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Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical
studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the
developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could
efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in
genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the
translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some
complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on
animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and
efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells
contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated
in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for
in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an
innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as
invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the
study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish,
facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of
numerous types of organoids representing different human organs. Most of these human organoids have been employed for
in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the
development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the
organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human
neurodegenerative diseases (NDDs) such as FXS, Alzheimer’s disease (AD), Parkinson’s disease (PD), and autistic spectrum
disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain
organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids
are addressed.
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1. Introduction

Due to the inaccessibility of human organs/tissues/systems,
biomedical studies on human development and disease
pathophysiology are conducted only in animal models or
cell-based in vitro assays. Animal models, particularly mouse
models, have contributed significantly to gaining insight into
the developmental and pathophysiological understanding of
human diseases. However, the large evolutionary distance
between mice and humans led to a discrepancy in genetic,
anatomic, and physiological aspects between animal models
and humans. This makes the existing animal models unable
to efficiently simulate the development of human organs and
systems at the anatomical and pathophysiological levels.
Given that clinical trials serve as the fundamental prerequi-
site for human disease therapy, all the clinical trials designed
and conducted on animal models significantly weaken the
translational efficiency from the basic biomedical research
outcomes to clinical therapy. To mimic the development of
human organs more faithfully and facilitate translational
efficiency from benchwork to clinical trials, in vitro organoid
models derived from the stem cells have been established as
a more effective and reliable platform relative to animal
models. Organoids are characterized as miniaturized and
simplified versions of an organ generated in vitro but could
recapitulate key features of human organ development. As
such, organoids pave a novel avenue for in vitro human dis-
ease models, an invaluable platform for biomedical studies
and pathological investigation of human diseases. Mean-
while, human organoids have been applied for drug screen-
ing and successful achievements have been made. Drug
development has been acknowledged as the key issue for
advancing clinical therapy, particularly for diseases such as
cancer, heart diseases, and neurological disorders. Therefore,
a rapid and reliable drug screening strategy is essential to
identify “hit” compounds prior to assessing the metabolic
and toxicologic mechanisms both in vitro and in vivo. To
develop an efficient operating system for primary screening,
the cell-based efficacy and toxicity assay has been extensively
used. However, the cell-based drug assays fail to recapitulate
the response of human organs or systems to the compound
agents, leading to a large-scale loss of resources in drug dis-
covery and a low rate of successful cases.

As the headquarter of the human body, the brain, struc-
turally composed of a complex architecture, performs cogni-
tive functions to orchestrate the normal functions of all the
systems and organs via extraordinarily intricate networks
[1–3]. Developmental abnormality in the structure of the
brain could lead to severe neurological or psychiatric disor-
ders. While the limited access to primary patient brain tis-
sues provides the main source of gaining insight into
disease pathology, the information it represents contributes
to an understanding of consequential mechanisms [4]. Ver-
tebrate animal models such as mice provide important
resources for the dissection of the developmental mecha-
nisms and pathogenesis of disorders [5]. However, when
we evaluate the significance of the discovery made in the
mouse for translation to clinical application, it is important
to remember the dramatic evolutionary distance between

levels of mammals and humans as well as the subtle differ-
ences of the nervous system in both morphology and com-
plexity [6]. It is plausible to say that the animal models fail
to recapitulate the numerous key features unique to the
development of the human nervous system and neurological
disorders.

Central nervous system (CNS) diseases are much more
complicated relative to other organ disorders, leading to
lower efficiency for modeling CNS diseases via animal
models. Faithfully mimicking the human brain’s develop-
ment, function, and susceptibility to disease by using orga-
noids could significantly enhance translation efficiency
from biomedical studies to clinical trials [7, 8]. Architectur-
ally, the 3-D brain organoid consists of a majority of all
known human brain cell types such as progenitor, neuronal
and glial cells [9–14].

Thus far, the pilot breakthrough has been made in the
generation of numerous types of organoids representing dif-
ferent human organs as reviewed recently (Table 1) [15–20].
These brain organoids could partially recapitulate some
aspects of human brain genesis and development, potentially
modeling developmental neurological disorders, such as
FXS, Alzheimer’s disease (AD), Parkinson’s disease (PD),
and autistic spectrum disorders (ASD) (Table 2). In addi-
tion, brain organoids were also employed to model Schizo-
phrenia [21, 22], Down syndrome [23], Lissencephaly
[24–27], Rett syndrome [28], and Timothy syndrome [29].
Brain organoids have also been utilized for modeling paren-
tal alcohol and drug abuse [30, 31]. The organoids generated
from the patient with Niemann-Pick disease type C (NPC), a
neurodegenerative lysosomal storage disorder caused by
genetic mutations could mimic the phenotype of the NPC
patients [30]. Some cortical organoids were used for model-
ing the impairment of molecular subtype specifications
caused by ectopically activating cellular stress pathways
under the conditions of cell stress [32]. Some of the brain
organoids were used for modeling the key features of ioniz-
ing radiation-induced DNA damage in human neurons to
understand the repair mechanisms [33]. Some patient-
derived glioma cerebral organoids have been developed for
disease modeling to understand glioma biology and predict
responses to chemotherapy drugs [34–37]. In this paper,
we focus on the recent advances in human brain organoid
models for neurological disorders including AD, PD, ASD,
FXS as well as organoid-based drug screening. Additionally,
we also discuss the challenges, weaknesses, and future per-
spectives of organoid research.

2. Brain Organoid-Based Modeling of
Neurological Disorders

2.1. Modelling of AD Using Brain Organoids Derived from
AD Patients. AD is a late-onset (at age over 65) disorder that
is not caused by natural aging. It accounts for 60-80% of
dementia cases associated with progressive memory loss
and other cognitive abilities. Pathologically, AD is character-
ized by the accumulation of protein aggregates, tau plaques,
and synaptic dysfunctions. Relative to cell and animal
models, human cerebral organoids can efficiently mimic the
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Table 1: Advances in generation of organoids.

(a)

Culture medium/supplement/culture strategy
Regions/
organoids

type
Key features References

SHH, FGF8
Midbrain
simBOs

High efficiency, high homogeneity, easy to specify [58]

CHIR99021
Midbrain-
like MLOs

Robust generation
Homogenous distribution of mDAs, other neuronal

subtypes, and functional glial cells, such as astrocytes and
oligodendryocytes

[61]

WNT3A and mixed medium with 1 : 1 of fresh
and supernatant derived from interfollicular
epidermal SCs

Epidermal
organoids

Functional with polarity [120]

RSPO1, WNT3A, WNT7A
Endometrial
organoids

Endometrial disease facilitate growth of endometrial
disease organoids and the long-term expansion

[121]

WNT and nodal antagonists
Hippal/CB
organoids

Original differentiation method
Low efficiency of O2 and nutrient diffusion

[122]

Dkk1 and LeftyA

Floating culture with 40% O2 and 5% CO2 CHIR
99021, BMP4

Hipp/cortex
organoids

[10, 13,
24119–121]

(b)

Culture device Key features References

1. Spinning bioreactor High cost and require a high volume of culture medium [122]

2. Multiple-well culture plates
with orbital shakers

Reducing the cost and consumption of the culture medium successful generation of cerebral
organoids

[123, 124]

3. Miniaturized multiwell
spinning bioreactor

Facilitate the establishment of brain region-specific organoids that mimic the dorsal
forebrain, midbrain, and hypothalamus

[14, 95]

4. Collagen hydrogel systems

Consisting of interconnected excitatory and inhibitory neurons with supportive astrocytes
and oligodendrocytes fiber for bioengineered organoids

A highly interconnected neuronal network established in organoids at a macroscale tissue
format. [8]

More importantly, the engineered organoids share structural and functional similarities
with the fetal brain, potentially allowing for the study of neuronal plasticity and modeling of

disease

5. Carbon fibers (CFs) for
midbrain organoids

The porosity, microstructure, or stability CF scaffolds could improve efficiency in iPSC
differentiation within organoids relative to the PLGA scaffolds. The midbrain organoids
generated in the CF scaffolds could more efficiently enhance terminal differentiation and

the survival of midbrain dopaminergic (mDA) neurons.

