Research Article

Kartogenin Improves Osteogenesis of Bone Marrow Mesenchymal Stem Cells via Autophagy

Huichun Yan, Tingting Yu, Jing Li, Ting Zhang, Qian Li, Yanheng Zhou, and Dawei Liu

1Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
2National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
3Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
4State Key Laboratory of Military Stomatology, Xi’an 710000, China

Correspondence should be addressed to Yanheng Zhou; yanhengzhou@vip.163.com and Dawei Liu; liudawei@bjmu.edu.cn

Received 7 September 2022; Revised 27 November 2022; Accepted 29 November 2022; Published 22 December 2022

Academic Editor: Elena A. Jones

Copyright © 2022 Huichun Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kartogenin (KGN), a novel small-molecule compound, has been considered a promising chondrogenic promoter in cartilage regeneration. However, whether KGN also participates in osteogenesis and bone regeneration remains unclear. This research was designed to explore the roles of KGN on osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs) as well as determine the possible mechanism of osteogenesis. We revealed that KGN enhanced the osteogenic differentiation capacity of BMMSCs without affecting cell proliferation, during which autophagic activities and the expression of autophagy-related genes were promoted. Moreover, KGN upregulated the phosphorylation level of the Smad1/5/9 signaling, and inhibition and activation of Smad signaling were also applied to validate the involvement of Smad in BMMSCs during KGN treatment. In summary, this study shows that KGN promotes osteogenic differentiation of BMMSCs through enhancing autophagic levels and upregulating Smad1/5/9 signaling mechanically.

1. Introduction

Bone defects can occur due to various reasons, such as trauma, infections, and congenital malformations. Although bone tissue has the capacity for self-healing, many bone defects or fractures remain a major challenge in regeneration medicine owing to certain disease states or the defect size. Research on bone marrow mesenchymal stem cells (BMMSCs) has provided new treatment strategies for complex bone defect diseases [1, 2]. However, most of the current therapies for bone defect repair using BMMSCs suffer from weaknesses such as poor osteogenic differentiation ratio, low level of bone fusion, and unsatisfied osteogenesis stability; therefore, there is an urgent need for further exploration of the BMMSC differentiation mechanism and optimization of their directional differentiation regulation in bone tissue engineering to promote stem cell-based bone defect repair and reconstruction. Kartogenin (KGN) is a novel small molecular compound which was studied by Johnson et al. [3] first in 2012. It was demonstrated to be capable of exerting chondroprotective effects in vitro by inducing chondrogenic differentiation of mesenchymal stem cells (MSCs) and proved efficacious in osteoarthritis animal models. Benefitting from the high stability, KGN has been broadly explored for tissue regeneration, especially for cartilage repair. To date, it has been reported that KGN can induce the differentiation of MSCs into chondrocytes both in vivo and vitro [4, 5]. Moreover, it has been studied in the fields of tendon-bone healing, wound healing, and limb development [6]. Nevertheless, there is a relative paucity of research on the effects of KGN on bone regeneration. According to Wang et al. [7], KGN promoted intracellular antioxidant activity by activating AMPK-SIRT1 signaling pathways, thereby promoting osteogenesis. Therefore, it is
interesting to determine whether KGN can promote the osteogenic activity of BMMSCs and the specific mechanisms of KGN in stem cells.

MSCs have a multidifferentiation capacity and are able to maintain bone homeostasis, which has been broadly studied in the field of bone regeneration [8, 9]. Decker al. [10] revealed that KGN activates transforming growth factor-β/Drosophila mothers against decapentaplegic protein (TGF-β/Smad) signaling pathway, upregulates the phosphorylation level of Smad2/3, and stimulates mouse embryonic limb development. As an important signaling pathway, TGF-β/Smad is indispensable for mediating the osteogenic differentiation commitment of BMMSCs [11, 12]. Phosphorylation of Smad1/5/9 mediated by the bone morphogenic protein- receptor causes activated isoforms to associate with Smad4, followed by their translocation into cell nucleus, inducing osteogenesis-related gene transcription, making Smad1/5/9 signaling essential for MSC osteogenic signaling [12]. Comprising a subset of TGF-β superfamily, BMPs modulate numerous biological processes, such as formation of bone and cartilage during embryogenesis [13], and can result in Smad-specific transcription factor phosphorylation [14]. Among the Smad proteins, Smad1, Smad5, and Smad9 are closely associated with osteogenic differentiation [15]. Following the binding of BMPs with the specific receptor, phosphorylation of BMP-responsive Smad 1, 5, and 9 results in complex formation of R-Smads, accumulating with the common mediator Smad4 in the nucleus, which is dedicated to osteogenesis-related gene expression regulation [16, 17, 18]. As an important signaling pathway, upregulates the phosphorylation level of receptor causes activated isoforms to associate with Smad4, followed by their translocation into cell nucleus, inducing osteogenesis-related gene transcription, making Smad1/5/9 signaling essential for MSC osteogenic differentiation [12].

