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Mesenchymal stem cells (MSCs) have already demonstrated definitive evidence of their clinical benefits in acute graft-versus-host
disease (aGvHD) and other inflammatory diseases. However, the comprehensive mechanism of MSCs’ immunomodulation
properties has not been elucidated. To reveal their potential immunosuppressive molecules, we used RNA sequencing to
analyze gene expression in different tissue-derived MSCs, including human bone marrow, umbilical cord, amniotic membrane,
and placenta, and found that chitinase-3-like protein 1 (Chi3l1) was highly expressed in human umbilical cord mesenchymal
stem cells (hUC-MSCs). We found that hUC-MSCs treated with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha
(TNF-α) exhibited increased expression of Chi3l1 and concurrently repressed T-helper 17 cell (Th17) differentiation through
inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, Chi3l1 knockdown hUC-
MSCs exhibited impaired therapeutic efficacy in aGvHD mice with an increased inflammatory response by promoting Th17
cell differentiation, including an increase in IL-17A in the spleen, intestine, and serum. Collectively, these results reveal a new
immunosuppressive molecule, Chi3l1, in hUC-MSCs in the treatment of aGvHD that regulates Th17 differentiation and
inhibits STAT3 activation. These novel insights into the mechanisms of hUC-MSC immunoregulation may lead to the
consistent production of hUC-MSCs with strong immunosuppressive functions and thus improved clinical utility.

1. Background

Mesenchymal stem cells (MSCs) are a promising treatment for
regulating inflammation and inflammatory disease due to their
strong immunoregulatory capacity [1]. Previous studies have
identified various immunosuppressive molecules of MSCs,
including indoleamine 2,3-dioxygenase (IDO) [2, 3], one of
the most important candidates, along with transforming
growth factor–b1 (TGFβ) [4, 5], hepatocyte growth factor
(HGF) [6], prostaglandin E2 (PGE2) [6, 7], soluble human leu-
kocyte antigen G (HLA-G) [8], tumor necrosis factor-alpha
stimulated gene 6 protein (TSG-6) [7], and exosomes [9, 10].
This knowledge regarding MSC immunobiology may explain
why there are many clinical trials investigating the application

of MSCs in acute graft-versus-host disease (aGvHD) and other
inflammatory disease treatments [11, 12].

Continued advances in fundamental immunology,
genetic engineering, gene editing, and synthetic biology have
exponentially expanded the opportunities to enhance the
accuracy of MSCs therapies, increase their immunomodula-
tion potency and safety, and broaden their potential for the
treatment of autoimmune diseases. For example, several
studies have already demonstrated that hypoxia [13, 14],
interferon-gamma (IFN-γ), and tumor necrosis factor-
alpha (TNF-α) pretreatment or overexpression of immuno-
suppressive molecules improve MSCs’ immunosuppressive
capacity [15, 16]. Interestingly, a previous study also
indicated that serum from aGvHD patients or interferon-
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gamma pretreatment MSCs significantly improves immuno-
suppressive activity in aGvHD [17]. There is consensus that
the immunosuppressive activity does not solely rely on
MSCs but may also involve the surrounding inflammatory
microenvironment. In summary, the exact molecular mech-
anisms by which MSCs affect immune cells remain unclear.
Therefore, the comprehensive immunoregulatory effects of
MSCs still need to be explored.

To better understand the mechanisms underlying MSC
immunomodulation capacity and to improve their clinical effi-
cacy, we performed RNA transcriptomic profiling on MSCs
isolated from human bone marrow, umbilical cord, amniotic
membrane, and placenta tissue using high-throughput sequenc-
ing. Comparative analysis of the gene composition of all four
MSC types revealed that human umbilical cord-derived MSCs
(hUC-MSCs) exhibited abundant expression of chitinase-3-
like protein 1 (Chil3l1), a secreted protein that has been impli-
cated in several immune cell functions and inflammatory
diseases [18, 19]. Gene set enrichment analysis indicated that
Chi3l1 may be involved in aGvHD pathological processes and
T cell proliferation and differentiation, but this observation
has not been confirmed. In this study, we demonstrated that
hUC-MSCs secreted Chi3l1, inhibiting T cell proliferation, in
line with recent study findings [20]. In addition, we revealed
that hUC-MSC-secreted Chi3l1 plays an important role in
restraining Th17 cell differentiation by suppressing STAT3 acti-
vation. Importantly, an in vivo study demonstrated that Chi3l1
knockdown hUC-MSCs exhibited impaired the therapeutic
activity of aGvHD, including increased clinical scores, reduced
survival rate, and exacerbated tissue injury. In addition, IL-
17A levels were increased in Chi3l1 knockdown hUC-MSC
infusion mouse serum, spleen, and intestine. Taken together,
these findings revealed that Chi3l1 is a novel immunosuppres-
sive molecule of hUC-MSCs that regulates Th17 differentiation
and is important for attenuating aGvHD symptoms.

