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Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of Alzheimer’s disease (AD). Previous studies
suggested that the coculture of humanMSCs with AD in an in vitromodel reduced the expression of amyloid-beta 42 (Aβ42) in the
medium as well as the overexpression of amyloid-beta- (Aβ-) degrading enzymes such as neprilysin (NEP). We focused on the role
of primed MSCs (human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) exposed to an AD cell line via a coculture
system) in reducing the levels of Aβ and inhibiting cell death. We demonstrated that mouse groups treated with naïve MSCs
and primed MSCs showed significant reductions in cell death, ubiquitin conjugate levels, and Aβ levels, but the effects were
greater in primed MSCs. Also, mRNA sequencing data analysis indicated that high levels of TGF-β induced primed-MSCs.
Furthermore, treatment with TGF-β reduced Aβ expression in an AD transgenic mouse model. These results highlighted AD
environmental preconditioning is a promising strategy to reduce cell death and ubiquitin conjugate levels and maintain the
stemness of MSCs. Further, these data suggest that human WJ-MSCs exposed to an AD environment may represent a
promising and novel therapy for AD.

1. Introduction

Alzheimer’s disease (AD) is a widespread cause of dementia
and is an age-related [1, 2], progressive, and irreversible neu-
rodegenerative disease [3, 4] for which no disease-modifying
therapy exists [5, 6]. Most of the drugs being developed target
Aβ alone [7, 8]. The development of a multitarget drug, how-
ever, may be more effective given the multiple pathogenic
mechanisms involved in AD [9, 10].

Prior studies including those reported by our group sug-
gest that mesenchymal stem cells (MSCs) may be a potential

treatment for AD [11–16]. MSCs secrete proteins that inhibit
apoptosis and inflammation, modulate the immune response
in damaged tissues, and promote endogenous neurogenesis
and neuroprotection. Based on the specific mechanisms
induced and the improved therapeutic outcomes, MSCs
show considerable promise [17]. When used to treat AD,
MSCs expressed genes related to enhanced extracellular
transport and secretion [11–13, 15, 16], which indicates an
increase in paracrine activity. These genes are known to
exhibit neuroprotective and neurotrophic features such as
the inhibition of apoptosis, the regulation of cell proliferation,
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and the regulation of neurogenesis. Further, our previous
study demonstrated that MSCs exposed to cerebrospinal fluid
(CSF) of AD patients upregulated the genes related to AD
treatment while maintaining stemness [18]. Therefore, AD-
exposed MSCs enhanced the overall efficacy of MSCs in AD
therapy.

In this study, we investigated whether the therapeutic
potency of MSCs could be enhanced by exposing them to
an AD environment. Therefore, we generated AD-exposed
MSCs using a coculture of MSCs and the APP695-Swedish
mutant (K595N/M596L)-expressing H4 cell (H4SW cell)
line, which provided an AD environment characterized by
high levels of secreted toxic forms of Aβ, such as Aβ1–40
and Aβ1–42 [19, 20]. We then analyzed the therapeutic
effects of the MSCs following exposure to the AD environ-
ment. Furthermore, to identify the genes expressed by condi-
tioned MSCs, which were therapeutically effective in AD, we
performed mRNA sequencing analysis of both the naïve and
conditioned MSCs.

2. Materials and Methods

2.1. Wharton’s Jelly-Derived Mesenchymal Stem Cell Culture.
Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs)
were isolated according to the procedure described by Kwon
et al. [21]. The WJ-MSCs were cultured according to the
standard operating procedures (SOPs) of the Good
Manufacturing Practice facility at Samsung Medical Center.
Prior to coculturing with H4SW cells, the WJ-MSCs were
detached using a 0.25% trypsin-EDTA solution (Gibco-
Invitrogen).

2.2. H4 and H4SW Cell Line Culture. Human glioblastoma
H4 cells and APP695-Swedish mutant (K595N/M596L)-
expressing H4 cells (H4SW) were kindly provided by
Jung-Hyuck Ahn’s lab (Ewha Woman’s University School
of Medicine, Republic of Korea) and cultured according
to the procedure reported previously [19, 20]. H4 and
H4SW cells were cultured in Dulbecco’s modified Eagle’s
media (DMEM; Gibco/BRL) containing 10% fetal bovine
serum (FBS; Gibco/BRL), 100U/mL penicillin (Gibco/BRL),
100μg/mL streptomycin (Gibco/BRL), and 2mM L-
glutamine (Gibco/BRL) as described previously. The H4SW
cell cultures were maintained by adding 500μg/mL geneticin
(Gibco/BRL) to the growth media.

