(c)). We also examined the expression of
lncRNA Lx8-SINE B2 after the depletion of Oct4, Sox2, and
Nanog (Figures 4(a)–4(c)). However, depletion of either
Sox2 or Oct4, but not Nanog, affected the promoter activity
of ORR1D2 (Figures 4(d)–4(f)). Sox2 depletion imposed
stronger inhibition on ORR1D2 than Oct4 and Nanog
(Figures 4(d)–4(f)). Furthermore, we examined the binding
of Oct4, Sox2, and Nanog on the promoter of lncRNA Lx8-
SINE B2. Consistent with results from luciferase assay, only
Oct4 and Sox2 bound to the promoter according to our anal-
ysis of published ChIP-seq data (Figure 4(g)). These results
suggest that Sox2 and Oct4 directly bind to ORR1D2 to
activate Lx8-SINE B2 in ESCs (Figure 4(g)).

To exclude the possibility that Oct4 and Sox2 activate
neighboring genes of lncRNA Lx8-SINE B2 together with it,
we examined the expression of Lysmd3 and Adgrv1 during
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Figure 3: Dissection of lncRNA Lx8-SINE B2 promoter region. (a) Schematic of the positions of TEs on according to mouse mm10 genome
the promoter region of lncRNA Lx8-SINE B2. (b) Schematic of various length fragments of lncRNA Lx8-SINE B2 promoter constructs. (c)
Activities of various length fragments of lncRNA Lx8-SINE B2 promoter constructs were determined by luciferase reporter gene assays in
E14 ESCs. Biological-triplicate data (n = 3 dishes) are presented as mean ± s:e:m. (d) Luciferase assay analysis of core promoter activity of
lncRNA Lx8-SINE B2 in ESCs and 3T3 cells. Biological-triplicate data (n =3 extracts) are presented as mean± s.e.m.
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Figure 4: Continued.
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ESC differentiation. Different from lncRNA Lx8-SINE B2,
both Lysmd3 and Adgrv1 were unaffected by LIF withdrawal
(Figure 5(a)). Furthermore, the expression of Lysmd3 and
Adgrv1 were activated by depletion of Oct4 or Sox2, suggest-
ing they are regulated differently from Lx8-SINE B2
(Figures 5(b) and 5(c)). Moreover, the expression of LINE1
and SINE B2 were not affected by Oct4 or Sox2 depletion
(Figure 5(d)), confirming the specificity of Oct4 and Sox2
in activating the expression of lncRNA Lx8-SINE B2.

4. Discussion

In summary, we identified a novel pluripotency marker
lncRNA Lx8-SINE B2, whose expression is driven by the
binding of Oct4 and Sox2 on ORR1D2. Oct4 and Sox2 are
the core pluripotency regulators in ESCs [18, 19]. Oct4 and

Sox2 can drive the expression of lncRNAs in cancer cells
and ESCs [20–22]. The binding profiles of OCT4 are different
in human and mouse ESCs [23], which can be explained by
its binding differences on species-specific TEs [23]. Here,
we found that Oct4 and Sox2 targeted mouse TE ORR1D2
to drive ESC-specific lncRNA expression (Figure 4), further
supporting the important role of TEs in driving the expres-
sion of species-specific lncRNAs. There are many pluripo-
tency markers; however, we provide Lx8-SINE B2 as an
additional novel marker of pluripotency. It lies at the down-
stream of key pluripotency genes Oct4 and Sox2 (Figure 4). It
composes of TEs and is distinct from traditional markers of
pluripotency. In comparison to other ESC markers, Lx8-
SINE B2 is unique as an ORR1D2-driven pluripotency
marker, which demonstrates that transposable elements can
function as cell type-specific lncRNA and promoter, similarly
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depletion of core transcription factors Oct4 (a), Sox2 (b), and Nanog (c) in ESCs. The data are represented as mean ± s:e:m: from three
biological replicates. ns, non-significant; ∗∗p < 0:01; ∗∗∗p < 0:001 according to two-sided Student’s t-test. Biological-triplicate data (n = 3
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to protein-coding genes. Finally, its depletion is associated
with the downregulation of Myc in ESCs [17]; therefore,
Lx8-SINE B2 expression also reflects Myc expression status
of ESCs. Myc represses primitive endoderm differentiation
[24]. Myc also maintains ESC pluripotency and self-renewal
[25]. Therefore, we speculate that the depletion of lncRNA
Lx8-SINE B2 may cause a phenotype similar to that of Myc
downregulation.

Our study demonstrates that different types of TEs com-
bine to form lncRNA and drive lncRNA expression

(Figures 2 and 3), implicating TEs as important components
of lncRNA. TEs in lncRNAs work as an important RNA
domain [26, 27]. TEs within lncRNAs regulate the tissue-
specific expression of lncRNAs [4, 28]. In human, lncRNAs
containing HERVH are specifically expressed in human
ESCs [3, 4, 7]. TEs within lncRNAs also contribute to their
functions. For example, SINE B2 in antisense lncRNA of
Uchl1 interacts with Uchl1 mRNA and promotes the transla-
tion of Uchl1 through enhancing the association of mRNA
with polysome [29]. These studies demonstrate that TEs are
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Figure 5: Expression of neighboring genes of Lx8-SINE B2. (a) qPCR analysis of neighboring genes (Adgrv1 and Lysmd3) of lncRNA Lx8-
SINE B2 in ESCs cultured with or without LIF; (b, c) RT-qPCR analysis of lncRNA Lx8-SINE B2, Adgrv1, Lysmd3 and pluripotent genes
(Oct4 and Sox2) expression after depletion of Oct4 (b) or Sox2 (c) in E14 ESCs. The data are represented as mean ± s:e:m: from three
biological replicates. (d) Expression of LINE1 and SINE B2 after depletion of Oct4 or Sox2.
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critical to the expression and function of lncRNAs. Given
that lncRNA Lx8-SINE B2 is composed of TE Lx8 and SINE
B2, it will be interesting to investigate whether ORR1D2 drive
the expression of other lncRNAs and the function of Lx8 and
SINE B2 within lncRNAs in the future study.

5. Conclusion

In conclusion, we mapped the full-length sequence of
lncRNA Lx8-SINE B2 and found it as an ESC-specific
lncRNA. We also found that it was driven by ORR1D2 which
was bound by Sox2 and Oct4 to drive its transcription. These
findings support TEs as important compositions and pro-
moter of lncRNA.

Data Availability

Published ChIP data analyzed by Cistrome [30] in this study
are GSE54103 for Sox2 [31], GSE78073 for Oct4 [32], and
GSE56312 for Nanog [33].
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