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Background.Agrowing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers’ attention
to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit
recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation
may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate
the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of
HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2′
-chloro-5′-nitrobenzenesulfonyl)−2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related
genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability
and proliferation rate of HCC cells. Results. In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly
decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in
the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage
capacity in the treated HCC cells. Conclusion. CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and
attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common pri-
mary liver cancer [1]. The global incidence of HCC is rising,
and it is predicted that by 2030, this cancer will be one of the
leading causes of cancer death worldwide. Patients with
advanced tumors are offered different treatments, including
systemic prescription-based therapies like sorafenib, regoraf-
enib, and nivolumab to loco-regional ablation or resection
[2–4]. Liver transplantation, immunotherapeutic and
radionuclide-based approaches, and targeted molecular and
gene therapy interventions are other advanced modalities
[5, 6]. However, the high rate of tumor recurrence after
treatment has led to a growing interest in developing inno-
vative therapeutic approaches [7].

Liver chronic inflammation results in morphological
changes and dedifferentiation of mature hepatocytes [8]. Poorly
differentiated carcinoma cells have a worse prognosis and are
more aggressive than the well-differentiated cells [9–12]. Dur-
ing epithelial-mesenchymal transition (EMT), epithelial paren-
chymal cells lose their cell-cell junctions and dissociate from
each other and from the surrounding extracellular matrix
(ECM) that results in the initiation of their migration and inva-
sion [13, 14]. EMT is also associated with enhanced stem cell
properties and drug resistance in cancer cells [15–17]. Recent
findings indicated that EMT could be switched to
mesenchymal-to-epithelial transition (MET) after modulating
the gene expression pattern of EMT-related transcription fac-
tors (TFs) such as SNAIL, SLUG, TWIST1, and ZEB1
[18–20]. MET is one of the most essential mechanisms in regu-
lating hepatocyte differentiation from definitive endoderm
(DE); such process is orchestrated by hepatocyte nuclear factor
4 alpha (HNF4α) [21]. Understanding the cellular and molecu-
lar mechanisms of the hepatocytes dedifferentiation could pro-
vide necessary insights into differentiation therapy (DT) as a
novel strategy in HCC treatment [22]. DT investigates the fea-
sibility of converting the phenotype of cancerous cells toward
a less aggressive and more differentiated one [23, 24]. Various
strategies can induce differentiation of cancer cells through
alteration of EMT molecular pathways including epigenetic
alterations, miRNA-based methods to change the expression
pattern, and TF-based mediated directed induction of signaling
pathways [20]. Given that cellular differentiation is a continu-
ous process regulated by different TFs, their application can
be a practical approach to induce differentiation of cancer cells
[25]. HNF4α is the key hepatogenesis TF which drives differen-
tiation of stem and progenitor cells to mature hepatocytes and
controls the acquisition of an epithelial phenotype [26–29]. In
adult hepatocytes,HNF4α high expression is sustained in order
to maintain the hepatocyte functions. HNF4α plays a pivotal
role in the maintenance of epithelial/hepatocyte phenotype
and regulates dynamic events of EMT by suppressing snail,
the master regulator of EMT, and increasing E-cadherin in can-
cer cells [30, 31]. Downregulation of HNF4α has been demon-
strated in HCC and its upregulation might accordingly
suppress EMT and inhibit the progression of HCC [32, 33].
Several studies have shown that the induction of HNF4α acti-
vates the expression of various hepatocytic genes which
enhances the differentiation of hepatocytes [34, 35].

The use of natural compounds as medications has gained
significant attention [36, 37]. In 2009, a study showed that
conjugated linoleic acid (CLA) acts as a natural intracellular
ligand of HNF4α [38]. CLA is an 18-carbon essential free
fatty acid with two double bonds, which were separated by
a single bond that is why it is called conjugated. Natural
forms of CLA are often found in ruminant products such
as milk or cheese. The cis-9,trans-11 (c9,t11) is the common
CLA isomer [39] and has shown its potential in treating
some malignancies. Medical evidences have proved that the
c9,t11 CLA isomer exerts its anticancer function by acting
on apoptotic genes [40]. Despite many studies on the signif-
icance of HNF4α as an important target in preventing and
treating liver malignancies, further investigations are still
required to understand the mechanism and the correlation
between CLA and HNF4α in regulating and inhibiting
EMT. This study aimed to induce HNF4a expression by
using c9,t11 isomer of CLA in order to reduce the cancerous
phenotype (invasion and migration capacity) and prolifera-
tion rate of HCC cells.