2.3. Preconditioning MSCs under an AD Environment.H4SW
cells were cultured and maintained on a 6-well plate compat-
ible with insert wells. Upon reaching 70% confluency, the
H4SW cells were cocultured with 1 × 105 WJ-MSCs on 6-
well transwell inserts (BD Falcon, USA) for 24 h in a
serum-free medium at 37°C with 5% CO2.

2.4. Flow-Cytometry Analysis for Validating Reconditioned
WJ-MSCs. After coculture, the preconditioned WJ-MSCs at
passage five were detached using a 0.25% trypsin-EDTA
solution and harvested in a 15mL conical tube. After centri-
fugation, the WJ-MSCs were washed and resuspended in
phosphate-buffered saline (PBS) with 2% FBS to block
nonspecific binding sites. Immunophenotypic analysis of

the preconditioned WJ-MSCs was performed according to
the MSC criteria of the International Society for Cell Therapy
(ISCT) [22] via flow cytometry to determine the expression
of the following markers: CD44, CD73, CD90, CD105,
CD14, CD11b, HLA-DR (MHC-II), CD34, CD45, and
CD19 (BD Biosciences, USA). At least 10,000 events were
acquired on a BD FACSVerse (BD Biosciences, NJ, USA),
and the results were analyzed with BD FACSuite software
version 10 (BD Biosciences, USA). The differentiation of
preconditioned WJ-MSCs was analyzed according to the
procedure outlined in a previous report [21].

2.5. H4SW Cell Coculture with Preconditioned WJ-MSCs. At
70% confluency, H4SW cells (in the lower chamber of the
Transwell unit) were cocultured with 1 × 105 preconditioned
WJ-MSCs seeded on 6-well transwell inserts (BD Falcon) for
24 h under serum-free conditions at 37°C with 5% CO2.
Naive WJ-MSCs were cocultured with H4SW cells as a
control group. After coculture for 24 h, the H4SW cells were
harvested and rapidly frozen for further analysis.

2.6. Intraventricular Injection of WJ-MSCs and TGF-β into
5XFAD Mice. A 12-month-old transgenic mouse model of
AD, 5xFAD (MMRC #04848), was used in this study. The
mice were purchased from the Jackson Laboratory (Bar
Harbor, ME, USA). Experimental animals were divided into
five groups: wild-type (WT), 5xFAD (sham), +naïve MSC
(naïve MSCs were injected into 5xFAD mice), +primed
MSCs (primed MSCs were injected into 5xFAD mice), and
+TGF-β (recombinant TGF-β proteins were injected into
5xFAD mice). Before injecting WJ-MSCs, all the mice were
anesthetized and maintained on 5% isoflurane with 2% iso-
flurane inhalation during the surgical procedure. After shav-
ing and sterilizing the surgical site with povidone-iodine, a
skin incision of approximately 1 cm in length was made.
Using a microdrill, a small burr hole was made at the follow-
ing coordinates (right lateral ventricle): A/P-0.4mm, M/L
+1.0mm, and D/V-2.3mm from the bregma. WJ-MSCs
(1 × 105 cells) suspended in 3μL of phenol-red MEM-alpha
or 3μL of TGF-β (10 ng/mL) were injected into the right
lateral ventricle at a rate of 1μL per min with a 15min delay
using a Hamilton syringe (Hamilton Company, NV, USA).
The needle was carefully removed after the injection was
completed, and the skin was sutured, followed by sterilization
of the area. All mice were euthanized one week after
administration.

2.7. Brain Tissue Preparation.One week after the injection of
WJ-MSCs, all mice were anesthetized with isoflurane,
followed by cardiac perfusion. The brain tissue from the mice
was harvested and divided in half along the longitudinal fis-
sure. The harvested brain tissues were frozen in liquid nitro-
gen and stored at -80°C for Western blots and enzyme-linked
immunosorbent assay (ELISA) analysis or fixed in 4% para-
formaldehyde for histological analysis.