2. Materials and Methods

2.1. Isolation and Culture of BMMSCs. C57BL/6J mice (6-8 wk; female) were purchased from SiPeFu Biotechnology Co., Ltd. (SPF; Beijing, China). All nucleated cells were obtained from mouse femurs and tibia bone marrow, and cells (1.5 × 10⁷ cells per 100 mm culture dish) (Corming, NY, USA) were seeded at 37°C, 5% CO₂. After 2 d, nonattached cells were discarded, and adherent cells were cultured for 14 d in complete alpha minimum essential medium (Biological Industries, Beit Haemek, Israel) adding fetal bovine serum (20%; Gibco), L-glutamine (2 mM; Gibco), 2-mercaptoethanol (55 µM; Gibco), and penicillin/streptomycin (1%; Gibco). The isolation and identification of MSCs were described in our previous studies [24–26]. The medium was refreshed per three days, and then, colony-forming attached cells were passaged once for further experimental use.

2.2. Cell Proliferation Assay. The survival rates of BMMSCs were performed using Cell Counting Kit-8 (CCK-8) assay (Solarbio). BMMSCs were cultured with medium (100 µL per well) in the 96-well plates at a density of 1.0 × 10⁵ per well. CCK-8 reagent was diluted with culture medium to prepare the working solution after 24 h cultivation and incubated for extra 1.5 h as the instructions suggested. Subsequently, optical density value measurement was performed by a microplate reader (Bio-Rad, Virginia, USA) at the 450 nm wavelength. We performed this assay at 0 h, 12 h, and 24 h. Proliferation of the MSC population was also examined using a Ki67 incorporation assay. Mouse BMMSCs were seeded and cultured on q20 mm glass chamber slide (Corming). The cultures were then incubated with medium containing Ki67 solution (1:100; Invitrogen, CA, USA) for another 20 h and stained using a Ki67 Staining Kit (Invitrogen). The positive Ki67 cell and overall cell counts were taken, respectively, and the proportions were calculated.

2.3. Transmission Electron Microscopy. Transmission electron microscope (TEM) was applied to observe autophagosomes. Cells were fixed in 4% formaldehyde and washed in PBS, followed by postfixation in 1% OsO₄ at 4°C overnight. The samples were then dehydrated stepwisely in ascending ethanol, washed with propylene oxide, and then embedded with epoxy resin as previous study described [27]. Sections were stained with lead citrate as well as uranyl acetate.

2.4. Osteogenic Differentiation Assay. BMMSCs at passage 2 were prepared for osteogenic induction, and the osteogenic medium was used for BMMSC culture which contained complete culture medium plus ascorbic acid (50 mg/L;
Total cellular RNA extraction was performed with TRIzol reagent (Invitrogen), and then, complementary DNA was synthesized with a PrimeScript™ RT reagent Kit (TaKaRa, Tokyo, Japan) and gene-specific primers (Table 1). qRT-PCR was conducted by SYBR Green Q-PCR Master Mix (Thermo) on 7900HT Fast-Time PCR System. Relative expression levels were analyzed using the 2^−ΔΔCt calculating method with normalization to GAPDH.

2.9. Statistical Analysis. Data processing and analysis were conducted with SPSS 23.0 v (IBM, NY, USA) as well as GraphPad Prism 8.1v for Mac (GraphPad Software, CA, USA). All values calculated are shown as the mean and standard deviation (mean ± S.D.), representing at least 3 independent experiments. Comparison of two groups was conducted. Criteria for statistical significance were set at p < 0.05.