2. Methods

2.1. Cell Preparation. hUC-MSCs were isolated from human
umbilical cord as previously described [21]. Human umbilical
cord (hUC) specimens were obtained from normal full-term
pregnancies according to the regulations of the Research
Ethics Committee of Jishuitan Hospital (Beijing, China).
Residual blood, veins, and arterial vasculature were removed
under sterile conditions. Umbilical cord tissue was shredded
into small pieces and digested in 0.1% type II collagenase at
37°C for 45min. The digested tissue was transferred into α-
MEM supplemented with 10% FBS, 2mM glutamine, 100U/
ml penicillin, and 100mg/ml streptomycin. Fresh culture
mediumwas added to the cell every 2 to 3 days until the adher-
ent cells reached a confluence of approximately 80% at which
point they were collected using 0.125% trypsin for subsequent
expansion and characterization.

2.2. hUC-MSC Differentiation Assay. Adipogenic and osteo-
genic differentiation capacity was assessed as previously
described [22]. To determine adipogenic differentiation capac-
ity, cells (8 × 104) were cultured with α-MEM containing 10%
FBS, 10-3mM dexamethasone, 0.5mM isobutyl methylxan-

thine, 0.2mM indomethacin, and 10μg/ml insulin (Sigma)
for 2 weeks. An Oil red O (Sigma) staining assay was used to
identify the production of adipocytes.

Osteogenic differentiation capacity was assessed by incu-
bating cells (7 × 103) with α-MEM containing 10% FBS with
10-7mM dexamethasone, 0.5mM ascorbic acid, and 10mM
β-glycerol phosphate (Sigma) for 3 weeks. Osteoblasts were
identified by the presence of calcium deposits using 5%
Alizarin red S (v/v) (Sigma).

2.3. Gene Knockdown Using shRNA. Chi3l1 expression was
knocked down in human MSCs using Chi3l1-targeting shRNA
carried on a lentiviral vector (GV493/hU6-MCS-CBh-gcGFP-
IRES-puromycin) (GeneChem, Shanghai). The shRNA target
sequence for Chi3l1 was CHI3L1-RNAi (75488-1): 5′-ACCC
ACATCATCTACAGCTTT-3′; CHI3L1-RNAi (75489-1): 5′-
CAGCAGCTATGACATTGCCAA-3′; and CHI3L1-RNAi
(75490-1): 5′-AGGTGCAGTACCTGAAGGACA-3′. hUC-
MSCs were incubated with lentivirus and HitransG P (Gene
Chem, Shanghai) for 8h. Puromycin (1mM) was added to
the culture medium to select transduced cells.

2.4. Flow Cytometry. Cultured cell immunophenotypic anal-
ysis was performed by flow cytometry. Cells were stained
with fluorophore-conjugated monoclonal antibodies accord-
ing to established protocols. Briefly, PE-anti-human CD73
monoclonal antibody (Invitrogen, 12-0739-42), PE-anti-
human CD105 monoclonal antibody (Invitrogen, 12-1057-
42), PE-anti-human CD90 monoclonal antibody (Invitro-
gen, 12-0909-42), APC-anti-human CD34 monoclonal anti-
body (Invitrogen, 17-0349-42), APC-anti-human CD45
monoclonal antibody (Invitrogen, 17-0459-42), and APC-
anti-human HLA-DR monoclonal antibody (Invitrogen,
12-9952-41) were used.

For intracellular protein detection, cells were stained
with fluorophore-conjugated monoclonal antibodies accord-
ing to established protocols. Briefly, Th1 or Th17 cells were
stained with anti-mouse FITC-CD3 (Tonbo Biosciences,
35-0032) or anti-mouse PE-CD4 (Invitrogen, 11-0041-82)
for 30min at room temperature. For intercellular cytokine
staining, the cells were fixed in 100μl of Fixation Buffer
(Tonbo Biosciences, TNB-8222), vortexed at room tempera-
ture for 30 minutes, and then washed with Flow Staining
Buffer. The cells were resuspended in permeabilization
buffer (Tonbo Biosciences, TNB-1213) in the dark at room
temperature for 5 minutes. Subsequently, the cells were
stained with anti-mouse APC-IL17A (eBioscience, 17-
7177-81) or anti-mouse APC-IFN-gamma (Tonbo Biosci-
ences, 20-7311) for 30min at 4°C. Finally, the cells were
washed in Flow Staining Buffer. Cells were analyzed by flow
cytometry using a FACSCalibur system (Becton Dickinson),
and data were analyzed using FlowJo software.

2.5. IFN-γ and TNF-α Treatment hUC-MSCs. hUC-MSCs
were seeded into 6-well plates (1 × 105/well), and the
medium was supplemented with combinations of the
recombinant cytokines IFN-γ (PeproTech, AF-315-05) and
TNF-α (PeproTech, AF-315-01A) (20 ng/ml). Cells were col-
lected 24 h, 48 h, or 72 h after treatment.
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2.6. CFSE Staining. CD3+ T cells were isolated from the
spleen using immunomagnetic separation beads (Miltenyi
Biotec, 130-095-130) according to the manufacturer’s proto-
col. CD3+ T cells (106/ml in PBS) were labeled with 5μM
CFSE (Invitrogen, C34554) for 10min at 37°C with gentle
vortexing every 5min. Labeling was terminated by adding
a 5-fold volume of RPMI-1640 medium supplemented with
10% FBS.