[59]

6. Brain organoids
The modified hydro-Matrigel with an interpenetrating network (IPN) of alginate has been
employed to maintain the mechanical microenvironment for brain organoids, conferring
the viable growth environment with the characteristic formation of neuroepithelial buds.

[125, 126]

7. Brain organoids

The platform of “tissue-like” cyborg stretchable mesh nanoelectronics were invented to
provide seamless and noninvasive coupling of electrodes to neurons within developing

brain organoids, enabling continuous recording of single-cell action without interruption to
brain organoid development

[127]

(c)

Coculture of organoids Key features References

Co-culture of cancer organoids with other non-
tumor cells

Tumor organoids could get other cell types of cells and tissues [128, 129]
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key features of the human brain. Therefore, many in vitro
organoids models have been developed for AD modeling
([38–40] [37, 41–45].

Most brain organoids for AD modeling harbor familial
patient-specific genomic backgrounds including mutations,
deletions, and insertions. Importantly, most of these AD
patient-derived brain organoids are familial isogenic lines
and are matched with normal brain organoids to serve as
controls (Figures 1(a) and 1(b)). These organoids could par-
tially recapitulate the key pathological features of the AD

patient’s brain on a molecular, cellular, and network-
connectivity basis. Therefore, these organoids function as
pilots for understanding the pathophysiological mechanisms
on a patient-specific basis. Furthermore, these organoids
could be employed as a platform for drug screening. It is
highly expected that the drugs identified and validated to
increase neuronal activity could contribute to therapy based
on the patient-specific personalized medicine. The advances
in AD organoid models within the recent two years are high-
lighted below.

Table 1: Continued.

Coculture of organoids Key features References

Vascularization of organoids

1. Direct transplantation of the brain organoids into
mouse brains

[32, 34,
130]

2. Coculture of brain organoids with epithelial cells
followed by transplantation into mouse brains

[131]

3. Genetic operation-based vascularization

Expression of human ETS variant 2 (ETV2) in human cortical organoids
(hCOs), led to generation of the functional vascular-like vessels in the

vascularized hCOs (vhCOs), improving organization, alleviating
hypoxia, and reducing apoptosis

[132]

4. BVO cells infiltrate into brain organoids High efficiency to generate vascularized human brain organoids [133]

5. The microfluidic chips-based coculture with
epithelial cells

[134]

6. Vascularized spheroid using an injection-molded
microfluidic chip

By coculturing the spheroids derived from induced neural stem cells
(iNSCs) with perfusable blood vessels, the vascularized spheroid was
generated. The vascularized spheroid network significantly improved

spheroid differentiation and reduced apoptosis.

[99]

(d)

Differentiation methods

Unguided strategy

Generation of brain organoids with mixed cell lineages of forebrain,
midbrain, hindbrain, and retina, enabling the organoids to grow with

minimum external interference
High variability and heterogeneity

[11, 31, 95]

Guided strategy
Directed differentiation to generate brain region-specific organoids, such as

cerebral cortex, hippocampus, midbrain, and cerebellum
[10, 13, 14,

119, 135, 136]

Fused culture technologies for integration of
different regions of the organoids

More closely resembling the complexity of the brain in identity,
architecture, and interaction manners enhanced the formation of

microcircuits with the local excitatory neurons

[123, 124,
135]

Long-term propagation, storage, and
regrowth following the frozen and thaw cycles

CRISPR-Cas9-based knock-in of the mutant KRASG12D allele into human
colon APC−/− organoids

[115, 137]

Application of 3D printing technology in Enabled an engineered organ to maintain the spatial arrangement
[39, 134, 138,

139]

Organoids-on-a-chip based approach to Could remove the dead cells via connecting with an external pumping [140]

Generate the tube-shaped epithelial organoids
System, extending tissue lifespan and enabling the colonization of organoid
tubes with microorganisms to model the host–microorganism interactions

Generation of microglia cell-containing
microglia cerebral organoids

Microglia were naturally developed in cerebral organoids and displayed
similar characteristic ramified morphology as in normal fetal brains.

[106, 141]

Generation of microglia-containing hCOs
(mhCOs)

Microglia-containing hCOs (mhCOs) were generated via overexpression of
the myeloid-specific transcription factor PU.1 in cortical organoids. The
mhCOs have become an efficient tool for functional investigation of

microglia in neurodevelopmental and neurodegenerative disorders, such as
AD

[108]
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Table 2: Current brain organoids for modeling of neurological disorders.

Organoid type/brain
regions

Disease References Main discovery

Human forebrain
organoid

FXS
organoids

with
[6]

Dysregulated neurogenesis, neuronal maturation, and neuronal excitability in the
forebrain loss of FMRP. Inhibition of the PI3K signaling could rescue

developmental deficit of the FXS forebrain organoids

Cortical brain organoid
cortical organoids

FXS [73]
Increased number of glial cells, and bigger organoid size compared to normal

person

Cortical brain organoid FXS [74]
FXS organoids bear higher percentage of Ki67+SOX2+ proliferative cells PI3K

functions as a key driver of downstream dysregulation of both translations and cell
proliferation in early NPCs.

Cerebral organoid ALS/FTD [142]

Recapitulates mature cortical architecture and early molecular pathology of
C9ORF72 ALS/FTD. Increased levels of the autophagy signaling protein P62 in

astroglia.
Accumulation of DNA damage, poly(GA), and nuclear pyknosis in deep layer

neurons

Sensorimotor organoid ALS [143]

Diversity of neuronal derivatives, such as motor, sensory neurons, astrocytes, and
mesodermal derivatives, including vasculature, microglia, and skeletal muscle. The
NMJs connect the motor neurons and skeletal muscle, but the NMJs were defected
in ALS organoids. Altered ability for deriving the NMJ synapse and cell diversity

that exert autonomous and noncell autonomous effects on motor neurons

Schizophrenia (Scz)
cerebral

[144]
In the Scz organoids, the progenitor survival significantly changed led to disruption
of neurogenesis, ultimately generating fewer neurons within developing cortical

fields compared to the normal organoids.

Cerebral organoids
(iCOs)

AD [145]
Miniaturized AD pathological models and CRISPR-Cas9-edited isogenic lines

established a high-content screening (HCS) system, and the FDA-approved drugs
were tested for the blood–brain barrier-permeability

Cerebral organoids whole
brain

AD [38]
The organoids from patients affected by familial AD or DS displayed pathological

features of AD, such as accumulation of structures like amyloid plaques and
neurofibrillary tangles, but nondetectable in the control organoids.

Cerebral organoids whole
brain

AD [53]

Significant apoptosis, impaired synaptic integrity, enhanced stress granules and
disrupted RNA metabolism were detected in cerebral organoids (CO) with APOE

ε4/ε4 genotype from AD patients.
Conversion of APOE4 to APOE3 ameliorated the APOE4-associated phenotypes in
Cos from AD patients. APOE4-related degenerative pathways were assumed to

contribute to AD pathogenesis.

Cerebral organoids whole
brain

AD [56]
CKD-504, a highly BBB-penetrating HDAC6 inhibitor, significantly reduced tau

via acetylation in AD patient-iPSC-derived brain organoids, dramatically
attenuating pathological tau and ultimately rescuing the synaptic pathologies

Cerebral organoids whole
brain

AD [48]

Cerebral organoids (Cos) generated from PITRM1-KO iPSCs recapitulated AD
pathological features such as the accumulation of protein aggregates, tau pathology,
and neuronal cell death. ScRNA-seq discovered mitochondrial function defect in all

cell types in COs with PITRM1-KO.
PITRM1-linked neurodegeneration caused by defects of mitochondrial

presequence processing induce an early activation of UPRmt, supporting a
mechanistic link between mitochondrial function and common neurodegenerative

proteinopathies.