2.8. Western Blots and ELISA. Tissue and cell extracts were
prepared according to previously published methods [23].
Briefly, ultrasonication (Branson Ultrasonics, Slough, UK)
was performed in a buffer containing 9.8M urea, 4% 3-((3-
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cholamidopropyl) dimethylammonio)-1-propanesulfonate
(CHAPS), 130mM dithiothreitol, 40mM tris-Cl, and 0.1%
sodium dodecyl sulfate (SDS). The protein concentrations
were measured using the Bradford assay (Bio-Rad Laborato-
ries, Inc., CA, USA). Protein extracts (20μg/lane) were
loaded onto SDS-polyacrylamide gels for electrophoresis
and then transferred to nitrocellulose membranes. NuPAGE
12% (Invitrogen, CA, USA) gels were used for the immuno-
blot analysis. The membranes were incubated with anti-
ubiquitin antibodies (Ub, 1 : 1,000; Santa Cruz, USA), anti-
MOAB (1 : 200; Novus Biologicals, CO, USA), anti-GFAP
(1 : 1,000; Abcam, Cambridge, UK), anti-TNF-α (1 : 5,000;
Enogene, Nanjing, China), and anti-β-actin (1 : 5,000;
Sigma-Aldrich Co., MO, USA) at 4°C overnight. Subse-
quently, the membranes were incubated with a secondary
antibody (goat anti-mouse IgG-HRP; Ab Frontier, USA) for
1 h at room temperature (RT). The blots were developed
using ECL solution (Advansta, USA), and the protein bands
were detected via exposure to X-ray film. Densitometric anal-
ysis was performed using ImageJ software (NIH, USA).

The ELISA tests were performed with an Aβ42 ELISA kit
(Wako, Cambridge, UK) and an SRGN ELISA kit (LifeSpan
BioSciences, Washington, USA) according to the manufac-
turers’ instructions.

2.9. Thioflavin-S Staining. Fixed brain tissues were embedded
in paraffin, and 4μm thick coronal sections were prepared.
To detect Aβ, thioflavin-S staining was performed according
to the manufacturer’s instructions. All slides were deparaf-
finized by serial hydration using a graded ethanol series,
followed by treatment of the slides with 1% filtered
thioflavin-S (Sigma-Aldrich) and washing. The mounted
slides were stored at 4°C before fluorescence microscopy
imaging (Nikon, Shinagawa, Tokyo, Japan).

2.10. RNA Isolation. Total RNA was isolated using TRIzol
reagent (Invitrogen). The RNA quality was assessed by an
Agilent 2100 bioanalyzer using the RNA 6000 Nano Chip
(Agilent Technologies, Amstelveen, The Netherlands), and
RNA quantification was performed using an ND-2000
Spectrophotometer (Thermo Inc., DE, USA).

2.11. Library Preparation and QuantSeq 3′ mRNA
Sequencing. Libraries were constructed from the control
and test RNAs using a QuantSeq 3′ mRNA-Seq Library Prep
Kit (Lexogen, Inc., Austria) according to the manufacturer’s
instructions. In brief, 500 ng of each total RNA sample was
prepared and an oligo-dT primer containing an Illumina-
compatible sequence at its 5′ end was hybridized to the
RNA, and reverse transcription was performed. After degra-
dation of the RNA template, the second-strand synthesis was
initiated by a random primer containing an Illumina-
compatible linker sequence at its 5′ end. The double-
stranded library was purified by magnetic beads to remove
all reaction components. The library was amplified to add
the complete adapter sequences required for cluster genera-
tion. The finished library was purified from the PCR compo-
nents. High-throughput sequencing was performed via

single-end 75 sequencing using NextSeq 500 (Illumina, Inc.,
USA).

2.12. QuantSeq 3′ mRNA Sequencing Data Analysis. The
QuantSeq 3′ mRNA-Seq reads were aligned using Bowtie2
[24]. Bowtie2 indices were either generated from the genome
assembly sequence or the representative transcript sequences
for aligning with the genome and transcriptome. The aligned
file was used to assemble the transcripts, estimate their abun-
dance, and detect the differential expression of genes. Differ-
entially expressed genes were determined based on unique
counts and multiple alignments using Bedtools [25]. The
RT (read count) data were processed based on the quantile-
quantile normalization method using EdgeR within R soft-
ware [26] using Bioconductor [27]. Gene classification was
based on searches conducted in the DAVID (http://david
.abcc.ncifcrf.gov/) and Medline databases (http://www.ncbi
.nlm.nih.gov/).