2.7. T Cell Proliferation Assay. hUC-MSCs, sh-NC-MSCs, or
sh-Chi3l1-MSCs (1 × 105/well) were seeded into 24-well plates
(2 × 106/well) precoated with anti-CD3 antibody (2μg/ml)
(BioLegend, 100309). After 6h, CFSE-labeled CD3+ T cells
(2 × 106/well) were also seeded into 24-well plates and cocul-
tured for another 3 days. T cell proliferation was analyzed by
flow cytometry.

2.8. In Vitro Th17 Cell Differentiation. Naïve CD4 cells were
isolated fromC57BL/6J mouse spleens using immunomagnetic
separation beads (Miltenyi Biotec, 130-106-643) according to
the manufacturer’s instructions and seeded into 96-well plates
(5 × 105/well) precoated with anti-CD3 antibody (5μg/ml)
(BioLegend, 100309) with the addition of soluble anti-CD28
antibody (2μg/ml) (BioLegend, 102102). MSCs, sh-NC-MSCs,
sh-Chi3l1-MSCs, or sh-Chi3l1-MSCs plus Stattic (20μM, Sell-
eck, S7024) were seeded into 96-well plates (5 × 103/well) 6h
before CD4 cell seeding. Th17 differentiation medium con-
tained TGF-β (1.0ng/ml) (PeproTech, AF-100-21C), IL-6
(30ng/ml) (PeproTech, 216-16), IL-1β (20ng/ml) (PeproTech,
211-11B), IL-23 (20ng/ml) (BioLegend, 589002), anti-IL-4
(10μg/ml) (BioLegend, 504102), and anti-IFN-γ (10μg/ml)
(BioLegend, 505833).

Th17 cells were differentiated for 72 h and restimulated
with Cell Stimulation Cocktail (Tonbo Biosciences, TNB-
4975) for 6 h before further analysis for intracellular cyto-
kines by flow cytometry.

2.9. ELISA. The levels of IFN-γ and IL-17A in serum sam-
ples were determined using ELISA kits purchased from Invi-
trogen according to the manufacturer’s instructions.

2.10. RNA Extraction, RT–PCR, and qPCR. Total RNA was
extracted from the samples using TRIzol reagent (Invitrogen,
15596018). cDNA synthesis was conducted using a commercial
reverse transcription kit (CWBIO, CW2020). Quantitative
real-time PCR (qPCR) was performed using the UltraSYBR
One-Step Kit (CWBIO, CW2624) on the 7500 Real-Time sys-
tem analyzed using ΔΔCt calculations. GAPDH was used as
the reference gene for normalization. Primer sequences are
listed in Table 1.

2.11.Western Blot.Cells were lysed in RIPA buffer. The protein
concentration of each sample was determined using a Protein
Assay (Thermo Scientific, 23225). Protein samples (25μg) were
loaded and separated on 10% SDS–PAGE gels and then trans-
ferred to polyvinylidene fluoride (PVDF) blotting membranes.
PVDFmembranes were blocked in TBST buffer containing 5%
nonfat dry milk for 1h. Rabbit anti-Chi3l1 (Cell Signaling,
47066S), rabbit anti-STAT3 (Cell Signaling, 12640), rabbit
anti-p-STAT3 (Cell Signaling, 9145), and anti-GAPDH (Cell

Signaling, 5174s) antibodies were incubated overnight at 4°C.
Afterward, the mixture was incubated with HRP-conjugated
secondary antibodies in blocking solution for 1h at room tem-
perature. Finally, enhanced chemiluminescence substrate
(Thermo Scientific, 34578) was added to the membranes, and
the proteins were assayed according to the manufacturer’s
instructions.

2.12. Mouse aGvHD Induction and Treatment. BALB/C mice
(8 weeks old, female) were irradiated with a single dose of
800 cGy total body irradiation (TBI, Co60γ source). aGvHD
mice were infused with bone marrow cells (1 × 107) and
splenocytes (1 × 107) isolated from C57BL/6J mice (6 weeks
old, male) through tail vein injection. Forty-eight hours after
bone marrow transplantation, the recipient mice were
administered hUC-MSCs, sh-Chi3l1-MSCs, sh-NC-MSCs
(1 × 106), or PBS (0.2ml) via the tail vein.