2. Materials and Methods

2.1. Preparation of Chemical Compounds. The total amount
of 50mg conjugated linoleic acid (CLA, Sigma-Aldrich Co.
Missouri, USA) was dissolved in 1780μl absolute ethanol
to prepare 0.1M CLA stock. To prepare 3.9μM BIM5078
and HNF4α antagonist (Sigma-Aldrich Co. Missouri,
USA), 25mg BIM5078 was dissolved in 1529μl DMSO. All
stocks were stored at − 20 °C in dark.

2.2. Treatment of Hep-3B and Sk-Hep-1 cells with CLA. Two
HCC cell lines taken from the Royan Institute cell bank were
used in this study: Sk-Hep-1, an invasive endothelial hepatic
carcinoma cell line, and Hep-3B, poorly differentiated pri-
mary liver cancer cells. No mutation in the HNF4α gene
has been reported in both cell lines according to Broad Insti-
tute and CCLE databases.

Both cell lines were cultivated in Dulbecco’s modified
Eagle’s medium (DMEM, high glucose, Life Technologies)
supplemented with 10% fetal bovine serum (Life Technolo-
gies), 1% GlutaMAX™ (Life Technologies), 1% non-
essential amino acid (Life Technologies), 1% penicillin-
streptomycin (Life Technologies), and 0.1% 2-Mercapto eth-
anol (Sigma-Aldrich), at 37 °C and 5% CO2. The medium
was changed every day, and passaging the cells was per-
formed when 90% confluency was reached. The effects of
treatments were evaluated twenty-four hours after cells plat-
ing, by using different concentrations of CLA or BIM in FBS
free media for 48 h. The media were renewed every 24 h.
After 48 h the samples were collected for analyses.

2.3. Cell Proliferation Assay. Sk-Hep-1 and Hep-3B cells
were plated in 96-well plate (3 × 103 cells/well) in 100μl cul-
ture medium and incubated overnight. The dose escalation
data for both compounds at different time points were pre-
sented in Supplementary Figure 1(b). Accordingly, The
cells were treated with different concentrations of CLA
(Sk-Hep-1: 30 and 60μM, Hep-3B: 80 and 100μM) or
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BIM (Sk-Hep-1: 390 and 780nM, Hep-3B: 780 and
1170 nM). To assess the cell proliferation rate in those
different experimental conditions, Orangu™ kit (Cell
Guidance Systems, Cambridge, UK) was used at 24 and
48 h after treatment, while metabolic activity was
quantified by measuring light absorbance at 450nm [41]
and compared to the control nontreated group.

2.4. Colony Formation Assay. To evaluate the impact of CLA
treatment on colony formation ability of Sk-Hep-1 and Hep-
3B cells, about 10 cells/cm2 were seeded in a 6-well plate and
cultured for four days in DMEM supplemented with 10%
FBS. Then, Sk-Hep-1 and Hep-3B cells were, respectively,
treated with 60 and 100 μM CLA or BIM and 780nM and
1170nM in serum free medium. After 14 days, the emerged
colonies were fixed by using 4% formaldehyde and stained
by 0.5% crystal violet. Imaging was performed by inverted
microscope (Olympus CKX41). The total number and the
surface area of each colony were measured by ImageJ soft-
ware (version 1.46).

2.5. RNA Extraction and Quantitative Real-Time PCR. Total
RNA was extracted using RNA extraction kit (Macherey
Nagel, KG, Duren, Germany), and the RNA quality was
checked by gel electrophoresis (1:5 × 106 cells per test). Syn-
thesis of cDNA was performed by reverse transcription of
1μg total RNA using the cDNA synthesis kit (Life Technol-
ogies), according to the manufacturer’s instructions. Quanti-
tative real-time PCR assays were carried out using the
StepOnePlus™ Real-Time PCR System (Applied Biosys-
tems). Data analysis was performed with the Applied Biosys-
tems StepOne software v2.3. The Ct values of target genes
were normalized to GAPDH as reference gene and expressed
as fold changes compared to the control group using the
2−ΔΔCT formula. The primer sequences used are listed in
the Supplementary Table S1.

