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Background. Nonstructural maintenance of non-SMC condensin I complex subunit G (NCAPG) exerts critical effects on cancer
progression. However, its biological roles in tumorigenesis and metastasis remain unclear. Thus, we aimed to assess the prognostic
utility of NCAPG in stomach adenocarcinoma (STAD) and its potential as a tumor biomarker. Methods. Pan-cancer expression
profile dataset from public databases and corresponding clinical information were extracted. Single-sample gene set enrichment
analysis (ssGSEA) was performed for the evaluation of immune correlations pan-cancer. Subsequently, we focused on STAD
and evaluated the methylation profiles, copy number variants (CNVs), and single nucleotide variants (SNVs). Immune features
were analyzed between high and low NCAPG expression groups. Differential analysis was performed between high and low
expression groups to identify differentially expressed genes (DEGs). Prognostic DEGs were screened by univariate analysis, and
an NCAPG-based risk model was constructed based on the prognostic DEGs and LASSO analysis. Results. NCAPG expression
in STAD was significantly and positively correlated with four immune checkpoints, namely, CTLA4, PDCD1, LAG3, and
CD276, but was negatively correlated with the infiltration of most immune cells. High and low NCAPG expression groups had
differential overall survival, tumor mutation burden, and differential enrichment of therapeutic-related pathways. An immune
risk scoring model related to NCAPG expression and immune score was constructed which showed a favorable performance in
predicting STAD prognosis as well as predicting the response to immunotherapy. In addition, we found a higher mRNA
stemness index (mRNAsi) in the high-risk group and a positive correlation between NCAPG expression and mRNAsi.
Conclusion. NCAPG was suggested to be involved in the regulation of tumor microenvironment in STAD. High NCAPG
expression was related to high tumor stemness and good prognosis. The immune risk model had a potential to predict STAD
prognosis and help directing therapeutic treatment.

1. Introduction

Cancer is a major reason for the deterioration of quality of
life globally and is the top cause of mortality; to date, there
is no cure for cancer [1]. Immunotherapy has emerged as a
prominent treatment option for cancer in recent years; in
particular, immune checkpoint blockade agents are promis-
ing [2]. Using improved and updated datasets available
through public databases such as The Cancer Genome Atlas
(TCGA), new immunotherapeutic targets can be identified
by performing pan-cancer gene expression analysis and eval-

uating their correlation with relevant signaling pathways and
clinical prognosis [3].

The possible regulatory role of cohesin complexes (con-
densin complexes) in several cancer types including colon
adenocarcinoma and hepatocellular carcinoma has been
recently described. In cancer, these condensin complexes
exert various impacts on the progression and drug resistance
[4]. Nonstructural maintenance of non-SMC condensin I
complex subunit G (NCAPG) is essential for chromatin
segregation [5]. NCAPG is encoded by the NY-MEL-3 gene
and is mapped to chromosome 4p 15.32 in humans [6]. In
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prostate cancer, a high NCAPG expression is related to a
poor prognosis [7], and its knockdown combined with
temozolomide treatment results in coinhibitory impacts
on advanced pediatric glioma cells [8]. NCAPG is a hub
protein, showing high connectivity in the protein-protein
interaction (PPI) network in hepatocellular carcinoma
and promotes cellular proliferation [9, 10]. Additionally,
studies on stomach adenocarcinoma (STAD) suggest that
through the Wnt/β-catenin signaling pathway by promot-
ing epithelial-mesenchymal transition, NCAPG overexpres-
sion inhibits apoptosis in cardia adenocarcinoma [11].
Moreover, dysregulation of KNL1, miR-1179, NCAPG,
miR-193b-3p, and miR-148a-3p may lead to STAD progres-
sion [12]. However, the mechanism underlying NCAPG-
mediated proliferation in these cancers remains unknown,
and its utility as a tumor-associated biomarker warrants fur-
ther investigation.