2.13. H&E and Immunohistochemical Staining. Twenty-one
days after treatment, the skin, liver, lung, and intestine from
recipient mice were collected and fixed in 4% paraformalde-
hyde. The samples were then dehydrated by sequential treat-
ment with 75% ethanol (1 h), 95% ethanol (1 h twice), and
95% ethanol (1 h twice). The samples were treated with
xylene for 20min twice before being embedded in paraffin.
The samples were then sectioned at 5μm. Histology was per-
formed using standard hematoxylin and eosin (H&E) stain-
ing. For immunohistochemical staining, the samples were
sectioned at a thickness of 4μm and stained via dual-color
immunohistochemical staining. Anti-IL-17A rabbit mono-
clonal primary antibody (Servicebio, GB11110) was used.

2.14. Statistical Analysis. Results are expressed as the mean
± SD. Unpaired Student’s t test was performed to compare
two mean values. One-way ANOVA and Tukey’s multiple
comparison tests were used to compare three or more mean
values. The exact values of n and statistical significance are
reported in the figures and the figure legends. Error bars rep-
resent the standard error of the mean (SEM). Significant dif-
ferences in means are indicated as follows: ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001.

Table 1: Primer sequences.

Gene Primer sequence (5′–3′)
Chi3l1 forward TACGGCATGCTCAACACACT

Chi3l1 reverse TGCCCATCACCAGCTTACTG

GAPDH forward TCAAGATCATCAGCAATGCC

GAPDH reverse CGATACCAAAGTTGTCATGGA

IL-17A forward TTCATCTGTGTCTCTGATGC

IL-17A reverse GAGCTTTGAGGGATGATCG

Foxp3 forward TCCTTCCCAGAGTTCTTCC

Foxp3 reverse GATAAGGGTGGCATAGGTG

IFN-γ forward CACCTGATTACTACCTTCTTCAG

IFN-γ reverse GTTGTTGACCTCAAACTTGG
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3. Results

3.1. RNA-Seq Analyses of MSCs Obtained from Bone Marrow,
Umbilical Cord, AmnioticMembrane, and Placenta Tissue. Pre-
vious studies have identified several immunosuppressive mole-
cules inMSCs from different tissues, including IDO, TSG6, and
CD200 [1, 23]. To explore new molecules that affect MSC
immunoregulatory capacity, we performed RNA-seq analysis

of MSCs isolated from bone marrow, umbilical cord, amniotic
membrane, and placenta tissues. We identified 146 differen-
tially expressed genes (DEGs) that exhibited a more than 2-
fold decrease or increase in mRNA expression (Figures 1(a)
and 1(b) and Table S1). A heat map and volcano plot
showing that Chi3l1 is highly expressed in hUC-MSCs are
shown in Figures 1(a) and 1(b). In parallel, we performed a
qPCR assay to compare mRNA expression across different
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Figure 1: Chi3l1 is highly expressed in hUC-MSCs. (a) Heat map of differential gene expression in various MSCs, including BM-MSCs, hP-
MSCs, hM-MSCs, and hUC-MSCs. (b) A volcano plot was used to analyze the DEGs (red indicates upregulated genes). (c) KEGG pathway
indicating that Chi3l1 is highly associated with the JAK-STAT signaling pathway and graft-versus-host disease (GvHD) in hUC-MSCs. (d)
Chi3l1 expression in different MSCs by qPCR. (e) hUC-MSCs were treated with IFN-γ and TNF-α (20 ng/ml) for 24 h, 48 h, and 72 h, and
Chi3l1 mRNA levels were measured by qPCR. (f) The protein expression of Chi3l1 in IFN-γ- and TNF-α-pretreated hUC-MSC
supernatants was analyzed by western blot. (g) The Chi3l1 protein expression levels in IFN-γ- and TNF-α-pretreated hUC-MSCs
determined by western blot. JAK: Janus kinase; STAT: signal transducer and activator of transcription; IFN-γ: interferon-gamma; TNF-α:
tumor necrosis factor-alpha.
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MSCs. The results indicated that Chi3l1 was highly expressed in
hUC-MSCs (Figure 1(d)). Gene set enrichment analysis showed
that Chi3l1 was associated with JAK-STAT signaling, apoptosis,
and graft-versus-host disease (Figure 1(c)). Chi3l1 has been
implicated in inflammatory processes, including apoptosis,
dendritic cell accumulation, and M2 macrophage
differentiation. Moreover, previous studies revealed that
treatment of macrophages with the proinflammatory
cytokines IFN-γ, TNF-α, or IL-6 inflates Chi3l1 expression
[24, 25]. Interestingly, we found that Chi3l1 expression was
increased in IFN-γ- and TNF-α-pretreated hUC-MSCs and
their supernatants, and a time-dependent relationship was
observed (Figures 1(e)–1(g)). Several studies have indicated
that treatment with the proinflammatory cytokines IFN-γ and
TNF-α promotes immunosuppressive molecular expression in
MSCs and thus could induce their immunosuppressive
capacity [26, 27]. Together, we hypothesized that Chi3l1 may
play a role in the immunosuppressive function of hUC-MSCs.