Cerebral organoids whole
brain

AD [46]

Compared with the isogenic control organoids, AD organoids with PSEN2N141I
mutation recapitulated an AD-like pathology at the molecular, cellular, and
network level, such as a higher Aβ42/Aβ40 ratio and enhanced neuronal

hyperactivity. Altogether suggests these isogenic organoids as a promising tool for
the pathological study of AD.

Cerebral organoids whole
brain

AD [54]

An episomal plasmid vector derived from EBV based simple and versatile genetic
engineering was employed to efficiently generate organoids harboring a normal tau
protein with fluorescent tag vs. a mutant genetic form (P301S) of tau that leads to
fronto-temporal dementia. The harbored plasmid did not affect differentiation, and
the isogenic organoid lines were stable for more than 30 passages expressing either
normal or mutant form. The cerebral organoids manifested hyperphosphorylation
of the tau protein, a pathologically relevant phenotype, contributing to disease

5Stem Cells International



Table 2: Continued.

Organoid type/brain
regions

Disease References Main discovery

modeling, personalized medicine and potentially translating to clinical
therapeutics.

Cerebral organoids whole
brain

AD [55]

The enhanced spontaneous action potentials, slow oscillatory events (~1Hz), and
hypersynchronous network activity were detected in the AD neuronal organoids.
The dual-allosteric NMDAR antagonist NitroSynapsin, revoked the hyperactivity,
but the FDA-approved drug did not, suggesting the AD organoid models could be
efficient tool for drug screening and modeling of the related synaptic damage in

AD.

Cortical organoids cortex AD [51]

Time and spatial patterns of tau expression at a molecular level was compared
during brain development using the iPSC-derived cortical organoids and

developing human brains. Neuronal maturation led to the dramatic elevation of tau
mRNAs, while low expression levels were observed in SVZ radial glia and deep

white matter intermediate progenitors.
This system could help further study on the pathophysiological mechanism of

triggering and enhancing tau expression, simplifying the identification of
therapeutic targets for tauopathy-based neurodevelopmental disorders.

Human midbrain-like
organoids (hMLOs)

Early-onset
PD

[66]

DNAJC6 mutation vs. CRISPR-Cas9 manifestation of key PD features, pathologic
neurodevelopment defects, DNAJC6- mediated endocytosis defect, impairment of
the WNT-LMX1A signal during the mDA neuron development reduced LMX1A

expression during development, generation of vulnerable mDA neurons

Midbrain organoids PD [57]

The first organoid model for an idiopathic form of PD and healthy volunteers were
generated by the Sendai viral vector mediated transduction. The mature organoids
manifested statistical differences in the expression levels of neuronal early and late
markers between organoids from PD patient and healthy volunteer. Altogether
suggests that PD human organoids could be potentially suitable for modeling PD

and cellular interactions within the human brain.

Midbrain organoids PD [63]

Isogenic 3D midbrain organoids with or without a PD-associated LRRK2 G2019S
mutation recapitulate the pathological hallmarks observed in patients with LRRK2-

associated PD. The protein-protein interaction network in mutant organoids
revealed that TXNIP, a thiol-oxidoreductase, is essential for development of

LRRK2-associated Parkinson’s disease in a 3D environment.
Altogether suggests the potential of 3D organoid for modeling sporadic PD in

advancing therapeutic discovery.

simBOs PD [58]

Simplified brain organoids (simBOs), composed of mature neurons and astroglial
cells were rapidly generated in 2 weeks and have more homogeneous properties.
The SimBOs facilitates the conversion of pNSCs to mature neuronal systems in the

context of neurotransmitter release, synaptic vesicle formation, ion channels,
calcium signaling, axonal guidance, extracellular matrix organization, and cell

cycle.
The simBOs could easily be specified into midbrain-like simBOs by treatment with

Shh and FGF8.
Midbrain-like simBOs from a PD patient (LRRK2G2019S)-derived pNSCs

manifested disease-associated phenotypes in terms of increased LRRK2 activity,
decreased dopaminergic neurons, and increased autophagy.

Treatment with the LRRK2 inhibitor, PFE-360, relieved the phenotype of
Parkinson’s disease in midbrain-like simBOs. Taken together, these approaches

could be applied to large-scale disease models and alternative drug-testing
platforms.

Midbrain organoids PD [69]

The patient-based midbrain organoid model of PARK7-linked PD was created, and
aberrant U1-dependent splicing was detected, causing a drastic reduction in DJ-1
protein and, consequently, mitochondrial dysfunction. Targeting defective exon
skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression

in neuronal precursor cells and differentiated neurons.
Combinatorial treatment with the small-molecule compounds rectifier of aberrant

splicing (RECTAS) and phenylbutyric acid, could restore DJ-1 protein and
mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic
neuronal cell loss in mutant midbrain organoids. Therefore, this system could
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Table 2: Continued.

Organoid type/brain
regions

Disease References Main discovery

become an alternative strategy to restore cellular abnormalities in in vitro models of
PD and provides a proof of concept for neuroprotection based on precision

medicine strategies in PD.

Midbrain organoids PD [59]

The physicochemical properties of carbon fibers (CFs) scaffolds make CFs more
advantageous over the conventionally applied PLGA scaffold in improving the

efficiency of iPSC differentiation within organoids.
The organoid generated using CFs scaffolds were used for screening genes that

expressed during the organoids differentiation at crucial stage of brain
development. Correlation between PITX3, one of the essential factors for terminal
differentiation and the survival of mDA neurons, and TH gene expression was
detected. Thus, it is plausible to suggest that organoids containing mDA neurons
formed on CFs could be suitable for investigation of the midbrain-associated NDD

such as PD.

Midbrain organoids PD [60]

A fast and robust method to generate human midbrain organoids and incorporate
microglia together with astrocytes into the organoids. These ratio-defined and three

cell type-based organoids are suitable for the study on toxicology and
pathophysiology of the CNS.

Midbrain organoids PD [70]

A midbrain PD organoid model was generated and applied to test and characterize
the neurotoxic effect on dopaminergic neurons via a machine learning-based

analytical method. This approach has been used for HCI cell profiling and toxicity
evaluation in midbrain organoids treated with/without 6-OHDA, the neurotoxic
compound. This platform could be employed for modeling PD and drug screening

to identify the neurotoxic compounds

Midbrain organoids PD [61]

The homogeneous midbrain-like organoids (MOs) were generated with mature
architecture of midbrain dopaminergic (mDA) neurons, other neuronal subtypes,
and functional glial cells such as astrocytes and oligodendrocytes but no microglias.

The MLOs are extremely sensitive to 1-methyl-4-phenyl-1,-2,3,6-
tetrahydropyridine that conferred the mDA neuron-specific cell death.

Midbrain organoids PD [72]

The midbrain organoids generated by Renner et al., could recapitulate architecture,
size, cellular composition, homogeneous morphology, aggregate-wide

synchronized neural activity, and global gene expression. These midbrain
organoids have been employed to create a scalable and HTS-compatible platform
for drug screening and evaluation with criteria of HCI and RNA-seq at the single-
cell level, generating the reproducible prediction of the drug effects on neurological

disorders of PD.

Cerebral organoids Schizophrenia [21]
Cerebral organoids of four controls and three schizophrenia patients to model the
first trimester of in utero brain development. It was found that progression of the

cortical malformation was associated with aberrant FGFR1 signaling

Forebrain organoids Schizophrenia [22]
Schizophrenia patient derived forebrain organoids to model human brain

development. It was found that disrupting DISC1/Ndel1 complex formation
contributes to brain development of schizophrenia patient

Telencephalic organoids ASD [12]

The cerebral telencephalic organoids generated from affected families were utilized
for modeling the idiopathic ASD for the first time with organoids from the

unaffected family members as control. Molecularly, the altered gene expression
network could contribute to the pathogenesis of ASD such as the enhanced

expression of FOXG1, which leads to overproduction of GABAergic inhibitory
neurons. Cellularly, the synaptic growth, cell cycle, and imbalance in GABAergic/

glutamatergic neuron differentiation were significantly altered in the ASD
organoids.