The potential impact of NCAPG on several cancer types
warrants clarification. We used two databases, Gene Expres-
sion Omnibus (GEO) and TCGA, to assess NCAPG expres-
sion in different types of cancers and their relationship with
prognosis. We also investigated the immune correlation with
NCAPG expression for 33 cancer types and subsequently
found the strongest relationship for STAD. Next, we ana-
lyzed the potential associations between NCAPG and muta-
tional types, DNA methylation profile, tumor mutation
burden (TMB), immune infiltration levels, and clinical
responses. We performed a PPI analysis of immune-
associated differential genes with NCAPG to investigate its
biological functions in the tumor. Finally, an immune risk
score (IRS) model was constructed and the performance of
the related score was better than that of the TIDE score. In
conclusion, our results suggested that NCAPG may underlie
implications as a prognostic factor and a potential bio-
marker for STAD. Thus, we provide insight into the role of
NCAPG in STAD immunotherapy.

2. Methods

2.1. Data Source and Preprocessing. The bioinformatics anal-
ysis in this study was partially supported by Sangerbox
(http://vip.sangerbox.com/) [13]. Thirty-three TCGA pan-
cancer datasets comprising RNA sequencing (RNA-seq)
expression profiles, survival information, and somatic muta-
tional profile were extracted from https://xenabrowser.net/
(UCSC Xena). The RNA-seq data in fragments per kilobase
million (FPKM) were converted to the transcripts per mil-
lion (TPM) format, following which log2 transformations
were performed. The downloaded somatic mutation data
were already processed by mutect analysis. Finally, following
the processing of the copy number variation (CNV) data by
the GISTIC algorithm, these were extracted from UCSC
Xena, while the methylation profiles were obtained from
the LinkedOmics data portal (http://linkedomics.org).

We obtained the STAD-GEO cohort from https://www
.ncbi.nlm.nih.gov/geo/ (GEO database), i.e., GSE66229,
GSE84437, GSE26942, GSE13861, GSE28541, and GSE26253
comprising detailed survival data. The STAD sample data
were preserved.

Three immunotherapy-associated cohorts, namely,
GSE135222 (NSCLC), GSE91061 (melanoma), and GSE78220
(melanoma), were extracted. Complete expression data and
corresponding detailed clinical information for a STAD
immunotherapy-associated cohort (IMvigor210) were
obtained using the Creative Commons 3.0 license (from
http://research-pub.Gene.com/imvigor210corebiologies/).

2.2. Tumor Immune Microenvironment and Immune
Infiltration Analysis. The single-sample gene set enrichment
analysis (ssGSEA) in GSVA R package [14] was used to deal
with the problem that single sample cannot perform GSEA.
Therefore, the extent of multiple immune cell infiltration
was estimated with the ssGSEA function in the GSVA pack-
age in R software. Using the Estimation of STromal and
Immune cells in MAlignant Tumor tissues using the Expres-
sion data method (ESTIMATE), the tumor immune micro-
environment score of samples was assessed [15]. Stromal,
Immune, and ESTIMATE scores were computed and the
differential distributions were compared.

2.3. Functional Enrichment Analysis. The limma package
was utilized for differential expression analysis [16], and differ-
entially expressed genes (DEGs) were identified based on false
discovery rate ðFDRÞ < 0:05 with jlog2ðfold changeÞj > 1.

Gene set containing the GSEA input file comprising the
expression profile data was obtained (c2.cp.kegg.v7.0.sym-
bols.gmt). Enriched pathways were selected, and GO anno-
tation for DEGs was performed using the WebGestaltR
package in R (v0.4.2) with P < 0:05 considered statistically
significant [17].

2.4. Construction of the PPI Network. STRING (web version
v11.0; https://string-db.org/) database was queried for the
known and predicted PPIs. It is a database comprising infor-
mation from 2031 species and 9.6 million proteins with 13.8
million interactions. The PPI network was constructed to
uncover the core regulatory genes and visualized by using
Cytoscape.

2.5. Construction of the IRS Model. In the GSE66229 dataset,
random sampling was performed with a sampling ratio of
train : test = 1 : 1. Univariate analysis was performed in the
training dataset, and prognostic genes were obtained
(P < 0:05). The best genes were further selected using
LASSO. The R package, glmnet [18], was utilized to build
the LASSO regression model with prognostic genes as the
input.