3. Results

3.1. KGN Promotes the Osteogenic Capacity of BMMSCs. The concentration of KGN has been suggested in previous studies [28–32], and the optimal concentration of KGN for osteogenesis in BMMSCs was 10 μM in this study (Figure S1). To determine whether proliferation capacity was a concern, the effect of KGN concentration on proliferation was investigated. The proliferation activity [33], was also measured by
immunoﬂuorescence staining, and it showed no statistical difference (Figures 1(b) and 1(c)). Next, we tested whether KGN promotes the osteogenic ability of BMSCs. ARS staining demonstrated that matrix mineralization was visibly enhanced by KGN treatment for 14 days compared with the control group (Figures 1(d) and 1(e)). Western blotting analysis also indicated that KGN upregulated ALP protein levels (Figures 1(f)–1(h)).

Additionally, relative expression levels of ALP and Runx2 also showed an upward trend after KGN induction (Figures 1(i) and 1(j)). These data indicate that KGN could enhance BMSC osteogenic differentiation without affecting cell proliferation activity.

3.2. KGN Upregulates Autophagic Activity of BMSCs. To evaluate whether KGN affected the autophagic activity of
Figure 2: Autophagy is involved in the process of KGN-induced BMMSC osteogenesis. (a) The ultrastructural features of autophagic vacuoles by TEM. Black arrows suggest autophagosomes or autophagolysosomes in BMMSCs. Scale bar = 500 nm. Detection of LC3 (red) and DAPI (blue) by immunofluorescent staining (b) in the control and KGN-treated BMMSCs and semiquantification analysis (c). KGN upregulated the expression of autophagic marker LC3. Scale bar = 50 μm. **p < 0.01, independent Student’s t test. (d) The effects of KGN on autophagy-associated markers were evaluated by western blotting, (e, f) semiquantification of (d), and qRT-PCR of autophagy markers (g–j). KGN promoted the expression of ATG7 and downregulated the LC3-I/LC3-II ratio. **p < 0.01 and ***p < 0.001, independent Student’s t test. (k) The effects of inhibitor 3-MA on autophagy-associated markers were evaluated by western blotting. (l, m) Semiquantification of (k). 3-MA inhibited the expression of ATG7 and upregulated the LC3-I/LC3-II ratio. **p < 0.01, independent Student’s t test.
Figure 3: Continued.
osteogenic differentiation. BMMSC during osteogenic differentiation, TEM was conducted to determine the formation of autophagosomes in BMMSCs morphologically, which is considered as the standard for detecting autophagy [34] (Figure 2(a)). LC3, as a marker of autophagy, was also analyzed by immunofluorescence staining. The results suggested that the expression level of LC3 increased distinctly after KGN induction (Figures 2(b) and 2(c)). In addition, a panel of autophagic markers was used to detect autophagic activity. ATG7 and cleaved LC3 product, LC3II, all presented an elevated level of (g), and qRT-PCR assay (j, k) of ALP and Runx2. 3-MA-mediated autophagy suppression inhibited KGN-induced expression of osteogenic genes. Scale bar = 50 μm. **p < 0.01 and ***p < 0.001, one-way ANOVA test. (c, d) Detection of ALP (green), Runx2 (green), and DAPI (blue) by immunofluorescent staining. The results suggested that the expression level of osteogenic genes. Scale bar = 500 μm. ***p < 0.001, one-way ANOVA test. (e, f) Semiquantification of (c) and (d). 3-MA-mediated autophagy suppression inhibited KGN-induced expression of osteogenic genes. Scale bar = 50 μm. **p < 0.01 and ***p < 0.001, one-way ANOVA test. (g) Western blotting, (h, i) semiquantification of (g), and qRT-PCR assay (j, k) of ALP and Runx2. 3-MA-mediated autophagy suppression inhibited KGN-induced expression of osteogenic genes. **p < 0.01 and ***p < 0.001, one-way ANOVA test.