Cerebral organoids ASD [34]

Human cerebral organoids carrying the mutations of Rab39b, a small GTPase
associated with X-linked macrocephaly, ASD, and intellectual disability,
respectively. Cellularly, the proliferation of NPCs was promoted but the

differentiation was impaired in the RAB39b mutant cerebral organoids, and
ultimately the size of the organoids, whereby resembling the trait of ASD. These

organoids have provided a cellular and molecular platform to study the
pathophysiology of ASD and drug screening.
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2.1.1. PSEN2N Mutation. The self-organizing cerebral orga-
noids were generated from a familial AD patient with
PSEN2N mutation and control organoids from an identical
genetic background without PSEN2N mutation by genome
editing. Treatment of these organoids with drugs that
increase neuronal activity could facilitate the synchroniza-
tion of high-frequency networks bursting at a comparable
level in both control and AD organoids. Thus, these orga-
noids can potentially become promising tools for AD patho-
logical studies and a platform for drug screening [46].

2.1.2. BIN1 Gene Mutation. The BIN1 KO organoids dis-
played the phenotype of early endosome narrowing, which

could be rescued by the expression of BIN1iso1 but not
BIN1iso9. Given that BIN1iso1 overexpression could enlarge
the early endosomes and lead to neurodegeneration in
human induced neurons (hiNs), it is plausible to suggest that
the AD susceptibility gene BIN1 could become an early bio-
marker for AD pathology [47].

2.1.3. Mitochondrial Protease PITRM1-KO. Cerebral orga-
noids derived from Pitrilysin metallopeptidase 1
(PITRM1)-KO iPSCs could recapitulate the pathological
features of AD, such as the accumulation of protein aggre-
gates, tau plaques, and synaptic dysfunctions. PITRM1 is a
mitochondrial protease, and its deficiency causes a slow-

Table 2: Continued.

Organoid type/brain
regions

Disease References Main discovery

Cerebral organoids ASD [68]

Cortical organoids (mCOs) from CNTNAP2 KO mouse dysregulated generation of
the GABAergic inhibitory neurons at cellular level and the transcriptional network
involved in GABAergic neurogenesis at molecular level. And the dysregulations
could be rescued by treatment with retigabine, an antiepileptic drug, indicating the

potential Cntnap2 as a therapeutic target for clinical therapy of ASD

Gene mutations
corrected

Gene mutations
uncorrected

Pathophysiological study 
(patch-clamp electrophysiology, calcium imaging
multielectrode arrays)

Drug screening 
(to find the drugs that restore the neuronal
activity and other criteria to the comparable levels between
The corrected Control and uncorrected AD organoids

Mutation of genes,
such as Pitrm1 and Psent2n

iPSCs from FAD patient Cerebral organoids for AD

SMADi
CHIR99021(3 𝜇M)
IWP2

Midbrain-like organoids (MOs)

Midbrain organoids for PD

carbon fibers (CFs) as Scaffold

Gene mutations corrected

carbon fibers (CFs) as Scaffold

Gene mutations uncorrected

Pathophysiological study 
(such as midbrain dopaminergic (mDA) neurons)

Drug screening

Rab39b mutation, deletion of Cntnap2, GTF2I, BAZ1B, CLIP2, and EI4H

Pathophysiological study
(synaptic growth, cell cycle, imbalance in 
GABAergic/glutamatergic neuron differentiation)

Drug screening

ASD organoids

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: The AD, PD, and ASD isogenic organoids derived from the patient iPSCs where their mutated genes were corrected via CRISPR-
CAS9 based genome editing as well as from the iPSCs where their mutated genes were uncorrected. These isogenic organoids could
recapitulate the key pathophysiological features. A-B) iPSCs and the organoids from FAD patients. a) Gene mutation was corrected via
CRISPR-CAS9 based genome editing in the iPSCs derived from FAD patients and the organoids from the FAD iPSCs; b) Both iPSCs
and the organoids are identical except for the uncorrected gene mutation. C-E) iPSCs and organoids from PD patients. c) mid-brain-like
organoids (MOs) generated with the addition of SMADi, CHIR99021 at 3uM, and IWP2 in the culture medium; d) Gene mutation was
corrected via CRISPR-CAS9 based genome editing in the iPSCs derived from PD patient and the organoids from the PD iPSCs; e) Both
iPSCs and the organoids are identical except for the uncorrected gene mutation. The organoids were generated using the carbon fibers
(CFs) as scaffolds in both D) and E). f) iPSCs and the organoids from ASD patients with Rab39b mutation, deletion of Cntnap2, GTF2I,
BAZ1B, CLIP2, and EI4H, but no mutation corrected organoids were available currently. The panels described the key features of the
organoids, and the panels showed the potential pathophysiological study and drug screenings.

8 Stem Cells International



progressing neurological disorder with a similar syndrome
to AD, linking the mitochondrial function to the patho-
genesis of common neurodegeneration [48].

2.1.4. Mouse IFITM3-KO. Inflammatory cytokines induce
the expression of IFITM3, a γ-secretase in neurons and
astrocytes, which bind to γ-secretase and upregulate its
activity, thereby increasing the production of amyloid-β.
The expression of IFITM3 is increased with aging and in
mouse models that express familial AD genes. Furthermore,
knockout of IFITM3 reduces γ-secretase activity and the
subsequent formation of amyloid plaques in a transgenic
mouse model (5xFAD). The IFITM3 protein is upregulated
in tissue samples from a subset of late-onset AD patients
who exhibit higher γ-secretase activity. The quantity of
IFITM3 in the γ-secretase complex possesses a strong posi-
tive correlation with γ-secretase activity in the late-onset
AD patient samples. This discovery suggests that γ-secretase
is modulated by neuroinflammation via IFITM3, thereby
increasing the risk for AD pathogenesis [49].

2.1.5. Mimicking Blood-Brain Barrier (BBB) Breakdown. To
simulate the serum exposure consequence of BBB break-
down in AD patients, brain organoids from sporadic AD
patients were exposed to human serum. AD-like pathologies
were observed, such as magnified Aβ aggregates and ele-
vated phosphorylated p-Tau levels, synaptic loss, and neural
network damage [50].

2.1.6. Spatiotemporal Expression of Tau. Given the signifi-
cant contribution of tau to the pathogenesis of AD, the spa-
tiotemporal expression of tau has been mapped during brain
development using iPSC-derived cortical organoids. While
tau expression was detected in radial glia, neuronal matura-
tion led to the dramatic elevation of tau mRNAs by using
single-cell RNA sequencing, RNA in situ hybridization,
and IHC. Spatially, low expression levels were observed in
SVZ radial glia and deep white matter intermediate progen-
itors. This discovery could pave the way for further studies
on the pathophysiological mechanisms of triggering and
enhancing tau expression, simplifying the identification of
therapeutic targets for tauopathy-based neurodevelopmental
disorders [51].

2.1.7. BACE2 Mutation. Control or the BACE2 loss of
function mutation (BACE2G446R) human brain organoids
were used to investigate the contribution of BACE2 to AD
pathogenesis. BACE2 was predominantly expressed in the
ventricular zone and cortical plate of the organoids, and
the expression levels were gradually elevated during the
maturation of organoids. Furthermore, compared to con-
trol organoids, the mutant organoids displayed signifi-
cantly enhanced apoptosis and elevated levels of Aβ
oligomers, representing the AD-associated phenotypes [52].