3.2. Knockdown of Chi3l1 Expression in hUC-MSCs. To exam-
ine the effect of Chi3l1 on the immunomodulatory function of
hUC-MSCs, hUC-MSCs were transfected with Chi3l1-
targeting shRNA or control (NC) carried on a lentiviral vector.
Transfection efficiency was examined by GFP expression via
fluorescence microscopy analyses (Figure 2(b)). Reduced
Chi3l1 expression in Chi3l1 knockdown hUC-MSCs (sh-
Chi3l1-MSCs) was assessed by qPCR and western blot
(Figures 2(h) and 2(i)). Next, the general characteristics of sh-
Chi3l1-MSCs were investigated. The results showed that sh-
Chi3l1-MSCs displayed a spindle-shaped appearance and
adherent growth (Figures 2(a) and 2(b)) and expressed CD90,
CD105, and CD106 (>95%) but not CD34, CD45, or human
leukocyte antigen-DR (HLA-DR) (<2%) (Figure 2(g)) [28].
hUC-MSCs could also be differentiated into adipocytes and

osteocytes (Figures 2(c)–2(f)). Moreover, hUC-MSCs trans-
fected with control (NC) carried on lentiviral vector (sh-NC-
MSCs) displayed similar general characteristics to sh-Chil3l1-
MSCs (Figure S1). Taken together, these results demonstrated
that Chi3l1 knockdown does not change the properties of
hUC-MSCs.

3.3. Chi3l1 Deletion Impairs the Therapeutic Effects of hUC-
MSCs in aGvHDMice. To determine whether Chi3l1 is associ-
ated with hUC-MSC immunoregulation capacity in aGvHD,
we established a mouse aGvHD model by transplantation of
bone marrow cells and splenocytes obtained from C57BL/6J
mice into recipient mice (BALB/C). HUC-MSCs, sh-Chi3l1-
MSCs, sh-NC-MSCs, or PBS were intravenously injected into
aGvHD mice 2 days after transplantation. We observed that
PBS-treated mice displayed severe GvHD symptoms, including
weight loss, reduced survival, and skin damage. Starting at 10
days, their survival time remarkably decreased, and the clinical
score significantly increased. The other groups, which were
hUC-MSC-, sh-NC-MSC-, and sh-Chi3l1-MSC-treated mice,
exhibited different therapeutic effects (Figures 3(a) and 3(b)).
Compared to the hUC-MSC and sh-NC-MSC groups, the sur-
vival time of sh-Chi3l1-MSC-treated mice was reduced, while
the clinical score was enhanced starting on day 15
(Figures 3(a) and 3(b); P < 0:05, P < 0:01).

We next analyzed the histopathological lesions of the
skin, intestine, and lung in hUC-MSC-, sh-Chi3l1-MSC-,
sh-NC-MSC-, or PBS-treated mice. Compared to aGvHD
treatment, hUC-MSC, sh-Chi3l1-MSC, and sh-NC-MSC
treatment reduced lymphocyte infiltration and tissue injury
in the skin, intestine, and lung, revealing that infusion into
hUC-MSC, sh-Chi3l1-MSC, and sh-NC-MSC mice attenu-
ated aGvHD mouse tissue injury (Figure 3(c)). Comparative
analysis of the tissue injury in hUC-MSC-, sh-NC-MSC-,
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Figure 2: Chi3l1 knockdown in hUC-MSCs by Chi3l1-targeting shRNA lentiviral transfection. (a, b) The morphology of Chi3l1 knockdown
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and sh-Chi3l1-MSC-treated mice revealed that the skin,
intestine, and lung tissue in sh-Chi3l1-MSC-treated mice
displayed increased lymphocyte infiltration and exacerbated
tissue lesions (Figure 3(c)). These results illustrate that
Chi3l1 deletion impairs the therapeutic benefits of hUC-
MSCs in aGvHD mice.

3.4. Chi3l1 Deletion Reduces the Immunosuppressive Capacity
of MSCs in aGvHD Mice. To further validate Chi3l1-
mediated hUC-MSC immunosuppression in aGvHD, we also
investigated the changes in proinflammatory cytokines after
hUC-MSC, sh-Chi3l1-MSC, sh-NC-MSC, or PBS treatment
in mice. As expected, the percentages of CD4+ IFN-γ cells