2.13. Real-Time Polymerase Chain Reaction. Real-time poly-
merase chain reaction (PCR) was performed using the Ste-
pONEPlus system (Applied Biosystems, CA, USA) with 2x
power SYBR green master mix (AB, USA) under the follow-
ing three-stage program parameters: 95°C for 10min, 95°C
for 15 sec, and 59°C for 30 sec (40 cycles). Primers for ALU
(human) and TGF-β (human) were purchased from Bioneer
Corporation (Daejeon, Korea). All PCR reactions were per-
formed in triplicate. The comparative quantification of each
target gene was performed based on the cycle threshold (CT
), which was normalized to human GAPDH using the ΔΔCT
method proposed by Livak and Schmittgen.

2.14. Statistical Analyses. All values are presented as the
mean ± standard error of the mean (S.E.M). One-way
ANOVA was used to assess significance, and a p value of
≤0.05 was considered statistically significant. IBM SPSS soft-
ware version 21.0 was used for all analyses.

3. Results

3.1. Primed MSCs Show Antiapoptotic Effects in the H4
Swedish Cell Line under Serum Starvation. To evaluate the
therapeutic efficacy of primed MSCs, H4 Swedish cells
(H4SWs) were cocultured with primed MSCs for 24 h
(Figure 1(a)). Apoptosis was observed when the H4SW cells
were in the serum-starvation state for 24 h (H4SW only).
However, when naïve MSCs or primed MSCs were cocultured
with H4SW cells, cell death was inhibited (Figure 2(a)). Fol-
lowing coculture, the number of viable cells was counted.
Compared to the H4SW cell-only group, more viable cells
were observed in the +naïve MSC and +primed MSC groups
(Figure 2(b)). The antiapoptotic effects in the H4SW cell
model were the highest in the +primed MSC group. Next,
Western blot analysis was performed to confirm the antiapop-
totic effect of naïve and primed MSCs. The expression of cell
death markers, cleaved PARP, and cleaved caspase-3 was
decreased when H4SW cells were cocultured with naïve MSCs
and primed MSCs (Figures 2(c) and 2(d)). Based on the den-
sitometric analysis, the levels of cleaved PARP and caspase-3
were significantly decreased in the +naïve MSC (2.2- and
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1.4-fold changes, respectively) and +primedMSC groups (2.7-
and 1.8-fold changes, respectively). From these results, we
confirmed that primedMSCs exhibited stronger antiapoptotic
effects on H4SW AD cells than naïve MSCs in the in vitro
model.

3.2. Primed MSCs Show In Vitro Therapeutic Effects against
Alzheimer’s Disease. Next, we performedWestern blot analy-
sis to confirm the therapeutic efficacy of primedMSCs on AD
pathology, especially Aβ and ubiquitin conjugates. Aβ is the
most well-known pathological hallmark of AD. Ubiquitin
conjugates are negatively correlated with 26S proteasome
activity, which means that impaired 26S proteasome activity
results in the accumulation of Aβ, hyperphosphorylated tau,
and ubiquitin conjugates in the AD brain. Therefore, along
with Aβ, the level of ubiquitin conjugates was measured in
this study as another hallmark of AD.

Primed MSCs were cocultured with H4SWs in vitro for
24 h to evaluate the therapeutic efficacy against AD symp-
toms (Figure 3). Following coculture, the level of Aβ in the
conditioned media was measured by ELISA (Figure 3(a)).
Secreted Aβ was significantly reduced under the +primed
MSC condition compared to the control H4SW cells (1.6-
fold change). However, naïve MSCs did not show a statisti-
cally significant anti-Aβ effect. Next, the cumulative changes
in the levels of ubiquitin conjugates were analyzed by
Western blots (Figure 3(b)) and the intensity of the bands
was quantified (Figure 3(c)). In the AD in vitro model
(H4SW cells), more ubiquitin conjugates accumulated in
the cytosol than in the normal cell line (H4). However, the
level of ubiquitin conjugates was significantly attenuated in
both +naïve MSCs (1.2-fold change) and +primed MSCs
(1.4-fold change). In particular, primed MSCs showed
enhanced therapeutic effects by attenuating ubiquitin conju-
gate accumulation. This demonstrated that primed MSCs
successfully reduced the level of Aβ and ubiquitin conjugates
in the AD in vitro model and that this effect was better than
that of naïve MSCs.