Based on the formula defined by the sample risk score,
the risk-related prognostic risk score (RiskScore) was com-
puted for each sample as follows: RiskScore = Σβi × Expi,
where Expi indicates the gene signature expression and β
is the corresponding gene LASSO regression coefficient.
According to the median, patients were classified into high
and low RiskScore groups. Survival curves were plotted for
prognostic analysis by the Kaplan-Meier method, and the
significance of differences was determined using a log-rank
test. ROC analysis of RiskScore was performed using the
timeROC package [19] in R for prognostic classification.
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2.6. TIDE Analysis for the Effectiveness of Immunotherapy.
Tumor Immune Dysfunction and Exclusion (TIDE) [20]
analysis is utilized to identify biomarkers to predict the
therapeutic responses to immune checkpoint inhibitors/
drugs by a comprehensive analysis of several tumor expres-
sion profiles (http://tide.dfci.harvard.edu/). The sensitivity
to immune checkpoint inhibitors is obtained as a TIDE
score.

2.7. Calculation of Tumor Stemness. The expression data of
embryonic stem cells (ESCs) and induced pluripotent stem

cells (iPSCs) was downloaded from the Progenitor Cell Biol-
ogy Consortium (PCBC) database (https://www.synapse
.org/pcbc) [21]. The Ensembl IDs of SC samples were trans-
ferred to gene symbols. Only the protein genes were
remained. A total of 78 SC samples were included. Gelnet
(v1.2.1) R package (https://cran.r-project.org/web/packages/
gelnet/index.html) was applied to analyze the mRNA stem-
ness index (mRNAsi) of SCs. For the expression data, mean
centering was used to normalize the samples. One-class
logistic regression (OCLR) was conducted to calculate the
weight vector of each gene. Then, we predicted the mRNAsi
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Figure 1: Pan-cancer immunological correlation with gene NCAPG. (a) Correlation between NCAPG and immunomodulators
(chemokines, receptors, MHC, and immunostimulants). (b–e) Correlation between NCAPG and four immune checkpoints, namely,
PDCD1, CTLA4, CD274, and LAG3. Points represent the cancer types. The y-axis represents the Pearson correlation coefficient, while
the x-axis represents -log10 (P value). (f) Spearman correlation coefficients between NCAPG gene expression and 28 tumor-associated
immune cells in 33 different cancer types are represented by colors. Asterisks indicate statistically significant P values for Spearman
correlation analysis (∗ represents P < 0:05).
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of TCGA samples based on the Spearman correlation analy-
sis between the expression data and the weight vector of
genes. The Spearman correlation coefficients (coef) were
normalized according to the formula mRNAsi = ½coef −
min ðcoefÞ/max ðcoefÞ�, where min ðcoefÞ represents the
minimum coefficient and max ðcoefÞ represents the maxi-
mum coefficient. Finally, mRNAsi ranging from 0 to 1 was
obtained.

3. Results

3.1. Pan-Cancer Immunological Correlation with NCAPG.
Four types of immunological characteristics, namely, che-
mokines, immunostimulators, MHCs, and receptors, were
identified from the literature [22]. The Spearman correlation
coefficient was computed between NCAPG and the genes of
immunological characteristics in pan-cancer data, and the
correlations varied significantly across different cancer types,
such as UVM (uveal melanoma), KICH (kidney chromo-
phobe), and THCA (thyroid carcinoma) tumors showing
positive correlation, while THYM (thymoma), TGCT (tes-
ticular germ cell tumors), and others exhibiting negative cor-
relation (Figure 1(a)). We evaluated the correlation of four
key immune checkpoint genes, namely, PDCD1, CTLA4,
CD276, and LAG3, with NCAPG in different tumors by
Pearson correlation analysis. The result exhibited that they
were all positively correlated with NCAPG expression in
STAD (Figures 1(b)–1(e)). We evaluated 28 immune cell
scores in different cancer types by ssGSEA and calculated
their correlation with NCAPG. NCAPG gene expression in
STAD showed a significant negative correlation with the

immune scores of 16 immune cells (Figure 1(f)). We
assessed the gene expression of NCAPG in pan-cancer and
found significant differences of NCAPG expression between
tumor samples and adjacent samples (Figure 2). NCAPG
expression was elevated in 21 tumor samples, including
HNSC (head and neck squamous cell carcinoma), CHOL
(cholangiocarcinoma, bile duct cancer), CESC (cervical
squamous cell carcinoma and endocervical adenocarci-
noma), BLCA (bladder carcinoma), ESCA (esophageal carci-
noma, esophageal cancer), COAD (colon adenocarcinoma,
colon cancer), BRCA (breast invasive carcinoma), KICH
(kidney renal clear cell carcinoma), GBM (glioblastoma
multiforme), LIHC (liver hepatocellular carcinoma), KIRC
(kidney renal clear cell carcinoma), KIRP (kidney renal pap-
illary cell carcinoma), LUSC (lung squamous cell carci-
noma), LUAD (lung adenocarcinoma), PRAD (prostate
adenocarcinoma), PCPG (pheochromocytoma and paragan-
glioma), SARC (sarcoma), UCEC (uterine corpus endome-
trial carcinoma), READ (rectum adenocarcinoma, rectal
adenocarcinoma), STAD, and THCA.