and CD4+IL-17A cells in the aGvHD group were significantly
increased but were decreased in the hUC-MSC, sh-Chi3l1-
MSC, and sh-NC-MSC groups (Figures 4(a) and 4(b); P <
0:05, P < 0:01). Additionally, the percentage of CD4+IL-17A
cells was strikingly decreased in the hUC-MSC and sh-NC-
MSC groups compared to the sh-Chi3l1-MSC group
(Figures 4(a) and 4(b), P < 0:01), while CD4+ IFN-γ cells did
not exhibit a significant difference (Figures 4(a) and 4(b)). Fur-
thermore, we measured the concentrations of IL-17A and IFN-
γ in plasma derived from hUC-MSC-, sh-Chi3l1-MSC-, sh-
NC-MSC-, or PBS-treated mice using ELISA. Expression levels
of IL-17A and IFN-γ were significantly increased in PBS-
treated mice (Figure 4(c), P < 0:01). In the MSC treatment
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Figure 3: Chi3l1 deletion impairs the therapeutic effects of hUC-MSCs in aGvHD mice. (a–c) Recipient mice (BALB/C) were irradiated
with a single dose of 800 cGy total body irradiation (Co60γ source) and intravenously injected with C57BL/6J bone marrow cells (1 × 107
) plus splenocytes (1 × 107) to induce the aGvHD model. Two days after transplantation, different MSCs, including hUC-MSCs, sh-
Chi3l1-MSCs, sh-NC-MSCs (1 × 106), or PBS, were injected intravenously into aGvHD mice. (a) Survival curves of each group of mice
(control: n = 12, aGvHD, hUC-MSCs, sh-Chi3l1-MSCs, and sh-NC-MSCs: n = 20, log-rank test, ∗∗∗P < 0:001). (b) The clinical score of
hUC-MSCs, sh-Chi3l1-MSCs, sh-NC-MSCs, or PBS groups of mice. ∗P < 0:05; ∗∗P < 0:01; ns: not significant. (c) Hematoxylin and eosin
staining was used to analyze the histological and pathological changes in the skin, intestine, and lung in aGvHD mice 21 days after hUC-
MSCs, sh-Chi3l1-MSCs, sh-NC-MSCs, or PBS treatment. Scale bar: 200 μm, n = 7, three independent experiments. CTRL: healthy mice.
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Figure 4: sh-Chi3l1-MSCs promote IL-17A production in aGvHDmice. (a, b) Lymphocytes were obtained from the spleens of aGvHDmice
on day 14 after hUC-MSC, sh-Chi3l1-MSC, sh-NC-MSC (1 × 106), or PBS (0.2ml) treatment. Intracellular cytokines in lymphocytes were
measured by flow cytometry. (a) IFN-γ and IL-17A were analyzed by flow cytometry. (b) The proportion of intracellular cytokines IFN-γ
and IL-17A was measured in different groups. (c) Serum IFN-γ and IL-17A were measured by ELISA (n = 8, three independent experiments,
one-way ANOVA, and Tukey’s multiple comparison test, ∗P < 0:05; ∗∗P < 0:01; ns: not significant). IFN-γ: interferon-gamma; IL-17A:
interleukine-17A.
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group, no significant differences in IFN-γ expression were
observed in mice in the hUC-MSC, sh-Chi3l1-MSC, and sh-
NC-MSC groups, but IL-17A expression levels in the sh-
Chi3l1-MSC group were dramatically higher than those in
the hUC-MSC and sh-NC-MSC groups (Figure 4(c), P < 0:01
). Similar results for IL-17A and IFN-γ expression were found
in the spleen. Consistent with RNA-seq analysis, these results
demonstrate that Chi3l1 plays an important role in MSC-
based aGvHD treatment.

3.5. hUC-MSC Secretion of Chi3l1 Relieves IL-17A Produced
in the Intestine. IL-17A is a proinflammatory cytokine that
is highly expressed during intestinal inflammation [29]. To
further investigate the effects of Chi3l1 on hUC-MSCs atten-
uating IL-17A levels in the intestinal tissue, immunohisto-
chemical staining was used to analyze the expression levels
of IL-17A in the intestinal tissue from the various groups
of mice. The results revealed increased IL-17A levels in
aGvHD mouse intestines compared to hUC-MSC-, sh-
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Figure 5: sh-Chi3l1-MSCs failed to repress IL-17A production in the intestine. (a) Intestinal immunohistochemical staining results of
aGvHD mice on day 21 after hUC-MSC, sh-Chi3l1-MSC, sh-NC-MSC (1 × 106), or PBS (0.2ml) treatment. (b) Positive results of IL-17A
expression measured using Image-Pro Plus software. Scale bar: 100 μm, n = 7, three independent experiments, one-way ANOVA, and
Tukey’s multiple comparison test, P < 0:001.
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Chi3l1-MSC-, and sh-NC-MSC-treated mice (Figures 5(a)
and 5(b)). Comparative analysis of hUC-MSC-, sh-Chi3l1-
MSC-, and sh-NC-MSC-treated mice revealed that IL-17A
levels were higher in sh-Chi3l1-MSC mice (Figures 5(a) and
5(b)). These results demonstrated that sh-Chi3l1-MSCs fail to
inhibit IL-17A production in the intestine of aGvHD mice.
Together with the results shown in Figure 4, these findings
demonstrate that Chi3l1 is necessary for hUC-MSC regulation
of Th17 differentiation.