2.1.8. ε4/ε4 Genotype. The cerebral organoids generated
from iPSCs derived from APOE ε3/ε3 or ε4/ε4 genotypes
could recapitulate the APOE4-related phenotypes. To be
specific, significant apoptosis and detrimental synaptic dys-

function were detected in the AD patient organoids. Fur-
thermore, elevated Aβ and phosphorylated tau levels
relative to the healthy subject-derived cerebral organoids
were detected. Accordingly, conversion of APOE4 to APOE3
partially reversed the APOE4-associated phenotypes in cere-
bral organoids from AD patients. Molecularly, enhanced
stress granules and irregular genes were linked to AD phe-
notypes. Thus, it could be inferred that the APOE4 may con-
tribute to late-onset AD pathogenesis [53].

2.1.9. Tau P301S Mutation. A new method was established
recently for the generation of isogenic cerebral organoids
for modeling AD with controlled genetic variables and
mutation(s) in a specific gene by using an episomal plasmid
vector derived from the Epstein-Barr virus (EBV). It turns
out that this vector-based method could facilitate the easy
and powerful generation of the isogenic cerebral organoids
by avoiding the complexity and incompatibility offered by
conventional genetic engineering and the CRISPR-Cas9
technology. More importantly, the isogenic cell lines gener-
ated from wild-type tau versus its mutant harboring the
genetic form P301S were stable for more than 30 passages
in terms of genetic and pathophysiological features. Thus,
this strategy could make the generation of isogenic orga-
noids easy and robust, facilitating the study of disease
pathology, personalized medicine, and drug screening for
clinical therapy [54].

2.1.10. Mutations of PSEN1M146V, APPswe, and PSEN1 ΔE9.
In a separate study, organoids harboring familial AD muta-
tions against their wild-type (WT) isogenic controls were
employed as a platform for drug screening to identify drugs
functional for therapy of hyperexcitability, subsequent exten-
sive synapse loss, and cognitive dysfunction. The physiologi-
cal assays based on this platform led to the identification of
NitroSynapsin, a dual-allosteric NMDAR antagonist, that
could eradicate the hyperactivity and rebalance the aberrant
neural networks. Thus, this platform could be promising
for large-scale screening to identify drugs for therapy of
hyperexcitability and synaptic damage in AD patients [55].

2.1.11. Histone Deacetylase-6 Inhibitor Partially Reverses the
Phenotype of AD Organoids. Treatment of AD animal model
(ADLPAPT) brains and AD patient-derived brain organoids
with CKD-504, a histone deacetylase-6 (HDAC6) inhibitor,
could significantly degrade pathological tau plaques. Mecha-
nistically, the inhibitor CKD-504 leads to the enhanced acet-
ylation of tau, thereby recruiting chaperone proteins such as
Hsp40, Hsp70, and Hsp110 to form complexes. The acety-
lated complexes with HSPs could bind to UBE2O and
RNF14, the novel tau E3 ligases, degrading pathological tau
via proteasomal pathways. This discovery could be trans-
lated into a clinical therapy for AD [56].

2.2. Modeling of PD Using Midbrain Organoids Derived from
PD Patients. PD is another complicated progressive nervous
system disorder. Almost all the PD modeling information
originated from animal models before human brain orga-
noids were available. Recently, midbrain organoids have
been generated by improving the conventional strategy
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[57–61]. These midbrain organoids are of significant interest
for modeling PD as they generate dopaminergic neurons
expressing markers of Substantia Nigra identity, the most
vulnerable to degeneration [62]. Studies showed that PD
organoids could catch the key pathophysiological features
of PD, suggesting their potential for pathological study and
drug screening to identify the compounds for clinical ther-
apy (Figures 1(c)–1(e)).

2.2.1. Organoids from the Idiopathic Form of PD Patients.
The first midbrain organoids were generated from iPSCs of
the idiopathic form of PD patients, reprogrammed with
the aid of non-integrating Sendai viral vectors. The mature
organoids could simulate the expression of early and late
neuronal markers as well as the statistical differences in the
expression levels of these markers between the organoids
from PD patients and healthy people. Therefore, it is highly
expected that these organoids could be promising for model-
ing the idiopathic form of PD and in vitro pathological stud-
ies [57].

2.2.2. The Isogenic Organoids Derived from Familial PD
Patients. The isogenic midbrain organoids were derived
from PD patients harboring a genomic mutation in LRRK2
G2019S and were employed for the pathogenic study. The
key pathological features observed in the LRRK2-associated
sporadic PD patient brains were also detected in the isogenic
midbrain organoids. Molecularly, protein-protein interac-
tion network assays have enabled the identification of
TXNIP, a thiol-oxidoreductase, as a key contributor to the
development of LRRK2-associated PD in the LRRK2 mutant
organoids. Thus, these isogenic PD organoids provide a plat-
form for pathological study as well as drug screening for
clinical therapy of the LRRK2-associated sporadic PD [63].
More recently, human midbrain organoids derived from
healthy individuals against their isogenic LRRK2-p.Gly2019-
Ser-mutant counterparts were compared to determine if the
in vitro model simulates the in vivo equivalents from the
aspects of developmental pathways and cellular events. It
turns out that the midbrain organoids could model the early
developmental stage of PD [64]. Midbrain organoids carry-
ing the biallelic mutations of the PINK1 gene from the
patients and from the corrected cell lines by genome editing
were employed for modeling PD. Compared to the corrected
organoids, the patient organoids recapitulate the key PD fea-
tures, consistent with the fact that mutation of the PINK1
gene alone is sufficient to cause PD. Using both types of
midbrain organoids as a platform, the selected compounds
from the mouse model were tested [65]. In a separate study,
human mid-brain-like organoids (hMLOs) harboring con-
trol or mutant DNAJC6 were generated to model the
early-onset PD caused by a DNAJC6 mutation. It turned
out that the mutant hMLOs could recapitulate the key path-
ogenic features, thereby serving as a tool to investigate the
pathology [66]. To decipher the role of the Bridging Integra-
tor 1 (BIN1) gene in AD pathogenesis, the induced human
cerebral organoids and neurons (hiNs) were generated with
BIN1 knock-out (KO).

Lewy body-like inclusions, one of the key features of PD,
were observed in the human midbrain-like organoids
(hMLOs) derived from GBA1-/- and SNCA overexpressing
isogenic ESCs, suggesting that the hMLOs could recapitulate
the underlying mechanisms for progressive Lewy body for-
mation [67]. Most regular brain organoids bear the limita-
tions of heterogeneity and long-term differentiation. To
overcome these shortcomings, the simplified brain orga-
noids (simBOs) composed of mature neurons and astroglial
cells were generated from the hPSC-derived primitive neural
stem cells (pNSCs). The midbrain-like simBOs bear several
advantages over the traditional brain organoids such as
rapid generation, high homogeneity, and easy specification
into midbrain-like organoids via treatment with Shh and
FGF8. The simBOs generated from a PD patient with a
mutation of LRRK2 demonstrated typical symptoms like
upregulated LRRK2 activity, down-regulated dopaminergic
neurons, and enhanced autophagy. Moreover, treatment of
simBOs with PFE-360, an LRRK2 inhibitor, could relieve
the abnormalities, suggesting the potentiality of simBOs
serving as PD models and alternative platforms for drug-
testing and screening [68].

2.2.3. The PARK7-linked PD Organoids. The midbrain orga-
noids derived from the Ibrahim Boussaad1 PD (PARK7-
linked PD) patient, a highly heterogeneous neurodegenera-
tive disorder, have been applied for the characterization of
aberrant RNA splicing. It turned out that U1 splicing site
mutations were enriched in sporadic PD patients, leading
to a significant reduction of DJ-1 proteins and causing con-
sequential mitochondrial dysfunction. The organoid-based
drug testing has enabled the identification of certain com-
pounds such as phenylbutyric acid as well as the genetically
engineered U1-snRNA. These compound hits have been fur-
ther tested and validated to be effective in reversing mis-
splicing, mitochondrial dysfunction, and dopaminergic neu-
ron loss in the mutant midbrain organoids. This could be an
efficient alternative strategy for precision medicine to treat
sporadic PD by molecularly targeting the splicing abnormal-
ity to rectify cellular mitochondrial dysfunction [69].