Figure 3: KGN increases the osteogenic capability of BMMSCs via upregulating autophagy. ARS (a) and semiquantification (b) of mineralized nodules. 3-MA-mediated autophagy suppression inhibited KGN-induced BMMSC osteogenesis. Scale bar = 500 μm. *p < 0.05 and **p < 0.001, one-way ANOVA test. (c, d) Detection of ALP (green), Runx2 (green), and DAPI (blue) by immunofluorescent staining in BMMSCs. (e, f) Semiquantification of (c) and (d). 3-MA-mediated autophagy suppression inhibited KGN-induced expression of osteogenic genes. Scale bar = 50 μm. **p < 0.01 and ***p < 0.001, one-way ANOVA test. (g) Western blotting, (h, i) semiquantification of (g), and qRT-PCR assay (j, k) of ALP and Runx2. 3-MA-mediated autophagy suppression inhibited KGN-induced expression of osteogenic genes. **p < 0.01 and ***p < 0.001, one-way ANOVA test.

3.3. KGN Improves Osteogenesis of BMMSCs through Autophagy Activation. Autophagy plays an important role during BMMSC differentiation into primary functional cells in bone formation, regulating their physiological functions to maintain bone homeostasis [35]. Although KGN has been shown to elevate autophagic activity in BMMSCs and promote osteogenic differentiation, the underlying mechanism remains elusive. Therefore, 3-MA was applied prior to the induction by KGN to identify its autophagic role during BMMSC osteogenic differentiation. On day 14 after treatment, 3-MA was found to have attenuated the number of calcium nodules induced by KGN (Figures 3(a) and 3(b)). Compared with the control group, immunofluorescence staining also indicated that the KGN-induced expression of both ALP and Runx2 was suppressed by 3-MA (Figures 3(c)–3(f)). Consistent with this, the protein and mRNA levels of ALP and Runx2 showed an appreciable decline when 3-MA was involved (Figures 3(g)–3(k)). This suggested autophagy performs important functions in osteogenic differentiation caused by KGN, and suppression of autophagy leads to the inhibition of osteogenic differentiation.

3.4. KGN Promotes Osteogenesis of BMMSCs through Smad1/5/9 Signal after Autophagy Activation. Considering the crucial role of Smad signaling in MSC osteogenic differentiation [12], we investigated whether the Smad1/5/9 pathway participates in KGN-induced osteogenic differentiation. To test whether autophagy and the Smad1/5/9 pathways mediated osteogenic differentiation, 3-MA and LDN were applied for the above two inhibitions, respectively. As assessed by western blotting, KGN upregulated the phosphorylation of Smad1/5/9, and 3-MA attenuated this effect (Figures 4(a) and 4(b)), whereas Smad1/5/9 remained stable. Moreover, the phosphorylation level of Smad1/5/9 was compressed by LDN (Figures 4(c) and 4(d)). After treatment of LDN, the calcium nodules were significantly decreased compared with the KGN group by ARS, suggesting the osteogenesis effect was greatly weakened by LDN (Figures 4(e) and 4(f)). Consistently, LDN also suppressed both the protein and mRNA levels of ALP and Runx2 induced by KGN (Figures 4(g)–4(k)). Also, similar findings were also presented in immunofluorescence staining (Figures 4(l)–4(o)), suggesting LDN blocked the KGN-induced increase in ALP and Runx2 expression levels. Besides, to further confirm the involvement of Smad1/5/9 pathways in KGN-induced osteogenesis, we employed its activator SB4 (Figures 5(a) and 5(b)) after KGN treatment over the course of 24 h. As shown above, 3-MA inhibited the phosphorylation of Smad1/5/9, whereas this effect was
Figure 4: Continued.
Figure 4: KGN elevates autophagic activities in BMMSCs and prompts osteogenesis through Smad1/5/9 signal pathway. Western blotting (a) and semiquantification (b) of Smad and phosphorylation level of Smad1/5/9. 3-MA-mediated autophagy suppression inhibited KGN-induced Smad1/5/9 phosphorylation increase. ***p < 0.001, one-way ANOVA test. Western blotting (c) and semiquantification (d) of the phosphorylation level of Smad1/5/9 in the control and LDN-treated BMMSCs. LDN effectively inhibited phosphorylation level of Smad 1/5/9. **p < 0.01, independent Student’s t test. ARS detection (e) and semiquantification (f) of mineralized nodules. LDN inhibited KGN-induced osteogenesis. Scale bar = 500 μm. *p < 0.05 and ***p < 0.001, one-way ANOVA test. (g) Western blotting, (h, i) semiquantification of (g), and (j, k) qRT-PCR assay of ALP and Runx2. LDN inhibited KGN-induced expression of osteogenic genes. **p < 0.01 and ***p < 0.001, one-way ANOVA test. (l, m) Detection of ALP (green), Runx2 (green), and DAPI (blue) by immunofluorescent staining in BMMSCs. (n, o) Semiquantification of (l) and (m). LDN inhibited KGN-induced expression of osteogenic genes. Scale bar = 50 μm. ***p < 0.001, one-way ANOVA test.
Figure 5: Continued.
Figure 5: Continued.
rescued by SB4 (Figures 5(c) and 5(d)). Consistent with this, ARS staining suggested that calcium salt deposits of KGN were reduced by 3-MA, whereas SB4 reduced the suppression effect (Figures 5(e) and 5(f)). These results were verified using western blotting (Figures 5(g)–5(i)), qRT-PCR (Figures 5(j) and 5(k)), and immunofluorescence staining (Figures 5(l)–5(o)). These results confirmed that KGN enhanced BMMSC osteogenic differentiation through the Smad1/5/9 pathways after autophagy activation.