2.6. Migration Assay. The scratch assay was used to determine
the impact of CLA treatment on the migration ability of Sk-
Hep-1 and Hep-3B cells. A total number of 8 × 104 cells/cm2

were seeded in a 6-well plate at 37 °C overnight. Cells were
treated with Mitomycin C (5μg/ml, Sigma-Aldrich Co. Mis-
souri, USA) to inhibit cell proliferation, 2 h before scratching
the culture dishes with a cell scraper or pipette tip. The
medium was refreshed, and cells were treated with CLA (Sk-
Hep-1: 60μM, Hep-3B: 100μM) or BIM (Sk-Hep-1: 780nM,
Hep-3B: 1170nM). At 0, 24, and 48h after scratching, cells
were observed under phase-contrast microscope (Olympus,
Tokyo, Japan). To measure the scratch widths and migration
velocity, Image J software (version1.46) was used, and results
were normalized vs the corresponding control groups.

2.7. Immunofluorescence Staining. To evaluate the quality of
hepatocytic differentiation, immunofluorescence analysis
was performed to visualize the expression of liver specific
proteins in both HCC cell lines after treatment with 60 or
100μM CLA (Sk-Hep-1 and Hep-3B, respectively). Next,
the samples were fixed in 4% paraformaldehyde, perme-
abilized (Triton™ X-100, Merck, Burlington MA,USA,
108634), blocked using BSA 1%, and incubated with primary

antibodies against ALB (Abcam Cat NO: ab106582, 1 : 200)
overnight at 4 °C in a moist chamber, followed by secondary
antibody incubation for one h at 37 °C (Antigoat, Alexa
Flour 488, Invitrogen, 1 : 1000). Then, the nuclei were coun-
terstained with DAPI, washed with PBS, and visualized
using a fluorescence microscope (Olympus, IX7).

2.8. ALB Secretion Assessment. The impact of CLA treatment
on ALB secretion in Sk-Hep-1 and Hep-3B cells was mea-
sured by enzyme-linked immunosorbent assay (ELISA)
(Bethyl Laboratories, Montgomery, TX, USA). Sk-Hep-1
and Hep-3B cells were treated with 60 or 100μM CLA in
6-well plates, respectively. The medium was refreshed every
day. The supernatant was collected and ALB content mea-
sured by the ELISA kit according to the manufacturer’s
instructions.

2.9. Periodic Acid-Schiff (PAS) staining. The glycogen storage
in Hep3B cells, after eight days of treatment with 100μM
CLA, was visualized using periodic acid-Schiff (PAS) kit
(Sigma-Aldrich Co. Missouri, USA) staining protocol. In
brief, the cells were fixed in 4% paraformaldehyde for
20min and then treated with periodic acid for 15min. After
washing with ddH2O, cells were incubated with Schiff’s
reagent for 5-20min. The stored glycogen was visualized
under a light microscope.

2.10. In Silico Data Analysis. The expression of HNF4α and
its association with the EMT signatures [42] and differentia-
tion markers were analyzed using TCGA-Biolink package
under R software across 372 live carcinoma samples depos-
ited in The Cancer Genome Atlas (TCGA) (https://portal
.gdc.cancer.gov/). The protein-protein interaction was per-
formed and analyzed using online version of STRING soft-
ware (https://string-db.org/).

2.11. Data Analysis. All experiments were performed at least
in three biological replicates. The data were analyzed using
Prism software (version 6.07; GraphPad Software, San
Diego, CA, United States). Since the distribution of the
quantitative data was normal, comparison between the
groups was evaluated using the ANOVA test and Fisher’s
least significant difference (LSD). The p < 0:05 was consid-
ered as statistically significant.

3. Results

3.1. CLA Treatment Reduces Cell Proliferation in Liver
Cancer Cell Lines. The expression status of HNF4a in Hep-
3B and Sk-Hep-1cell lines was initially evaluated by RT-
qPCR, and data showed downregulation of HNF4a in both
cell lines as compared to primary hepatocytes in 2D culture
(Supplementary Figure 1(a)).