According to the results of pan-cancer analysis, NCAPG
correlated with the four types of immunological signatures
as well as four important immune checkpoints in STAD.
The expression of NCAPG was significantly lower in para-
cancer relative to STAD samples. Furthermore, survival time
between low and high expression groups showed significant
differences in most of the tumors (Fig. S1). Therefore, we
were interested in elucidating the role of NCAPG in STAD.

3.2. Analysis of SNVs, CNVs, and Methylation Profile in
STAD. The STAD samples were classified into two groups
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with the best cutoff for NCAPG expression determined by
survminer R package (Figure 3(a)). The high NCAPG
expression group showed a more favorable prognosis, indi-

cating that NCAPG may be a protective factor for STAD.
Next, we plotted the 10 genes with the highest mutation fre-
quencies between the expression groups. The mutation
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Figure 3: Analysis of SNVs, CNVs, and methylation profiles in STAD. (a) KM curve with 0 as the cutoff after expression z-score
transformation; (b) mutational distribution for the top 10 genes with the highest mutation frequency in NCAPG expression subgroups;
(c) comparison of TMB distribution between NCAPG expression subgroups; (d) NCAPG amplification subgroups based on expression
differences; (e) correlation analysis for NCAPG expression and methylation status (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001; ∗∗∗∗, P <
0:0001; ns, P > 0:05).
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Figure 4: Continued.
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Figure 4: Comparative analysis for immune profiles of NCAPG subgroups in STAD. (a–d) Expression differences of different types of genes
(chemokines, receptors, MHC, and immunostimulants) between NCAPG subgroups in STAD; (e) heat map of differential expression among
gene types (chemokines, receptors, MHC, and immunostimulants) in STAD (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001; ∗∗∗∗, P < 0:0001; ns,
P > 0:05).
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Figure 5: Continued.
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frequencies of TP53, TTN, SYNB1, RB1, KMT2D, and
ARID1A were higher in the low expression group
(Figure 3(b)). We then assessed the differences in the TMB
of NCAPG between the groups. TMB was markedly higher
in the NCAPG high expression group relative to the NCAPG
low expression group (Figure 3(c)).

NCAPG expression in the presence of CNV amplifica-
tions versus deletions was significantly different from that
in the case of the normal copy number, i.e., significantly
upregulated expression was associated with CNV amplification
while significantly downregulated expression was associated
with CNV deficiency (P < 0:0001, Figure 3(d)). Meanwhile,
the expression of NCAPG correlated negatively with the meth-
ylation profile of NCAPG (Figure 3(e), R = −0:215).

3.3. Comparative Analysis of the Immune Profiles between
NCAPG Expression Groups in STAD.We analyzed the differ-
ential expression of four types of genes including chemo-
kines, immunostimulators, MHCs, and receptors, between
the two NCAPG expression groups. Among the receptors,
genes including CCR7, CCR10, and CXCR5 were signifi-
cantly higher in the NCAPG low expression group relative
to the NCAPG high expression group (Figure 4(a)). In con-
trast, among the MHCs, genes including HLA-A, HLA-B,
and HLA-C were significantly lower in the NCAPG low
expression group relative to the NCAPG high expression
group (Figure 4(b)). Among the immunostimulators, genes
including CD276, CD80, and ICOS were significantly lower
in the NCAPG low expression group relative to the NCAPG
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Figure 5: Differences in the distribution of immune cell scores between NCAPG subgroups. (a) Differences in immune cell scores
between the high and low NCAPG groups. (b) Differences in five effector genes among five TIICs (CD8+ T cells, NK cells, macrophages,
Th1 cells, and dendritic cells) between the high and low NCAPG groups. (c) Correlation between NCAPG and immune checkpoints.
Colors and values indicate Spearman correlation coefficients (X represents P > 0:05) (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001; ∗∗∗∗, P <
0:0001; ns, P > 0:05).
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high expression group (Figure 4(c)). Finally, among the che-
mokines, CCL3, CCL4, and CCL18 were significantly higher
in the NCAPG high expression group than in the low
expression group (Figure 4(d)). Overall, the four key
immune checkpoint genes differed significantly between
the two evaluated groups (Figure 4(e)).