In addition, the differences in gene expression (APPSW,
BACE1, and IGFBP3) in H4 and H4SW cells cocultured with
naïve MSCs or primed MSCs were analyzed. The analysis
revealed that the dysregulated genes in the H4SW AD
in vitro model were altered toward normal conditions (H4
cells) after coculture with naïve MSCs and primed MSCs.
Between the two MSCs, primed MSCs showed better alter-
ation (Supplementary Figure 1).

3.3. Evaluation of Therapeutic Efficacy of Primed MSCs in
5xFAD Mice. To evaluate the efficacy of primed MSCs in
AD, we performed an in vivo experiment using a 5xFAD
AD transgenic mouse. The experimental animals (12 months
old) were divided into four groups: wild-type control (WT),
transgenic control (sham), naïve-MSC, and primed MSC.
We injected 1 × 105 WJ-MSCs into the right lateral ventricle.
One week after injection, the mice were euthanized, and
brain tissues were harvested. First, the antiapoptotic effect
of primed MSCs was assessed by cleaved caspase-3 Western
blot analysis (Figure 4(a)). When compared to the WT mice,
the 5xFAD mice showed increases in cleaved caspase-3, indi-
cating neuronal death in the brain, whereas both the naïve
MSCs and primed MSCs significantly reduced cleaved
caspase-3 levels in the brain. Next, Aβ accumulation in the
brain was measured by Western blots and thioflavin-S stain-
ing (Figure 4(b)). Compared to the WT control, the deposi-
tion of Aβ in the brain was observed in 5xFAD mice. The
groups injected with naïve MSCs and primed MSCs showed
decreases in Aβ accumulation. Primed MSCs, in particular,
attenuated Aβ accumulation more effectively than naïve
MSCs, which was confirmed by thioflavin-S staining.
Thioflavin-S staining (Figure 4(c)) revealed extensive Aβ
(green) deposits in the cortex and hippocampal regions of
the 5xFAD transgenic mouse control group (sham). Strik-
ingly, the amount of Aβ in the cortex and hippocampus
was reduced in the groups injected with naïve and primed
MSCs, and the primed MSC group showed better therapeutic
efficacy.

Naïve MSC

+ Co-culture

(a)

(b)

Pre-conditioning
for 24 hrs

Primed MSC

Therapeutic
efficacy

AD in vitro AD in vitro

H4SW
(AD in vitro model)

Figure 1: The concept of primed MSCs. (a) The procedure for preconditioning WJ-MSCs with H4SW cells to make primed MSCs. (b) After
preconditioning, the therapeutic efficacy of primed MSC was evaluated in vitro and in vivo.
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Then, we quantified the number of naïve MSCs or
primed MSCs in the 5xFAD brains via real-time quantitative
PCR analysis using a human-specific ALU primer
(Figure 4(e)). The absolute number of MSCs was determined
based on the standard curve (linear regression R2 = 0:992,
Figure 4(d)). Approximately 2,000 remaining cells were
found in the mice injected with naïve MSCs, whereas
increased numbers of primed MSCs were detected (2.4-fold
change). Based on these results, the primed MSCs showed
both enhanced therapeutic effects and increased cell survival
in vivo.

3.4. Primed MSCs Differ from Naïve MSCs in mRNA
Expression. An RNA microarray was performed to identify
the changes in mRNA expression in the primed MSCs
(Figure 5), and a scatterplot was derived from the raw data
(Figure 5(a)). In Figure 5(a), the upregulated genes in the
primed MSCs were compared to the naïve MSCs and are

shown in red and the downregulated genes are shown in blue.
The Euclidean distance clustering of the significant genes
analyzed by MeV software is presented as log-transformed
data in Figure 5(b). The 38 upregulated genes were clustered
as upregulated. Among these genes, we screened TGF-β,
whose expression was increased over 3.0-fold in primed
MSCs compared to the levels in naïve MSCs. Furthermore,
the upregulation of TGF-β expression in primed MSC was
confirmed via quantitative real-time PCR. The results
showed that the primed MSCs expressed TGF-β at levels
3.2-fold higher than those in naïve MSCs (Figure 5(c)).