Then, cell proliferation in Sk-Hep-1 and Hep-3B cells
after treatment with CLA or BIM for 24 and 48 h was quan-
tified. The cell proliferation rate for both cell lines signifi-
cantly decreased in CLA treated groups as compared to the
control groups in both time points in a dose-dependent
manner by 30 and 55% for Sk-Hep-1 and 20 and 25% for
Hep3B cells (Figure 1(a)), whereas BIM treatment
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Figure 1: Continued.
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significantly increased cell proliferation rate in both cell
lines. Furthermore, Sk-Hep-1 and Hep-3B cells which were
treated with 60 and 100μM CLA, respectively, showed a
marked reduction in cell proliferation rate compared to the
30 and 80μM CLA after 48 h. This data indicated that
CLA treatment reduced the proliferation rate in both HCC
cell lines in a dose- and time-dependent manner and at both
time points (Figure 1(a) and Supplementary Figure 1(b)).

3.2. CLA Treatment Attenuates Colony Formation Capacity
in HCC Cell Lines. To evaluate colony formation capacity
of both cell lines in terms of number and total surface area
of emerged colonies, the plated cells were treated with an
optimized concentration of CLA and BIM for each cell line
(Figures 1(b) and 1(c)). Data showed that the number of col-
onies in CLA treated groups significantly decreased in both
cell lines, while BIM treatment augmented colony formation
capacity compared to the control groups in both cell lines
(Figure 1(d)). Moreover, CLA treated colonies had a smaller
surface area compared to the control and BIM treated
groups in both cell lines (Figure 1(e)). BIM treatment in
both cell lines resulted in more extended colonies in com-
parison with control groups, respectively. Altogether, CLA
treatment considerably changed the colony-forming capac-
ity of both HCC cell lines, and the number and surface area
of the colonies were decreased remarkably.

3.3. CLA Treatment Induced Downregulation of EMT-
Related Genes. The expression of HNF4a, a central regula-
tor of hepatocytic differentiation, SNAIL2, ZEB1, ZEB2,
and CDH2 (N-CAD), EMT-related genes, and MMP14, a
cell invasion marker, was assessed in both Sk-Hep-1 and
Hep-3B cells after 48 h treatment with CLA and BIM at
optimized concentration for each cell line. CLA treatment
enhanced the expression of HNF4a in a dose-dependent
manner in both cell lines as compared to the control

groups. The upregulation of HNF4a was more than 2- to
6-fold in Sk-Hep-1 and Hep-3B cells, respectively, after
treatment compared to the control groups. Regarding
EMT-related genes, CLA treatment decreased the expres-
sion levels of SNAIL2, ZEB1&2, MMP14, and N-CAD in
a dose-dependent manner, whereas BIM treatment
induced the opposite in Sk-Hep-1 and Hep-3B cells
(Figure 2). The expression of ZEB2 was reduced in CLA
treated SK-Hep-1 cells but was essentially undetectable in
Hep3-B cells (Figure 2). Protein-protein interaction (PPI)
between HNF4a and EMT-related proteins highlighted
strong association between HNF4a and CDH1, SNAI1,
SNAI2, and ZEB2. Correlation coefficient analysis between
expression of the HNF4a and top 50 epithelial and mesen-
chymal genes across liver carcinoma samples was per-
formed [42]. These results indicate a strong negative
association (R = −0:4) between HNF4a upregulation and
reduction of mesenchymal-related genes involved in EMT
program. These results highlighted that induction of
HNF4a might suppress mesenchymal phenotype and
reduce metastatic capacity of liver carcinoma cells.

3.4. CLA Treatment Reduced the Migration Capacity of Both
HCC Cell Lines. Sk-Hep-1 and Hep-3B cells migration
capacity was assessed after treatment with CLA and BIM
for 48 h. The migration velocity of both cell lines was signif-
icantly reduced in CLA treated groups compared to control
groups (Figures 3(a), 3(b), and 3(d)). Moreover, comparison
of the total scratch area revealed that in CLA treated cells,
the vacant area in the dish after 48 h was larger compared
to the control groups in both mitomycin treated (+Mit)
and non-treated (-Mit) cells (Figures 3(c) and 3(e)). In con-
trast, BIM treatment notably enhanced the migration capac-
ity of the both cell lines as compared to the control groups
(Figure 3).
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Figure 1: The proliferation rate and colony formation capacity of Hep-3B and Sk-Hep-1 cells after treatment with CLA or BIM for 48 h. (a)
Sk-Hep-1 and Hep-3B cells which were treated with different concentrations of CLA (30, 60, 80, and 100 μM) showed a significant reduction
in proliferation rate in a dose-dependent manner as compared to the control groups (n = 3). Also the proliferation rates in both cell lines
increased significantly after treatment with BIM. (b), (c), (d), (e) CLA treatment reduced the number of colonies and total area of them
in both cell lines compared to the control groups. Also, the number and total area of colonies in BIM treated groups increased
significantly compared to the control groups in both cell lines. Data are presented as the mean ± SD, n = 3 (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p <
0:001, and ∗∗∗∗p < 0:0001).
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3.5. CLA Improved Hepatocytic Differentiation of Hep-3B
Cells through HNF4α Activation. Since the Sk-Hep-1 cells
are stromal hepatic cancer cells and originated from endo-