We compared the distributional differences of 28
immune cell scores between the NCAPG group, and 16 of
them showed significant differences with high scores in the
NCAPG low expression group (Figure 5(a)). We then per-
formed immune infiltration analysis in STAD, calculated
the association between immune infiltration scores and
NCAPG expression, and performed a differential analysis
of marker genes in five cell types, namely, dendritic_cell,
CD8_T_cell, Th1_cell, NK_cell, and macrophage. In the
NCAPG low expression group, FLT3LG was markedly
upregulated (Figure 5(b)). We also assessed the association
between immune checkpoints and NCAPG expression; sig-
nificant slight positive correlations with immune check-
points including CD80, CTLA4, IDO1, and CD274 were
recorded (Figure 5(c)).

3.4. NCAPG Expression Predicts the Clinical Responses to
Immune Checkpoint Blockade (ICB) in STAD. The correla-
tion between NCAPG expression and pan-cancer T cell
inflammation score was assessed; but no significant correla-

tion was observed (Figure 6(a)). Additionally, in subgroups
with different ICB responses, the correlation between
NCAPG expression and immune features (immune check-
points, immunotherapy-related features, and expression of
TIIC effector genes and immunomodulators) (Figure 6(b))
was assessed; NCAPG expression was not correlated with
any of these features.

The association of scores of STAD tumors with immune-
related pathways was evaluated; between the two NCAPG
expression groups, significant differences in the associated
immune pathways were noted (Figure 6(c)). For instance,
smooth muscle and myofibroblasts pathways showed a pre-
dominant negative association with high NCAPG expres-
sion, while the trend was opposite in the low NCAPG
group. We compared the mutation frequencies in ARID1A,
RB1, ERBB2, and FANCC, which are associated with radio-
therapy, between the NCAPG groups (Figure 6(d));
ARID1A, ATM, ERBB2, RB1, ERCC2, and FANCC were
more frequently mutated in the high NCAPG group. We
compared the differences in EGFR_network, immune_
inhibit_oncogenic_pathways, and radiotherapy_predicted_
pathways between the groups (Figure 6(e)). The high
NCAPG group correlated positively with DNA_replication
and cell_cycle pathways among the radiotherapy_pre-
dicted_pathways type, while the trend was opposite in the
low NCAPG group.

EGFR_ligands

KDM6B

WNT−..−catenin_network

PPARG_network

FGFR3−coexpressed_genes

IDH1

VEGFA

DNA_replication

Cell_cycle

Hypoxia

Group

Type
EGFR_network

Immune_inhibit_oncogenic_pathways

Radiotherapy_predicted_pathways

Score

−2

−1

0

1

2

Group
High

Low

High Low

(e)

Figure 6: NCAPG immune signature analysis. (a) Correlation between NCAPG and pan-cancer T cell inflammation scores. (b) Pearson
correlation analysis between NCAPG and immune checkpoints (X represents P > 0:05). (c) Correlation between NCAPG and molecular
subtypes and features of STAD using seven different algorithms. (d) Mutational profiles of genes associated with neoadjuvant
chemotherapy between low and high NCAPG groups. (e) Correlation between NCAPG and enrichment scores for several treatment
features including targeted and radiation therapies (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001; ∗∗∗∗, P < 0:0001).
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3.5. Identification of Immune-Related DEGs and PPI
Network Analysis. The ESTIMATE algorithm was used to
compute the immune and stromal scores, and two groups
corresponding to each of them were classified. In the corre-
lation analysis, expectably, we observed a significantly nega-
tive correlation of NCAPG expression with immune score
and stromal score (R = −0:178 and -0.352, respectively, Fig.
S2). We next divided STAD samples into two groups accord-
ing to the cutoff values determined by survminer R package
of NCAPG expression, immune score, and stromal score,
respectively. Differential expression analysis identified the
upregulated and downregulated DEGs between low and high
NCAPG expression groups, low- and high-immune score
groups, and low- and high-stromal score groups. Given that
a negative correlation of NCAPG expression with immune
score and stromal score was observed, we therefore per-
formed an intersection analysis among upregulated DEGs
of NCAPG group and downregulated DEGs of immune
and stromal groups. A total of 19 DEGs were overlapped
in the above three groups (Figure 7(a)). By using the same
analysis, we identified 430 overlapping in downregulated
DEGs of NCAPG group and upregulated DEGs of immune
and stromal groups (Figure 7(b)).