4. Discussion

As an essential part of bone tissue engineering, BMMSCs have a multilineage differentiation profile, migration and paracrine effects, and low immunogenicity risk, making them widely researched for osteoporosis and bone defect repair [36]. In recent years, studies of KGN have mostly focused on regenerative medicine. Most researches have concentrated on KGN roles for cartilage repair and osteoarthritis treatment. Johnson et al. [3] first demonstrated that KGN could induce MSC chondrogenic differentiation by enhancing the nuclear translocation of CBFβ in order to develop complexes with RUNX1 as well as facilitating to express COL II. So far, the chondrogenic promotion and protection functions of KGN have also been proved [37, 38]. Wang et al. [7] revealed that KGN attenuated reactive oxygen species in intracellular environments and promoted osteogenic differentiation of human BMMSCs. However, the relationship between KGN and osteogenesis improvement is not yet fully understood. In this study, we confirmed the significant inducing role of KGN in promoting BMMSC osteogenesis by upregulating autophagy activity and the Smad1/5/9 pathway. Several studies have revealed an obvious increase in the expression of early osteogenesis-associated markers, such as ALP and Runx2, during BMMSC osteogenic differentiation [39–41]. In our study, KGN elevated the expression level of ALP and Runx2 dominantly. Meanwhile, the proliferation activity of BMMSCs was not affected, indicating that KGN promoted BMMSC osteogenic differentiation capacity without affecting their proliferation ability.

Autophagy, a homeostatic mechanism under various conditions, is required to eliminate cellular waste produced during the quiescent stage of stem cells [42]. The modulation of autophagy in MSCs could affect their differentiation capacity, as well as the fate of proliferation, activation, and function [42]. Past research has shown that autophagy plays an indispensable part in bone remodeling regulation [21]. In our study, the protein levels of autophagy-related genes of Atg7 as well as LC3-II/LC3-I ratio were both elevated after KGN treatment, and the expressions of Beclin1, Atg12, Dram1, and Atg3 were enhanced likewise. These results reflect the role of KGN in promoting autophagic activities of BMMSCs. Additionally, 3-MA, an autophagy inhibitor, was used to confirm the involvement of autophagy during KGN treatment. As a result of 3-MA-induced autophagy suppression, the protein and mRNA levels of ALP and Runx2 in KGN-treated BMMSCs were sharply downregulated, and osteogenic differentiation activity was attenuated. The finding demonstrated that autophagy is essential in KGN-induced osteogenic differentiation.