These results demonstrated that TGF-β, which is highly
secreted by primed MSC, could be a key molecule for thera-
peutic efficacy on AD.

3.5. Therapeutic Efficacy of TGF-β in 5xFAD Mice. To deter-
mine the role of TGF-β, especially in antiapoptosis and anti-
Aβ, recombinant protein was injected into the lateral
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Figure 2: Antiapoptotic effect of primed MSCs. (a) Images of serum-starved H4SW cells cocultured with naïve MSCs or primed MSCs for
24 h. Scale bar: 40 μm. (b) The number of viable cells in different experimental groups was counted by the trypan blue staining method.
(c) Western blot analysis of cell death markers, cleaved PARP, and cleaved caspase-3. (d) The densitometry results are presented as fold
change compared to H4SW cells. The data were normalized to β-actin expression. The data are presented as the mean ± S:E:M. Three
samples per experimental group were tested in each assay. ∗p < 0:05.
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ventricle of 5xFAD mice followed by euthanasia one-week
later (Figure 6). Western blot analysis revealed that cleaved
caspase-3 was increased in the 5xFAD mice compared to
the WT controls but was significantly decreased in the
TGF-β group (Figure 6(a)). Next, the anti-Aβ effect of
TGF-β was measured by Aβ Western blot analysis and
thioflavin-S staining (Figures 6(b) and 6(c)). The deposition
of Aβ in 5xFAD mice was reduced following treatment with
TGF-β (Figure 6(b)). However, this observation was not
replicated, and no statistical significance was observed in
the histological analysis of thioflavin-S staining (Figure 6(c)).

3.6. SRGN Secretion by H4SW Cells: A Potential
Preconditioning Factor Inducing AD. Next, which molecule
caused primed MSCs to secrete TGF-β was investigated. To
identify the potential candidates responsible for priming the
MSCs, the gene expression profiles of H4 and H4SW cells
were analyzed (Figure 7). The red dots in the figure denote
increased mRNA expression of the H4SW cells compared
to the H4 cells, and the green dots indicate decreased expres-
sion (Figure 7(a)). A total of six genes highly upregulated in
the H4SW cells were selected, and clustering using the
Euclidean distance measurements of significant genes was
conducted (Figure 7(b)). Next, the amount of secreted sergly-
cin (SGRN) proteins was measured in the conditionedmedia.
In the H4SW cells, the level of SGRN protein was signifi-
cantly elevated compared to the H4 cells, suggesting that
the SGRN protein may represent the AD microenvironment
and potentially act as the main inducer of primed MSCs.

3.7. SGRN Is the Main Effector of Primed MSCs. To confirm
whether SGRN was the main inducer of primed MSCs, vari-
ous concentrations of SGRN protein were used to treat naïve
MSCs (Figure 8). After the treatment of the naïve MSCs with
SGRN for 24 h, the TGF-βmRNA expression in naïve MSCs
was measured via quantitative real-time PCR analysis. Signif-

icant increases in TGF-β mRNA expression were observed,
except at 10 ng/mL (Figure 8(a)). The peak was observed at
2mg/mL SGRN treatment. Next, the therapeutic potential
of SGRN-treated MSCs (SGRN MSCs) was briefly assessed
(Figure 8(b)). H4SW cells were cocultured with naïve MSCs
or SRGN MSCs for 24h, and then, the CCK assay was con-
ducted to confirm the antiapoptotic effect of naïve and SRGN
MSCs on H4SW cells. Cell death was significantly inhibited
when H4SW cells were cocultured with naïve MSCs and
SGRN MSCs. This suggests that SGRN secreted by H4SW
cells or the AD microenvironment is an inducer of primed
MSCs.