GO annotation and KEGG functional enrichment analy-
ses for the DEGs were performed using WebGestaltR. Genes

were closely related to pathways of tumorigenesis and
immune responses (Figures 7(c)–7(f)), including regulation
of angiogenesis, B cell receptor signaling pathway, micro-
RNAs in cancer, and pathways in cancer. STRING was used
for PPI analysis of 449 obtained DEGs. Cytoscape was uti-
lized for network visualization and the MCODE plugin for
identifying the key clusters. Five clusters with more than
10 genes (Mcode1, 2, 3, 5, and 9) were identified. KEGG
functional enrichment analysis using WebGestaltR was per-
formed to identify their functions. The Mcode3 module was
closely related to immune and tumor pathways, including
breast cancer, proteoglycans in cancer, and chemokine sig-
naling (Figure 8).

3.6. IRS Model for STAD. After the above analysis, 449
immune-related differential genes were obtained, and uni-
variate analysis revealed 248 prognosis-related genes
(P < 0:05). The top genes were further selected using LASSO,
and 10 genes were obtained according to the minimum
lambda = 0:07841627 (Figure 9(a)). These were subjected
to multifactorial analysis, and their risk coefficients were
obtained (Figure 9(b)). IRS risk models were constructed
according to the expression of these 10 genes. We calculated
the risk score for each sample in the training and validation
datasets of GSE66229 and divided the samples into high and
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Figure 7: Immune-related differential gene expression analysis. (a) Intersection of upregulated genes among NCAPG, StromalScore, and
ImmuneScore groups; (b) the intersection of downregulated genes among NCAPG, StromalScore, and ImmuneScore groups; (c–f) GO
annotation and KEGG functional enrichment analyses for DEGsin NCAPG, StromalScore, and ImmuneScore groups.
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low-risk groups according to the best cutoff. KM and ROC
curves were plotted, wherein the AUC of one-year survival
was 0.75, 0.81 for three years, and 0.83 for five years in the
training set, while the corresponding values of one, three,
and five years were 0.62, 0.68, and 0.67 (Figures 9(c) and
9(d)) in the validation set. Both in training and validation
sets, the survival rate was higher for the low-risk group
(P < 0:0001). The IRS model was validated using the entire
GSE66229 and TCGA cohorts (Figures 9(e) and 9(f)). The
STAD tumor samples could be clearly classified into two risk
groups with different prognoses (P < 0:0001); the low-risk
group showed a higher survival rate. For GSE84437,
GSE26942, GSE13861, GSE28541, and GSE26253 datasets,
the IRS scores for each sample were recalculated and KM
and ROC curves were plotted. The corresponding AUCs
for one-year survival were 0.64, 0.63, 0.66, 0.71, and 0.65;
0.65, 0.65, 0.8, 0.82, and 0.68 for three years, and 0.65,
0.66, 0.76, 0.89, and 0.69, for five years, respectively (Fig. S3).

3.7. The Relation between Risk Score and Tumor Stemness.
Tumor stemness has been revealed to be correlated with
prognosis, which is linked with tumor microenvironment
and oncogenic pathways such as Wnt/β-catenin and EMT
pathways [23]. We calculated the mRNAsi scores of STAD
samples in different datasets and compared their distribu-
tion in high- and low-risk groups. The results showed that
the low-risk group had significantly higher mRNAsi scores

than the high-risk group in all independent datasets includ-
ing GSE66229, TCGA, GSE84437, GSE26942, GSE13861,
GSE28541, and GSE26253 datasets (Figure 10(a)). In addition,
we observed that NCAPG expression was positively correlated
with mRNAsi (R = 0:728, P < 0:0001, Figure 10(b)). The
results suggested that high degree of tumor stemness was asso-
ciated with favorable prognosis in STAD.