3.6. hUC-MSCs with Chi3l1 Knockdown Exhibit Reduced
Ability to Repress T Cell Proliferation. Previous studies have
shown that hUC-MSCs, which repress the proinflammatory
response, inhibit T cell proliferation and differentiation into
Th1 or Th17 cells [5, 30]. As shown in Figure 6, hUC-MSCs
and sh-NC-MSCs both inhibited T cell proliferation, while
the capacity of sh-Chi3l1-MSCs to inhibit T cell prolifera-
tion was decreased (Figures 6(a) and 6(b), P < 0:01). Nota-
bly, our finding is compatible with recent study results,
which also indicated that Chi3l1 is associated with the ability

of hUC-MSCs to inhibit T cell proliferation [20]. We next
analyzed IFN-γ, IL-17A, and Foxp3 mRNA levels in cocul-
tured T cells. IL-17A and IFN-γ expression in sh-Chi3l1-
MSCs was increased compared to that in hUC-MSCs and
sh-NC-MSCs (Figure 6(c), P < 0:01). These results suggest
that Chi3l1 is involved in the process by which hUC-MSCs
regulate T cell proliferation.

3.7. hUC-MSC-Secreted Chi3l1 Represses CD4 T Cell
Differentiation to Th17 Cells by Inhibiting STAT3
Activation. To investigate whether hUC-MSC-secreted
Chi3l1 is linked to Th17 differentiation, we analyzed Chi3l1
function in an RNA-seq dataset. The Reactome pathway
results indicated that Chi3l1 was implicated in the IL-6 sig-
naling pathway and lymphocyte differentiation activity
(Figures 7(a) and 7(b)). In addition, STRING database anal-
ysis revealed that Chi3l1 interacts with STAT3 (Figure 7(c)).
Since the IL-6 signaling pathway and STAT3 activation are
strongly associated with Th17 differentiation [31], we per-
formed Th17 cell differentiation assays. Compared to hUC-
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Figure 6: Chi3l1 deletion compromises hUC-MSCs and inhibits T cell proliferation. (a–c) CD3+ T cells obtained from the spleens of healthy
C57BL/6J mice were stained with CFSE (5 μM) and then incubated in 24-well plates with hUC-MSCs, sh-Chi3l1-MSCs, and sh-NC-MSCs at
a CD3+ T/hUC-MSC ratio of 20 : 1 for 72 hours. (a) Proliferation of CD3+ T cells analyzed by flow cytometry. (b) CD3+ T cell proliferation
was measured after treatment with different hUC-MSCs. (c) mRNA expression levels of IFN-γ, IL-17A, and FOXP3 analyzed by qPCR
(three independent experiments, one-way ANOVA, and Tukey’s multiple comparison test, ∗∗P < 0:01; ns: not significant).
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MSCs and sh-NC-MSCs, the proportion of Th17 cells was
increased in sh-Chi3l1-MSCs (Figures 7(d) and 7(e), P < 0:05
). These results demonstrate that hUC-MSC-secreted Chi3l1
is associated with the process by which hUC-MSCs inhibit
Th17 differentiation. Furthermore, we used Stattic, a p-
STAT3 inhibitor, to block STAT3 activation during CD4 T cell
differentiation to Th17 cells. Flow cytometry results revealed
that blocking STAT3 activation reduced the proportion of
Th17 cells in the sh-Chi3l1-MSC group (Figures 7(d) and
7(e), P < 0:05). We further examined p-STAT3protein levels
in CD4 cells. The results showed that p-STAT3 levels were
remarkably increased in CD4 cells in the presence of sh-
Chi3l1-MSCs, while the addition of Stattic led to a decrease
in p-STAT3 levels (Figure 7(f)). Taken together, our results
demonstrate that hUC-MSC-secreted Chi3l1 represses Th17
differentiation by inhibiting STAT3 activation (Figure 8).

4. Discussion

Multiple clinical studies have confirmed the safety of both allo-
geneic and autologous MSCs for the treatment of aGvHD [11,
32]. hUC-MSC-based therapies for aGvHD have made signifi-
cant advances in recent years [33]. Although a series of factors
are known to be critical for hUC-MSC immunoregulation, but
the complete immunomodulatory mechanism of hUC-MSCs

in aGvHD treatment is still unclear. The present study provides
the first report on alterations in the immunomodulatory func-
tions of hUC-MSCs induced by Chi3l1.

Chi3l1 is secreted by activated macrophages, chondro-
cytes, neutrophils, and synovial cells [34]. Previous studies
have determined that Chi3l1 plays a role in the Th2 inflam-
matory response and IL-13-induced inflammation [35, 36],
regulating allergen sensitization, apoptosis, dendritic cell
accumulation, and M2 macrophage differentiation [37, 38].
In this study, we found that Chi3l1 mRNA was more highly
expressed in hUC-MSCs than in bone marrow, amniotic
membrane, and placenta-derived MSCs and exhibited a
remarkable association with GvHD and inflammation. The
proinflammatory cytokine IFN-γ combined with TNF-α-
or IL-1β-pretreated MSCs was demonstrated to enhance
anti-inflammatory molecules or exosomes and “license”
MSC immunoregulatory ability [26, 39, 40]. Unexpectedly,
our finding was similar to these results, in which Chi3l1
expression was associated with hUC-MSCs exposed to
IFN-γ and TNF-α in vitro. Combined with the RNA-seq
data, we hypothesized that Chi3l1 may be a potential immu-
noregulatory molecule of hUC-MSCs for the treatment of
aGvHD.