thelial cells, hepatocytic differentiation analysis and func-
tional evaluations were presented only on Hep-3B cells in
the manuscript. To assess the effects of CLA on the
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cells. Data are presented as the mean ± SD, n = 3 (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001).
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Figure 3: Continued.
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induction of differentiated phenotype of Hep-3B cell line,
expression levels of albumin in CLA treated cells were ana-
lyzed eight days post treatment.

Significantly enhanced expression of ALB was shown in
CLA treated Hep-3B cells, while BIM treatment decreased
the expression level of this protein (Figure 4(a)). ELISA
assay confirmed that CLA treated Hep-3B cells significantly
secreted more ALB rather than BIM treated cells and respec-
tive control group (Figure 4(b)). In line with ALB protein
expression level, ALB gene expression increased after treat-
ment with 100 μM CLA compared to the control group
(Figure 4(c)).

To perform more assessments in terms of differentiation
evaluation in CLA treated Hep-3B cells, glycogen storage
was also evaluated. Glycogen storage was notably enhanced
following CLA treatment as shown by using PAS staining
method. On the contrary, BIM treatment decreased glycogen
storage compared with the control group (Figure 4(d)). Sup-
plementary Figure 2 presents the hepatocytic differentiation
analysis for Sk-Hep-1 cells after treatment with CLA. This
treatment improved ALB expression based on IF staining.
Moreover, CLA treatment significantly upregulated ALB
and Cyp3A4 mRNA expression in Sk-Hep-1 cells.

3.6. In Silico Data Analysis Showed Strong Association
between HNF4a and Specific Genes. Protein-protein interac-
tion (PPI) between HNF4a and classical EMT-related pro-
teins highlighted a strong association between HNF4a and
CDH1, SNAI1, SNAI2, and ZEB2 (Figure 5(a)). Correlation
coefficient analysis between expression of HNF4a and top 50
epithelial and mesenchymal genes derived from (PMID:
25214461) across liver carcinoma samples (n = 372) indi-
cated a strong negative association (R = −0:4) between the
upregulation of HNF4a expression and the reduction of
mesenchymal-related genes involved in EMT program
(Figure 5(b)). Compared to the mesenchymal genes, a weak

negative association (R = −0:036) was observed between
HNF4a expression and epithelial genes. These results high-
lighted that induction of HNF4a might suppress the mesen-
chymal phenotype and deteriorate the metastatic capacity of
liver carcinoma cells. The scatter plot depicts positive associ-
ation between HNF4a and the expression levels of ZO1 and
ALB across 372 liver carcinoma samples from TCGA
(Figure 5(c)).