4. Discussion

Recent advances have demonstrated the promising therapeu-
tic role of MSCs in AD [12, 17]. Because AD remains a major
cause of morbidity and mortality, significant effort has been
directed toward Aβ removal via stem cell transplantation
[13, 28]. The therapeutic properties of MSCs are largely
related to their antiapoptotic and anti-inflammatory abilities,
which have been confirmed both in vivo and in vitro [13, 29,
30]. However, the low survival rates of MSCs in vivo are a
challenge and the benefits of MSCs are mediated by unde-
fined mechanisms [31–33].

Various modifications of MSCs have been attempted to
improve their survival rates and therapeutic efficacy [31, 32,
34, 35]. Attempts to improve stem cell survival, metabolism,
or migration ability have focused on genetic modifications to
knock-out or knock-in specific genes [36–38]. However, the
clinical application of genetically modified MSCs is associ-
ated with the risk of unexpected genetic mutations resulting
in tumor formation [39]. In another approach, biocompati-
ble scaffolds as an alternative to encapsulated MSCs have
been developed to improve the survival and engraftment
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Figure 3: Therapeutic effect on Alzheimer’s disease in vitro. (a) Secreted amyloid-beta levels in the conditioned media were measured by
ELISA. ∗p < 0:05. (b) The degradation of ubiquitin (Ub) conjugates in H4SW cells with cocultured MSCs was measured by Western blots.
The percentage of Ub conjugates was calculated as a percentage of that in the H4SW cells. (c) Changes in mRNA expression were
evaluated. The data are presented as the mean ± S:E:M. Three samples per experimental group were tested in each assay. ∗p < 0:05.
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Figure 4: The therapeutic efficacy of primed MSCs in vivo. (a) The level of apoptosis was measured after the injection of naïve and primed
MSCs into the lateral ventricle of mouse brains and expressed as a percentage of the WT controls. (b) Secreted amyloid-beta levels were
measured by Western blots and expressed as a percentage of the WT controls. (c) The deposition of amyloid-beta in the cortex and
hippocampus was visualized by thioflavin-S staining, and the intensity was measured and plotted as a histogram. Scale bar: 100μm. (d)
The standard curve was fitted to the linear regression for real-time quantitative PCR (qPCR) analysis. (e) The absolute number of cells in
the brains of mice in the naïve MSC and primed MSC groups was calculated. The data are presented as the mean ± S:E:M. N = 3 per
group. ∗p < 0:05.
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rates [40]. This method facilitated clinical application but did
not improve the efficacy of MSCs.

In recent years, preconditioning methods that attempted
to improve the efficacy of MSCs have also been in the spot-
light [41–43]. Preconditioning aims to promote cell prolifer-
ation [43], improve migratory ability [43], and enhance
protein secretion [44]. Unlike genetic modifications, precon-
ditioning can be achieved by exposing MSCs to specific
microenvironments. Compared with genetic modifications,
preconditioning enhanced therapeutic efficacy while main-
taining the genotype of the cells [45]. A number of

0approaches have been proposed to make preconditioned
MSCs. Preconditioning by hypoxia [46], inflammatory stim-
uli [42, 45], or other factors [42] are strategies designed to
enhance the survival and effectiveness of MSC posttransplan-
tation. In this study, we preconditioned MSCs using Aβ, the
most important hallmark of Alzheimer’s disease, and used
H4SW cells for preconditioning through endogenous Aβ.

H4SW cells are a stable cell line whereby the amyloid pre-
cursor protein (APP) Swedish mutation was introduced into
a human glioblastoma cell line. APP is an integral membrane
protein of neuronal cells involved in synaptic formation,
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sham, and TGF-β. (b) Secreted amyloid-beta levels in the brain were measured. (c) Thioflavin-S staining was performed, and
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synaptic plasticity, and ion export. APP, expressed in cell
membranes, is usually cleaved by α-secretase. However,
mutations in APP protein or PSEN1/PSEN2 increase the
change for APP to be cleaved by β- and γ-secretase, resulting
in high levels of Aβ production in the brain. The Aβ pro-
duced is considered the causative substance of Alzheimer’s
disease, as it forms oligomer aggregates and Aβ plaques,
resulting in neuronal toxicity and ultimately, the death of
neuronal cells. APP Swedish, which is adjacent to the β-
secretase site in APP, is one of the well-known genetic muta-
tions in familial Alzheimer’s disease, resulting in increased
total Aβ production [47–49]. Therefore, the research model