3.8. Comparative Performances of IRS and TIDE. To predict,
evaluate, and compare efficacy scores for immunotherapy,
the IMvigor210, GSE91061, GSE78220, and GSE135222
cohorts were selected as these comprised patients who
underwent immunotherapy. We calculated IRS and TIDE
score for each tumor sample in these cohorts and compared
the efficiency of IRS and TIDE in the predicting the progno-
sis of the patients receiving immunotherapy. The samples
were categorized into high- and low-scoring groups accord-
ing to the best cutoff of IRS and TIDE scores. As a result, IRS
was robust to distinguish high- and low-risk patients while
TIDE score was only effective to predict the prognosis in
the IMvigor210 dataset (Figures 11(a)–11(h)). The com-
parison of AUC values also suggested IRS had a superior
performance than TIDE score in classifying the patients
treated by immunotherapy into different risk groups
(Figures 11(i)–11(l)). Therefore, IRS had a potential to
predict the prognosis for not only untreated patients but
immunotherapy-treated patients in STAD.
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Figure 8: Module and functional analyses. (a) PPI network analysis graph for module Mcode3; (b–e) GO and KEGG functional enrichment
analyses for genes in module Mcode3.
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Figure 9: Construction of IRS for STAD. (a) Distribution of LASSO coefficients for 40 prognostic RNAs in the GEO training cohort.
Coefficient profiles were plotted based on log ðλÞ sequences. (b) Multifactorial results of genes for the final IRS model. (c) KM and ROC
analyses for the IRS model using the GEO training dataset. (d) KM and ROC analyses for the IRS model using the GEO validation
dataset. (e) KM and ROC analyses for the IRS model using the entire GEO dataset. (f) KM and ROC analyses for the IRS model using
the entire TCGA cohort.
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4. Discussion

In 21 cancer types, especially, STAD, NCAPG expression
was significantly higher in tumor samples relative to the
para-cancer samples; it was positively correlated with all four
types of immune-related genes. Therefore, we used STAD as
the case study. STAD is one of the most prevalent gastroin-
testinal malignancies, ranking fifth among incidences and
third in mortality worldwide [24, 25]. Although 5-year sur-
vival rates are 90-97% when diagnosed and treated early,
nearly 30% of patients with STAD are diagnosed at the
advanced and metastatic stages [24, 25]. The malignant fea-
ture of STAD is determined not only by the activation and
recruitment of immune and stromal cells, the major compo-
nents necessary for tumor development and progression, in
the tumor-associated microenvironment but also by the
intrinsic activity of cancer cells [26]. Growing evidence con-
firms that the tumor microenvironment exerts an important
effect on the development, progression, prognosis, and
immune therapeutic responses in STAD [27, 28]. Stromal
cell functions and interactions with tumor cells contribute
to the progression, invasion, and spread of the tumor cells
[29]. Stromal cells can secrete growth factors, cytokines,
and chemokines which have a significant impact on tumor
characteristics [30]. In STAD, NCAPG was significantly pos-

itively correlated with some chemokines. Therefore, NCAPG
is a potentially new and reliable biomarker to predict the
development and prognosis of STAD.

Several recent studies have focused on tumor immunol-
ogy, and many immune checkpoint inhibitors have been
developed which show robust and durable responses in
patients with different cancers [31, 32]. This is consistent
with the results reported herein and corroborates the reli-
ability of our findings. In STAD, immune checkpoint genes
including CD80, CTLA4, IDO1, and CD274 correlated pos-
itively with NCAPG expression. Based on clinical trials for
immune checkpoint inhibitors for various cancers, immune
cell infiltration in the tumor microenvironment is now con-
sidered valuable information for predicting prognosis and
responses to immunotherapy [33, 34]. Therefore, we per-
formed a comprehensive analysis of the overall immune cell
infiltration in the tumor microenvironment by estimating
the distributional differences of 28 immune cell scores in
STAD among NCAPG subgroups. Twenty-one immune cell
types showed significant differences between NCAPG
grouping; the NCAPG low expression group had high
immune scores. Macrophages act as immunosuppressive
cells and they impede the activation of NK and CD8+ T
cells; most of their marker genes were highly expressed in
the NCAPG low expression group [35]. Immunosuppressive
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Figure 10: The relation between risk score and tumor stemness. (a) Comparison of tumor stemness (mRNAsi) between high- and low-risk
groups in GSE66229, TCGA, GSE84437, GSE26942, GSE13861, GSE28541, and GSE26253 datasets. Student’s t-test was conducted. (b)
Pearson correlation analysis between NCAPG expression and mRNAsi. ns: not significant. ∗∗∗P < 0:001 and ∗∗∗∗P < 0:0001.
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cells can respond to changes in immune cell abundances and
occupy a central position in the tumor immune microenvi-
ronment. Therefore, we hypothesized that the poor progno-
sis in low NCAPG expression group may be related to this
tumor immunosuppressive microenvironment.