4. Discussion

HNF4α is a liver-enriched TF that plays important roles
including in gluconeogenesis and lipid metabolism [43,
44]. Numerous studies have shown that HNF4α expression
is reduced in HCC patients in a stage dependent manner.
Interestingly, the upregulation of HNF4α in cancer cells
has been shown to be strongly associated with tumorigenesis
suppression via induction of differentiation [45–47]. Over-
expression of HNF4α is associated with a reduced prolifera-
tion rate and regulated expression of genes involved in the
control of hepatocyte cell cycle [48]. Therefore, restoring
the expression of HNF4α could be an influential milestone
to reverse the HCC phenotype. Various molecular mecha-
nisms control the expression of this TF at different levels,
including epigenetic, transcriptional and post-
transcriptional modifications [45, 49, 50]. Thus, several
strategies have been employed to induce HNF4a overexpres-
sion in cancer cells using long-non coding RNAs, premade
DNA vectors for HNF4a, miRNAs, small molecules, recom-
binant proteins, and growth factors [47, 51–60]. Recently,
natural compounds have drawn much attention in the dis-
covery and development of novel anticancer agents [61].
Natural compounds are bioactive ingredients produced by
living organisms like animals, plants, fungi, and microorgan-
isms that can selectively regulate signal transduction path-
ways and epigenetic mechanisms to modulate gene
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Figure 3: CLA treatment inhibited in vitro migration of HCC cell lines. (a), (b), (d) Scratch assay analysis showed that CLA treatment (Sk-
Hep-1: 60μM, Hep-3B: 100μM) reduced the migration velocity of both HCC cell lines with or without mitomycin C treatment as compared
to the control groups. However, BIM treated groups (Sk-Hep-1: 780 nM, Hep-3B: 1170 nM) showed enhanced motility in both experimental
groups. (c), (e) The scratched areas that remained vacant were larger in CLA treated groups in comparison with control groups in both cell
lines. BIM treatment in both cell lines resulted in an enhanced motility of cells and covering of almost all scratched areas. Data are presented
as the mean ± SD, n = 3 (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001).
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expression [62]. Studies have shown that CLA as a natural
compound mainly found in ruminant products induces a
decreased proliferation rate of cancer cells [63]. The multiple
anticancerous effects of CLA were shown in a variety of can-
cers including HCC1. The literature was found that CLA
exerts anticancerous features though different mechanisms
including ER stress, autophagy, and PPAR γ. Our finding
revealed that CLA could reduce cancerous phenotypes such
as proliferation and colony formation, which were discussed
in the following section [64–66].

Considering the association between the overexpression
of HNF4a and reduction in cancerous phenotype of HCC
cells, in the present study through a differentiation therapy
approach, we investigated the effect of HNF4a induced

expression in HCC cell lines after treatment with CLA, the
natural ligand of HNF4a. Hep-3B as primary and Sk-Hep-
1 as stromal liver cancer cell lines were assessed to show
whether CLA treatment can reduce various cancerous fea-
tures including proliferation rate, colony formation, and
migration capacity. Our results showed that CLA treatment
reduced proliferation rate, colony formation capacity, and
migration of cancerous cells, whereas the expression of
EMT-related genes was downregulated in a dose-
dependent manner, while ALB production and glycogen
storage capacity significantly increased. Results of a study
demonstrated that the two isomers of CLA, trans10, cis12
(t10, c12), and c9,t11 have essential roles in growth inhibi-
tion in colon and prostate cancers. Treatment of Caco-2 cells
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Figure 4: HNF4α induction resulted in improved hepatocytic differentiation of Hep-3B cells after CLA treatment. (a) Immunofluorescence
staining revealed the remarkable expression of ALB in the CLA treated Hep-3B cells compared to the BIM treated and control group. (b)
CLA treatment increased ALB secretion from Hep-3Bcells. (c) The relative mRNA expression of the ALB gene was increased after
treatment with CLA in Hep-3B cells compared to the control group. (d) PAS staining showed glycogen accumulation in CLA treated
cells as compared to BIM treated group. PAS: periodic acid-Schiff staining. Data are presented as the mean ± SD, n = 3 (∗p < 0:05 and ∗∗

p < 0:01).
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Figure 5: In silico data analysis. (a) Analysis of protein-protein interaction (PPI) between HNF4a and classical EMT-related proteins
highlighting a strong association between HNF4a and CDH1, SNAI1, SNAI2, and ZEB2. (b) Correlation coefficient analysis between
expression of HNF4a and top 50 epithelial and mesenchymal genes derived from (PMID: 25214461) across liver carcinoma samples
(n = 372). These results indicate a strong negative association (R = −0:4) between the upregulation of HNF4a expression and the
reduction of mesenchymal-related genes involved in EMT program. Compared to the mesenchymal genes, a weak negative association
(R = −0:036) was observed between HNF4a expression and epithelial genes. These results highlighted that induction of HNF4a might
suppress the mesenchymal phenotype and deteriorate the metastatic capacity of liver carcinoma cells. (c) The scatter plot depicts positive
association between HNF4a and the expression levels of ZO1 and ALB across 372 liver carcinoma samples from TCGA.
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with c9,t11 and t10,c12 isomers changed the expression pat-
tern of lipid metabolism-related genes. Moreover, CLA
treatment inhibited cell proliferation in breast cancer cells,
and at the cytostatic concentration, CLA treatment caused
cell cycle arrest in G1 [67]. Furthermore, in another study,
the expression of HNF4a was upregulated after treatment
with t10,c12 CLA [28]. However, the mechanism of CLA
action on cell proliferation in various cancer cells was not
clearly defined [68]. Correlation coefficient analysis between
the expression of HNF4a and top 50 epithelial and mesen-
chymal genes across liver carcinoma samples demonstrated
a strong negative association between the upregulation of
HNF4a expression and reduction of mesenchymal-related
genes involved in EMT process. Our data were also sup-
ported by in silico data and were in line with other stud-
ies [42].