2.2.4. PD Organoids for Toxicology Study. A robust method
has been developed to generate human organoids and incor-
porate microglia together with astrocytes into the organoids
for studying toxicology and pathophysiology of the CNS.
This type of organoid has been employed to test the PD
model toxicants and will be promising for drug screening
in the future [60]. More PD organoid models were estab-
lished to test and characterize the neurotoxic effects on
dopaminergic neurons via a machine learning-based analyt-
ical method. This approach has been used for the high con-
tent calcium image-based (HCI) cell profiling and toxicity
evaluation in midbrain organoids treated with/without 6-
OHDA, a neurotoxic compound. This platform could be
employed for modeling PD and drug screening to identify
the neurotoxic compounds ([70]. Further improvement
was made for the generation of midbrain organoids to avoid
the inherent shortcomings including batch-to-batch vari-
ability and the presence of a necrotic core. The midbrain
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organoids simulate some key features of midbrain develop-
ment like dopaminergic neuron and astrocyte differentia-
tion. This strategy is efficiently suitable for pathological
studies on toxin-induced PD [71].

The MOSs generated with the improved protocol by Kwak
et al., are homogeneous with mature architecture of midbrain
dopaminergic (mDA) neurons, other neuronal subtypes, and
functional glial cells such as astrocytes and oligodendrocytes.
More importantly, these MLOs are extremely sensitive to 1-
methyl-4-phenyl-1, -2,3,6-tetrahydropyridine demonstrating
mDA neuron-specific cell death. Thus, the MOs could serve
as a platform for the in vitro study of PD pathology as well as
drug screening for PD therapy [61]. Renner et al. developed
midbrain organoids that claimed to be able to faithfully recapit-
ulate the main characters such as architecture, size, cellular
composition, homogeneous morphology, aggregate-wide syn-
chronized neural activity, and global gene expression. They then
employed the midbrain organoids to create a scalable and HTS-
compatible platform in standard 96-well-plates for drug screen-
ing and evaluation with the criteria of HCI and RNA-seq at the
single-cell level. By automating the entire workflow from gener-
ation to analysis, the intra- and inter-batch reproducibility was
enhanced as demonstrated by RNA-seq and HCI. It turned out
that this platform could be automated to generate the reproduc-
ible prediction of the drug effects on neurological disorders such
as PD at the single-cell level albeit within a complex organoid
environment [72].

2.2.5. Organoids Generated through a Carbon-Based Scaffold
for Modeling PD. To overcome necrosis within the organoids
during the long-lasting cultures, carbon fibers (CFs) have
been employed as a new type of scaffold to generate mid-
brain organoids in replacement of the conventional
polylactide-co-glycolide copolymer (PLGA) scaffold. Physi-
ochemically, the porosity, microstructure, or stability of CF
scaffolds could improve efficiency in iPSC differentiation
within organoids relative to the PLGA scaffolds. The mid-
brain organoids generated in the CF scaffolds could more
efficiently recapitulate the midbrain development evidenced
by the expression of key regulator genes such as PITX3 for
terminal differentiation and the survival of midbrain dopa-
minergic (mDA) neurons. This strategy is promising for
the establishment of the organoids in modeling neurodegen-
erative diseases associated with the midbrain such as PD and
drug screening platforms [59].

2.3. Modeling of Fragile X Syndrome (FXS). Fragile X syn-
drome (FXS) is one of the NDDs with key features of intel-
lectual disability and sensory deficits caused by a loss of
FMRP, a multi-functional RNA binding protein. Compared
to the in vitro brain organoid models for other NDDs, so far
only three independent research laboratories reported brain
organoid models for FXS [6, 73, 74]). Human forebrain
organoids were generated from the iPSCs derived from
healthy control and FXS patients, respectively, to model
FXS in vitro [6]. It turns out that dysregulation was observed
in neurogenesis, neuronal maturation, and excitability of the
FXS organoids as compared to healthy organoids. A differ-
ent group has generated cortical organoid models for FXS

by knocking out the FMR1 gene [73]. Cellular and molecular
tests confirmed the alteration of gene expression, aberrant
differentiation, increased number of glial cells, enhanced
spontaneous network activity, and depolarizing GABAergic
transmission compared to the healthy counterpart. How-
ever, so far, the FXS-derived organoids have been not tested
for drug screening.

2.4. Modeling of ASD Using Brain Organoids Derived from
ASD Patients. Autism Spectrum Disorder (ASD) is caused
by early neuron developmental dysfunction and lasts for
the entirety of life, lacking clear etiology and genetic basis,
but is linked to abnormal social communication and behav-
iors [75, 76] [11, 12, 75, 77, 78]. The incidence of ASD is
approximately 1 in 59 children and 1% of the global popula-
tion according to the CDC statement (https://www.afhu.org/
2017/10/23/what-to-know-about-asd/?gclid=EAIaIQobChM
I-oD087qQ7gIVh56zCh11og-UEAAYBCAAEgKxmPD_BwE).
The organoids derived from ASD patients have been
employed formodeling, pathological studies, and drug screen-
ing [34, 76].

The telencephalic organoids from the affected families were
generated for modeling the idiopathic ASD for the first time
using these cerebral organoids. Relative to organoids from the
unaffected family members, significant cellular alterations were
detected in the ASD organoids including synaptic growth, cell
cycle function, and imbalance in GABAergic/glutamatergic
neuron differentiation. Molecularly, the altered gene expression
network could contribute to the pathogenesis of ASD. For
instance, the enhanced expression of FOXG1 leads to the over-
production of GABAergic inhibitory neurons [12]. To investi-
gate the metabolic pathway networks that contribute to ASD
pathogenesis, human cerebral organoids were produced to har-
bor mutations of Rab39b, a small GTPase associated with X-
linked macrocephaly, ASD, and intellectual disability. The
enhanced proliferation and impaired differentiation of neural
progenitor cells (NPCs) were observed in the RAB39b mutant
cerebral organoids, leading to an enlarged size of the organoids
that resemble the trait of ASD. At the molecular level, the inter-
action between RAB39b and PI3K components was confirmed
by the promotion of the PI3K–AKT–mTOR signaling in NPCs
of the Rab39bmutant cerebral organoids (Figure 1(f)). Further-
more, the enlarged organoid sizes and NPC over-proliferation
caused by Rab39b mutation were rescued by the inhibition of
AKT signaling, providing a platform to study the pathology of
ASD and drug screening [79]. To further investigate the mech-
anism of ASD at a cellular and molecular level, mouse cortical
organoids (mCOs) were generated from the KO of contactin-
associated protein-like 2 (CNTNAP2), a member of the neur-
exin protein family. At the cellular level, defective generation
of the GABAergic inhibitory neurons was observed in the KO
mCOs. Consistently, at the molecular level, the dysregulated
transcriptional network involved in GABAergic neurogenesis
was demonstrated at the neural progenitor stage without
Cntnap2. Furthermore, the dysregulations in the KO mCOs at
the cellular and molecular levels could be rescued by treatment
with retigabine, an antiepileptic drug, suggesting that Cntnap2
could serve as a therapeutic target for clinical therapy of
ASD [68].
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Microduplication at 7q11.23 (7Dup), harboring 26–28
genes, is marked to be a highly associated genetic mutation rel-
evant to ASD. The cortical neurons derived from this micro-
deletion offer unique opportunities for translational studies
at the genetic and pathological levels as well as for drug screen-
ing to identify drug efficacy in therapy. Williams–Beuren syn-
drome (WBS), characterized by hyper sociability and language
strengths, is caused by microdeletion with several genes
located within the deleted region such as GTF2I, BAZ1B,
CLIP2 and EIF4H. These have been acknowledged as poten-
tially crucial contributors to the pathogenesis of WBS.