Cancer stem cells (CSCs) compose only a fraction of
0.01-2% of tumor tissues in most tumors, but have great
potential in initiating tumor growth [23]. It has been shown
that tumor stemness varies in different cancer types [36]. In
STAD, mRNAsi is suggested as a protective factor that high
mRNAsi is associated with good prognosis [36, 37]. In our
study, we found a significantly positive correlation of
NCAPG expression with mRNAsi and high NCAPG expres-
sion group had a good prognosis, which was consistent with
the previous findings. In high- and low-risk groups divided
by the immune risk model, mRNAsi was higher in the
low-risk group than in the high-risk group, which further
supported mRNAsi as a protective factor in STAD. At the
same time, the results also revealed the important role of
NCAPG in tumor stemness. Experimental work has illus-
trated that quiescent tissue SCs escape from immune elimi-
nation resulting from systemic downregulation of MHC
class I and TAP proteins that are responsible for antigen pre-
sentation [38]. Our results showed that the low NCAPG
expression group had lower expression of some MHC class
I genes such as HLA-A, HLA-B, HLA-C, HLA-F, HLA-G,
TAP1, and TAP2 than the high NCAPG expression group,
which may explain the worse prognosis of low NCAPG
expression group. Our findings proposed a link of NCAPG
expression with tumor stemness.

Although we have integrated and investigated data from
different databases, certain limitations remain in our work.
First, although bioinformatics provided useful insights into

NCAPG expression in cancer, in vivo and in vitro biological
experiments are required to validate our results to facilitate
clinical applications. Mechanistic studies are warranted to
elucidate the function of NCAPG at cellular and molecular
levels. Specifically, the lack of support from prospective clin-
ical studies may be compensated if actual patient data are
available. In the future, emphasis will be on the role of
NCAPG in STAD progression and regulation of the tumor
microenvironment through ex vivo experiments.

In conclusion, we validated that NCAPG is differentially
expressed between normal and tumor tissues; the results
suggested the correlation between its expression and clinical
prognosis in STAD. Our results suggested that the high level
of NCAPG expression leads to different prognostic out-
comes. With the help of the IRS model and the TIDE
algorithm, NCAPG was shown to be effective in predicting
immunotherapeutic responses in the STAD cohort. Together,
the findings suggest that NCAPG is a valid biomarker for pre-
dicting immunotherapeutic responses. These results have
implications for elucidating the role of NCAPG in tumorigen-
esis and progression especially in STAD and provide a refer-
ence for achieving precise and personalized immunotherapy
in the future.

5. Conclusion

In conclusion, we explored a close relation of NCAPG with
tumor microenvironment and prognosis as well as tumor
stemness in STAD. We performed a comprehensive evalua-
tion of the pan-cancer potential of NCAPG as a predictive
biomarker and identified its significant value in STAD,
which may have implications for immunotherapy and is
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Figure 11: Comparative analysis of IRS and TIDE. (a) IRS survival and ROC curves for the IMvigor210 dataset. (b) TIDE survival and ROC
curves for the IMvigor210 dataset. (c) IRS survival and ROC curves for the GSE91061 dataset. (d) TIDE survival and ROC curves for the
GSE91061 dataset. (e) IRS survival and ROC curves for the GSE78220 dataset. (f) TIDE survival and ROC curve in the GSE78220
dataset. (g) IRS survival and ROC curves for the GSE135222 dataset. (h) TIDE survival and ROC curves for the GSE135222 dataset.
Comparison of IRS and TIDE ROC curves in (i) IMvigor210, (j) GSE91061, (k) GSE78220, and (l) GSE135222 datasets.
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expected to provide a useful assessment system for clinical
application.
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