for AD with an APP Swedish mutation is now widely used
[50–53], and the H4SW cell line is called the AD in vitro
model [20]. Moreover, Aβ accumulated in the brain of AD
patients activates glial cells, which are known to eliminate
Aβ and have neuroprotective effects [54–57]. MSCs do not
remove Aβ itself when exposed to AD but secrete proteins
that can stimulate neurons or glial cells through paracrine
action [13]. Therefore, we propose that the H4SW cell line
was suitable for this study because the therapeutic efficacy
of MSCs can be evaluated by measuring the reduction in
Aβ deposits by stimulated H4SW cells. In addition, the depo-
sition of ubiquitin conjugates, an indirect marker for
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ubiquitin proteasome activity which is closely related to
the amyloid-beta clearance mechanism, was also measured
[15, 58].

When H4SW cells were cocultured with primed MSCs,
decreases in the level of Aβ and ubiquitin conjugates were
observed in the H4SW cells (Figures 2 and 3). In addition,
when primedMSCs were administered directly into the brain
of 5xFAD mice, an AD in vivo model, primed MSCs showed
the therapeutic effects of suppressing neuronal death and
promoting Aβ clearance (Figure 4). Messenger RNA
sequencing confirmed that SGRN secreted by H4SW cells
promoted TGF-β secretion by MSCs (Figures 5 and 7).
TGF-β protein had the same anticell death and anti-Aβ
effects as primed MSCs, and SRGN-treated MSCs showed
anticell death effects (Figures 6 and 8). Moreover, both
TGF-β protein and primed MSCs showed an anti-
inflammation effect resulting in inducing a decrease in easing
the level of TNF-α and GFAP as a common marker for neu-
roinflammation in 5xFAD (Supplementary Figure 4). It is
known that the secretion of SRGN is increased when an
inflammatory reaction occurs [59]. Heparin sulfate
proteoglycan, which contains SRGN, was responsible for
promoting the fibrillization of Aβ and tau proteins [60].
Interestingly, it was also reported that SRGN gene
expression and protein expression were significantly
increased in AD patients compared to normal controls [61].
Thus, SRGN may be thought of as a possible biomarker for
AD, suggesting that the preconditioning of SRGN in MSCs
may be possible to generate enhance MSC for AD
treatment. Additionally, TGF-β is highly expressed in
primed MSCs or SRGN-treated MSCs, the signaling
pathway associated with TGF-β is impaired in AD [62],
and TGF-β itself showed neuroprotective effects [63, 64].
Thus, the prior findings that SRGN and TGF-β are related
to neuroinflammation in the AD patients’ brain have been
confirmed once aging through this study. Therefore, we
concluded that TGF-β, highly secreted by primed MSCs,
can have therapeutic efficacy in AD.

A particularly noteworthy finding is that when MSCs
were exposed to an AD microenvironment, SRGN secreted
locally in the Alzheimer’s brain was recognized by the MSCs,
which were induced to increase the expression of TGF-β,
promoting therapeutic efficacy. As far as we know, this is
the first study to generate preconditioned MSC using a possi-
ble biomarker for the target disease. Like the concept of vac-
cination, we can make MSCs in a ready-to-fight state,
promoting the secretion of effective proteins by exposing
them to the target disease microenvironment in advance.

Our study had several limitations. First of all, the exact
mechanism of action of SGRN, MSC, and TGF-β was not
elucidated. Second, the recovery of cognition in the AD
in vivo model was not studied. After the injection of primed
MSCs, TGF-β, or SRGN MSCs, a long-term follow-up must
be observed. Finally, the optimization of signaling factors
and their combinations used in MSC preconditioning
requires further investigation. Studies based on precondi-
tionedMSCs should be conducted to enhance the therapeutic
capacity of MSCs and expand the platform developed in this
study.

5. Conclusions

In summary, we report that AD environmental precondition-
ing is a promising strategy to reduce cell death and ubiquitin
levels while maintaining the stemness and characteristics of
MSCs. Further, these data suggest that human WJ-MSCs
exposed to an AD cell model in vitromay represent a promis-
ing and novel therapy for AD.
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