The cortical glutamatergic neurons derived from the WBS
patients were employed for a large-scale drug screening to iden-
tify the hits from a small molecule compound library consisting
of potential reagents for CNS, epigenetic modulators, and
function-unknown compounds. By comparing the transcrip-
tional alteration of theWBS interval genes, three histone deacet-
ylase inhibitors (HDACi) were identified and further validated
at the levels of both mRNA and protein to downregulate the
expression of GTF2I with a prevalent pathogenic role [80].

More recently, cerebral cortical organoids were gener-
ated from iPSCs carrying the mutations in KMT5B, ARID1B,
and CHD8, three ASD risk genes or the wild-type genes for
modeling of ASD. These organoids were used to identify
aberrant cell-type-specific neurodevelopment shared across
ASD risk genes and investigate the underlying mechanisms
of these genes in their contribution to ASD pathology [81].
Given the complexity of neurological disorders and the lim-
itations of the animal models in the pathological study,
human brain organoids will play vital roles in modeling dis-
orders and drug screening procedures [82].

3. Advances in Organoid-Based Drug Screening

A workflow for drug screening using serum-free embryoid
bodies (SFEBs) derived from hiPSCs for scalable high-
throughput screening (HTS) has been developed. The
screening was conducted with criteria of multi-electrode
arrays (MEAs) to show the firing and burst rates determined
by single-cell HCI to assess the number of excitatory neu-
rons, demonstrating a high degree of consistency and reli-
ability. Thus, the SFEBs could serve as a platform for HTS
to enumerate the high variation in cortical organoids.
Although this strategy is time-consuming, it could serve as
an efficient starting point for phenotypic drug screening
[83]. The current brain organoids resemble the early stage
developing brain; developing brains are more sensitive to
toxic exposure relative to fully developed brains [83]. There-
fore, the brain organoids could serve as an ideal platform for
screening developmental neurotoxicity. Brain organoids
have been applied for modeling early-stage neurotoxicity
screening. With this platform irreplaceable by in vivo animal
models or cell-based screening [84], large-scale chemicals in
use and potential drugs in the future could be determined.
Thus, this strategy opens a new avenue for evaluating toxi-
cants by determining if members of the compounds library
potentially belong to developmental neurotoxicants. Success-
ful studies have been conducted to identify drugs and heavy
metal chemicals as developmental neurotoxicants [84–86].

Due to the selective permeability of drugs to the brain,
BBB impairment or dysfunction in many types of NDDs
contribute to pathogenesis [87–89]. Therefore, the BBB
serves as one of the key structures for drug discovery for
the therapy of human NDDs [87], indicating a potential first
target for new drugs to enter the brain. Most of the current
organoid models are single tissue or organ-based, failing to
orchestrate multiple different relevant tissues or organs let
alone the system levels. Given the evolutionary distance
between humans and mice, the discrepancy between BBB
function and brain microvascular endothelial cells (BMECs)
dampens the simulation of animal models to humans [90].
To mimic the human CNS and circulation system-level
interactions, several physiologically relevant BBB-on-a-chip
models have been established, composed of brain neural/
organoids, the BBB, and a vascular side separated by a
porous membrane [146–150], several of which are reported
to model drug penetrability accurately [91–93] (Figure 2).

Recently, human CNS barrier-forming organoids
(CBFOs) were established from the choroid plexus (ChP),
a protective epithelial BBB by which the cerebrospinal fluid
(CSF) is produced. The CSF is a vital liquid that provides
nutrients and signaling molecules to help remove toxic waste
products to aid in the survival and maturation of the brain.
ChP selectively permeabilizes entry of the molecules to avoid
free entry of toxic molecules or drugs from the blood. The
human ChP-CSF organoids recapitulate the main traits of
the ChP. On one hand, the ChP-CSF organoids could secrete
the CSF-like fluid to mimic in vivo CSF. On the other hand,
the ChP-CSF organoids have a restrictive barrier that
exhibits the same selective permeability to small molecules
in vitro as the ChP in vivo. The ChP-CSF organoids could
progressively mature over time under in vitro conditions.
Molecularly, ChP-CSF organoids bear a high degree of sim-
ilarity to the ChP in vivo at the transcriptomic and proteo-
mic levels. Combined transcriptomic and proteomic
analysis at the single-cell level leads to the identification of
key human CSF components undetected but produced by
epithelial subtypes. More importantly, the ChP-CSF orga-
noids can be employed to predict the permeability of new
compounds into the CNS [94]. Thus, the new CBFOs-on-
a-chip model may successfully simulate the selective perme-
ability of drugs into the brain, thereby functioning as a plat-
form to carry out drug screening for easy translation into
clinical therapy of NDDs (Figure 2).

Shortcomings of the current approaches for organoid-
based drug screening.

Human organoids have been acknowledged as a relatively
ideal versatile tool for modeling human diseases, in vitro
pathological studies, and drug screening. However, the cur-
rent drawbacks at the level of organoids hampered the reli-
ability and the efficiency of drug screening. At the organoid
level, the quantity and quality of organoids significantly
impact the drug screening efficiency and reproducibility.
Due to the low generation efficiency of organoids, the scale
of the organoids has become one of the bottleneck limiting
factors for the efficiency and reproducibility of the drug
screening. In addition to the scale of the organoids, the qual-
ity of the organoids including the capacity of simulating their
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parental organs or disease phenotypes dramatically affect the
reliability of the drug screening. At the systemic level, one of
the main fatal shortcomings in most organoid models con-
sists of the ignorance of the drug’s interaction with multiple
tissues/organs/systems in vivo. The issue is particularly
important for NDDs due to the existence of the BBB.

4. Future Perspectives

Significant achievements have been made in the generation
of human organoids, particularly in the brain and cancer-
specific organoids. These organoids generated by utilizing
current strategies could recapitulate key features of the
human brain, making it possible for in vitro studies on neu-
rodevelopment and modeling of NDDs. The organoid-based
small- or large-scale drug screening processes proved to be
promising with some compound hits being identified and
validated for therapy. However, to a larger extent, these
brain organoids are incomparable to human brains both
architecturally and functionally. Therefore, the generation
of organoids and the organoid-based study remain in the
infancy stage. Among other issues, overcoming the limita-
tions to generating high-quality organoids has been the top
priority. The basic requirement is to enable the organoids
to faithfully recapitulate key features of the brain region(s).
To effectively mimic the human brain, further characteriza-
tion and comparison of the human fetal, postnatal, adult,
and aging brains at structural, cellular, and molecular levels
is indispensable [95–98]. Although the current brain orga-
noids at different ages could partially recapitulate the devel-
oping stage of their in vivo brain counterparts, they bear
some shortcomings for modeling neurological disorders
such as NDDs:

(1) Vascularization. Currently, most organoids lack 3D
vascular networks limiting neurogenesis, prolifera-
tion, differentiation, apoptosis of organoids, and
long-term culture, leading to a low efficiency in reca-
pitulating the late stages of human brain develop-
ment. This issue could be partially ameliorated by
vascularization via genetically engineered induction
of ETV2, co-culture with epithelial cells, or by graft
of human brain organoids into mouse brains. How-
ever, the capacity of oxygen, nutrient supply, and
metabolic clean-up provided by this alone remains
to be insufficient. More recently, several strategies
for improving brain organoid vascularization were
invented. The first method consists of co-culturing
neuronal spheroids with perfusable blood vessels.
The vascularized neuronal spheres could efficiently
enhance proliferation, differentiation, and reduce
apoptosis [99]. The second method is comprised of
the separate generation of vessel organoids and brain
organoids followed by a co-culture of two types of
organoids. Increased number of neural progenitors,
functional BBB-like structures, and active microglial
cells were observed in the fused/vascularized brain
organoids. Therefore, the fused organoids enable us
to investigate interactions between immune and

non-immune cells as well as neuronal and non-
neuronal cells in vitro [100]. Thus, these two strate-
gies could serve as a better tool to simulate brain
development and model neurological disorders.
However, some concerns remain to be against this
strategy. Effectively improving the quality and distri-
bution of vessels in organoids in concert with bioma-
terials and microfluidic system-based technology
could be promising in this regard