The results suggested that CLA treatment may signifi-
cantly reduce invasiveness capacity of cells through the
reduction of EMT markers at the transcription level
(Figure 2). On the other hand, substantial experimental evi-
dence supports the contribution of hepatocytes that undergo
EMT that form myofibroblasts in the injured liver. There-
fore, it seems that CLA treatment can also prevent progres-
sion of liver fibrosis through EMT suppression [69].

The expression of HNF4a isoforms is tissue specific, and
the liver expression pattern of HNF4a was remarkably chan-
ged during HCC progression. In this study, c9,t11 CLA iso-
mer is used to induce HNF4a expression. Our results showed
that CLA treatment of Sk-Hep-1 as the most invasive and
endothelial tumor, and Hep-3B as the most undifferentiated
HCC cell line, could reduce the proliferation rate as well as
the number and size of colonies in a dose- and time-
dependent manners. Some studies have shown a negative
feedback loop between HNF4a and EMT-related genes [9,
70]. In our study, CLA treatment significantly increased
the expression of HNF4a while inducing a significant
down-regulation of EMT-related genes such as Snail in both
cell lines. Furthermore, CLA treatment reduced the invasive-
ness of HCC cells and improved their hepatocytic differenti-
ation phenotype, i.e., ALB secretion and glycogen storage.

The reduction of CLA in NAFLD and diabetic obese
patients demonstrated the correlation between CLA and reg-
ulation of energy metabolism and maintenance of metabolic
homeostasis in the liver [71]. CLA can also induce signifi-
cant changes in the fatty acid profile of the liver [72]. In
our study, we found that CLA treatment can also regulate
the metabolic activity of cancerous cells and induce the
expression of ALB and improve glycogen storage capacity.
Altogether, our results, in correlation with our in silico find-
ings, indicated the importance of HNF4a in mediating the
EMT and MET in HCC cells as supported by the effects of
CLA treatment on hepatocytic differentiation of HCC cells
and the reduction of their cancerous features. Altogether,
these results suggested that CLA might be used as a novel
and natural differentiation inducing component for liver
carcinoma cells. Our findings were acquired from in vitro
experiments, and in near future we will evaluate such inhib-
itory effects of CLA on animal models to provide more reli-
able evidence to further clinical investigation.
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Supplementary Materials

Supplementary Figure 1: (a) Relative mRNA expression of
HNF4α in both HCC cell lines, Sk-Hep-1, and Hep-3B cells.
The transcription level of HNF4α is very low in Hep-3B and
Sk-Hep-1 cells. The expression of HNF4α was normalized to
primary hepatocytes. (b) The proliferation rate of Sk-Hep-1
and Hep-3B cells was measured after treatment with differ-
ent concentrations of CLA and BIM in two time points
24 h and 48h. Treatment with CLA reduced the proliferation
rate in a dose dependent manner in Sk-Hep-1 cells at both
time points. Hep-3B cells also showed significant decrease
in proliferation rate after treatment with CLA at both time
points. BIM treatment induced proliferation rate in both cell
lines at both time points. Data are presented as the mean
± SD, n = 3 (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗
∗p < 0:0001). Supplementary Figure 2: (a) Immunofluores-
cence staining induced the expression of ALB in CLA treated
Sk-Hep-1cells as compared to the BIM treated and control
groups. ALB expression is suppressed after treatment with
BIM. (b) The relative mRNA expression of the ALB, E-
Cad, and CYP3A4 genes was increased after treatment with
CLA in Sk-Hep-1cells as compared to the control group.
BIM treatment resulted in significant decrease in the E-Cad
and ALB genes. Data are presented as the mean ± SD, n = 3
(∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001
). Supplementary Table 1. The list of primers used in this
study. (Supplementary Materials)
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