In our study, using Gene Ontology and KEGG database
analysis, we found that Chi3l1 was engaged in T cell
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Figure 7: hUC-MSC-secreted Chi3l1 represses CD4 differentiation to Th17 cells by inhibiting STAT3 activation. (a) Reactome pathway
showing that Chi3l1 is associated with interleukin-6 family signaling. (b) Gene Ontology showing that Chi3l1 is associated with
lymphocyte differentiation. (c) STRING interaction network displaying that Chi3l1 interacts with STAT3. (d–f) CD4+ T cells (5 × 105)
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expression level of p-STAT3 measured by western blot. STAT3: signal transducer and activator of transcription 3; sh-NC: sh-NC-MSCs;
sh-Chi3l1: sh-Chi3l1-MSCs. Stattic: p-STAT3 inhibitor.
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proliferation and differentiation and the aGvHD process.
Next, stable transfection of hUC-MSCs was performed using
Chi3l1 knockdown lentiviral vectors. The results of in vitro
T cell proliferation analysis indicated that sh-Chi3l1-MSC
restrained the suppression of T cell proliferation and IL-
17A expression. This study in an aGvHD mouse model
revealed that Chi3l1 knockdown impaired the therapeutic
efficacy of hUC-MSCs, manifesting as reduced survival time,
higher clinical scores, and increased lymphocyte infiltration
in aGvHD organs, including the skin, intestine, and lung.
In addition, sh-Chi3l1-MSC transplantation significantly
increased the proportion of Th17 cells in aGvHD mice and
upregulated expression of IL-17A. Together, these data sug-

gest that Chi3l1 plays an important role in hUC-MSC
immunosuppression capacity and is implicated in hUC-
MSC therapeutic potential in aGvHD.

Of note, the immunoregulatory factors secreted by MSCs
and their cell signaling pathways may influence the immu-
nosuppressive capacity and therapeutic effects of MSCs. In
our study, the gene set enrichment analysis results indicated
that Chi3l1 may play a role in the IL-6-STAT3 pathway and
be associated with lymphocyte differentiation. Previous
studies demonstrated that STAT3 activation is a crucial
component of IL-6-mediated regulation of Th17 cell differ-
entiation [41]. IL-17A has been implicated in many inflam-
matory diseases, such as rheumatoid arthritis, asthma,
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Figure 8: Model of the function and mechanism by which hUC-MSC-secreted Chi3l1 regulates CD4 differentiation into Th17 cells.
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systemic lupus erythematosus (SLE), and allograft rejection
[42]. Our in vitro study found that the proportion of Th17 cells
was increased and p-STAT3 was more activated in the sh-
Chi3l1-MSC group than in the hUC-MSC group and sh-NC-
MSC group, but the addition of a p-STAT3 inhibitor rescued
this phenomenon. In addition, sh-Chi3l1-MSCs infusion in
aGvHDmice impaired the ability to inhibit IL-17A production
in the spleen, serum, and intestine. Taken together, we revealed
that Chi3l1 is engaged in hUC-MSCs restraining Th17 cell
polarization via p-STAT3 expression, but it remains unclear
precisely how Chi3l1 interacts with STAT3 activation.

Until to now, MSC inhibition Th17 cell differentiation is
well known, and the complete mechanism is still unclear
[43]. In our study, we uncovered that the secreted protein
Chi3l1 was highly expressed in hUC-MSCs, and it was asso-
ciated with CD4 differentiation into Th17 cells through
repression STAT3 activation. In vivo experimental results
demonstrated that Chi3l1 plays an important role in hUC-
MSC therapeutic benefits in aGvHD by inhibiting Th17 cell
differentiation to reduce the inflammatory response. Overall,
our findings demonstrated that Chi3l1 is a novel immuno-
suppressive molecule that is associated with hUC-MSCs reg-
ulating Th17 differentiation and attenuating aGvHD
symptoms (Figure 8). These results may aid in the develop-
ment of cell-based therapies for the treatment of aGvHD.

5. Conclusions

The present study reveals that a new immunosuppressive
molecule Chi3l1 regulates the function of hUC-MSCs.
Although our study uncovers that hUC-MSC-secreted
Chi3l1 could regulate Th17 differentiation by inhibiting
STAT3 activation and attenuate the aGvHD symptoms,
but the complete mechanism of Chi3l1 inhibition STAT3
activation still needs further investigation. However, these
innovative insights into the mechanisms through which
hUC-MSCs regulate immune responses may improve the
clinical utility of these cells in aGvHD by targeting Chi3l1,
which may provide a novel accessible strategy to improve
the therapy effect of hUC-MSCs for aGvHD.
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