(2) Most brain organoids usually represent early fetal
brain development, whereas some NDDs such as
AD and PD are usually late-onset. Thus, the applica-
tion of organoids for modeling late-onset NDD-
associated aging progression such as PD is limited.
Fortunately, human cortical organoids could mature
to 250~300 days postnatal, parallel to in vivo devel-
opment and maintenance of in vivo developmental
milestones. Furthermore, the genes critically involved
in neurodevelopment and NDD risks were mapped
to in vitro gene expression trajectories. This suggests
that human cortical organoids hold the potential for
long-term cultures, which parallels in vivo develop-
mental progression and maturation [101]. Therefore,
appropriately maintaining the long-term maturation
of human cortical organoids and avoiding necrosis
and abnormalities during the culture are essential to
generating brain organoids that match key postnatal
transitions for modeling NDDs

(3) Lacking microglia, the key player in the developing
brain, in the current brain organoids has been an
essential drawback for modeling NDDs, limiting the
application of brain organoids. Co-cultures are the
conventional strategy for integrating microglia into
brain organoids. Indeed, the human microglia could
be integrated into human midbrain organoids [71,
102–104]. Xu et al. developed a new protocol for gen-
erating brain region-specific microglia-containing
organoids by co-culturing at a proper time point
[105]. Bodnar et al. developed a protocol to generate
microglia-containing CO (MCO) by a novel tech-
nique for embryoid body (EB) production directly
from iPSCs combined with orbital shaking cultures.
However, the microglia ratio remains low (~7%)
[106]. Interestingly, it was observed that during cul-
tures, erythromyeloid progenitors migrating to brain
organoids could gradually develop into microglia-
like cells [107]. Recently, a protocol was developed
for the generation of microglia-containing hCOs
(mhCOs) via the overexpression of myeloid-specific
transcription factor PU.1 in cortical organoids with-
out co-culture. The mhCOs have become an efficient
tool for functional investigation of microglia in neu-
rodevelopmental and neurodegenerative disorders
such as AD [108]. Given that microglia could not
emerge natively inside organoids using the previous
methods, this novel strategy has been a breakthrough
for microglia generation in brain organoids.
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However, further improvement in the protocol is
required to maintain native microglia emergence
with a controllable microglia ratio. These brain orga-
noids will be essential for modeling NDDs, in vitro
pathological studies, and drug screening

(4) The limited size and heterogeneity of the current
brain organoids offer inefficient representative capac-
ity to their in vivo counterparts. On the other hand,
separately generated organoids that represent differ-
ent brain regions could be assembled to generate
whole-brain organoids to recapitulate the entire
brain more faithfully as compared to their separate
counterparts [109, 110]. Thus, breakthroughs in the
generation of the fused organoids open a new win-
dow to investigate the crosstalk at the inter- brain-
region and the inter-organ levels. However, the
assembly of the whole brain organoids is still at the
infancy stage; many technical issues need to be
resolved such as guiding border formation and inter-
connection of the separate tissues

Assembloids generated from the co-culture of different
brain regions of organoids have been employed to investigate
the internal interactions between the brain regions but fails to
offer the tool for understanding signal transduction from the
brain to the whole body. In addition, assembloids stem from
the fusion of human organoids bearing the shortcomings of
high heterogeneity and variable reproducibility. Ao et al.
developed a simple and versatile acoustofluidic method to par-
tially overcome these disadvantages by a controllable spatial
arrangement of organoids [111]. Recently, a breakthrough
was made in the generation of engineered brain-spinal cord
assembloids (eBSA) by co-culturing cerebral organoids
(COs) and motor neuron spheroids (MNSs) [100]. The eBSA
connects COs and MNSs to recapitulate the brain-spinal cord
connection. Potentially, the eBSA could serve as a platform to
screen and validate neurochemical stimulus signal transduc-
tion. In addition, the accumulation of knowledge regarding
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Figure 2: The body-on-a-chip-based drug screening flowchart. The different tissues/organs-specific organoids were arranged in order with
BBB organoids in the first place followed by cerebral organoids and other organoids that recapitulate their corresponding tissues/organs in a
body-on-a-chip device. Several successive screening processes could be conducted starting from the primary screening to identify the
compounds that could pass the blood-brain-barriers (BBB) followed by the second and third rounds of screenings to identify the
compound hits that are toxic to neurons and that could rescue neurodegenerations, respectively.

Human colon APC−/−; KRASG12D organoids

384-well plate 1538-well plate

Example plate hit map

UHTS drug screening
107

1

Figure 3: The cryo-preserved human colon organoids with APC-/-;
KRASG12D mutation could confer the long storage and re-grown
upon cryo-recovery for expansion to make the culture operation
alike for the cell lines. This strategy could significantly overcome
the bottleneck limitation of the organoid supply for the ultra-
high-throughput screening (UHTS) in 384-well and 1538-well
plates.
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the neural signal transfer from the CNS to the peripheral nerve
system (PNS) will provide a better understanding of control-
ling muscle actuators within the nervous system.

(5) Under in vitro culture conditions, the growth and
maturation of the brain organoids are time-
consuming. To overcome this issue, pharmacological
strategies have been proposed for accelerating growth
and maturation. However, these pharmacological
strategies may potentially result in the alteration of
intrinsic differentiation processes programmed natu-
rally, interfering with the recapitulation of the result-
ing brain organoids to their in vivo counterparts.
Efforts have been made to genetically induce aging
[112–114]. However, these genetic operations should
be further improved and validated to determine if the
resulting brain organoids are reliable in terms of
faithfully modeling pathological features, particularly
disease-associated aging

(6) Large scale drug screening has been carried out in
cancer organoids, and some compounds have been
successfully identified for further assessment and
validation. However, limited information is available
for the brain organoid-based high throughput drug
screening, but some previously tested compounds
and current clinical drugs were tested in brain orga-
noids that could model AD, PD, and ASD, respec-
tively. Key issues for brain organoid-based drug
screening is reliability and efficiency, particularly
for the organoids for NDD modeling. Many factors
affect the efficiency and reliability of brain
organoid-based drug screening. Currently, most drug
tests were conducted on the region-specific orga-
noids. The variability of the organoids derived by
the self-organization of neuronal cells hinders the
efficiency, reliability, and availability of personal
medicine. The whole-brain organoids assembled
from separately generated organoids representing
different brain regions could be more reliable for
drug screening. The recent development of the BBB
organoids could efficiently prescreen the permeabil-
ity of new compounds passing through the BBB first
before functional screening for a potential therapy for
neurological disorders

Another issue for large-scale drug screening using cere-
bral organoids is developing long-term storage and culture
operations alike for the cell lines. Although no cerebral orga-
noids were reported to have this property, success of the
colon APC−/−; KRASG12D organoids [115] shed light on the
development of cerebral organoids with this property
(Figure 3). It is highly expected that the brain organoids with
long-term storage and culture operations alike for the cell
lines will be developed in the future.

As a summary, the establishment of organoids has been
a milestone for the in vitro modeling of in vivo organ devel-
opment, pathological studies, and drug screening albeit
numerous difficulties remain to be resolved. The rapid and

comprehensive progress in the organoid technologies shed
light on the future breakthrough in overcoming the inacces-
sibility of human organs/systems via in vitro organoid-based
platforms. However, being mindful that in vitro models can-
not perfectly mimic in vivo counterparts will inspire investi-
gators to make efforts to improve the technology and
research strategies.
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