Studies have shown that autophagy is involved in TGF-β/Smad pathway [14, 43]. Zhang et al. demonstrated that insulin inhibits the osteogenic level of BMMSCs by...
suppressing autophagic activities and enhancing premature senescence via the TGF-β1 signaling pathway [44]. The phosphorylation of Smad2/3 is also affected by autophagy, which affects a range of functions [45], such as epithelial-to-mesenchymal transition and cell migration [46]. However, the impact of autophagy on Smad1/5/9 protein remains unclear, and current studies on the correlation between autophagy and Smad proteins mostly focus on the functions of cells such as the fibroblasts and endothelial cells. In this study, KGN was found to induce phosphorylation level of Smad1/5/9 in BMMSCs. A study by Decker et al. also proposed that KGN could prompt mouse embryo limb development mainly by upregulating the phosphorylation of Smad2/3 of E11.5 limb bud mesenchymal cells [10]. This phenomenon might be attributed to stemness properties and degrees of differentiation, and the effects of KGN on various Smad phosphorylation levels in embryonic or adult stem cells could impact the osteogenic capacity. Additionally, our results further suggested that LDN [47], a selective inhibitor of the Smad signaling pathway, could suppress the differentiation ability of BMMSCs, whereas the activator SB4 [48] could rescue the inhibiting impacts of 3-MA on the osteogenic differentiation in BMMSCs. These results indicate that KGN induced autophagic activity of BMMSCs and enhanced osteogenic differentiation ability by upregulating the phosphorylation level of Smad1/5/9, which was not found in previous studies. Therefore, our findings suggest that autophagy and Smad1/5/9 play important roles not only in fibroblasts or endothelial cells but also in BMMSCs for osteogenic differentiation. However, although the roles of KGN in BMMSC osteogenic differentiation have been shown here in vitro, more in vivo studies should be further conducted. Therefore, research on the specific functions and mechanisms of KGN would be indispensable, for example, the effects of KGN on bone repair and reconstruction in different cell niches (different age stages, various types of bone defects, osteoporosis model, etc.) [49, 50], and the relationship between KGN and osteogenesis/chondrogenesis under different conditions should also be elucidated. In addition, the application of KGN in vivo is worthy of further exploration, such as combining KGN with biological scaffold materials, seed cells and growth factors to meet the needs of bone tissue engineering, and even suitable drug delivery systems (DDS) to facilitate controlled delivery of KGN [51–53]. More in-depth research to identify the mechanisms of KGN including autophagy-related gene knockout and Smad pathway validation in vivo is also required so as to better understand the role of KGN in bone regeneration.

5. Conclusions

In summary, our study has revealed that KGN plays a key role in promoting osteogenic differentiation of BMMSCs via the modulation of autophagy and phosphorylation level of Smad1/5/9 (Figure 6). The research also improves the understanding of the properties of MSCs and the roles of Smad isoforms as well as the autophagy/Smad1/5/9 signaling pathway, thereby facilitating further studies to explore osteogenic capacity of MSCs in bone regeneration and clinical treatment of bone tissue engineering.

Data Availability

The authors confirm that all data underlying the findings are fully available. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare that they have no competing interests.
Authors’ Contributions
Huichun Yan and Tingting Yu have contributed equally to this work as co-first authors.

Acknowledgments
This work was supported by the National Science Foundation of China (grant numbers 81970909 and 51903003), Young Scientists Fund of PKUSS (grant numbers 20110203 and 20170109), Open Foundation of the State Key Laboratory of Military Stomatology (grant number 2020KA01), Key R&D Plan of Ningxia Hui Autonomous Region (grant number A2021057), National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project of PKUSS (grant number PKUSSNMP202020), Young Elite Scientist Sponsorship Program by CAST (grant number 2021QNR001), and Natural Science Foundation of Beijing Municipality (grant number 7192290).

Supplementary Materials
Supplementary Figure 1: the titration data of KGN for BMMSC osteogenesis. (A) ARS and (B) semiquantification of mineralized nodules of KGN-induced BMSC osteogenesis at different concentrations from 0.1 μM to 100 μM. Scale bar = 500 μm. (C, D) qRT-PCR showed the expression levels of ALP and Runx2 at different concentrations of KGN. *p < 0.05 and ***p < 0.001, one-way ANOVA test. (Supplementary Materials)

References

[38] X. Q. Xu, D. Q. Shi, Y. S. Shen et al., "Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin," *Arthritis Research & Therapy*, vol. 17, no. 1, 2015.

