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Background. Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a
vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of
this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative
NPCs cocultured with mesenchymal stem cells (MSCs). Methods. A series of bioinformatic methods were used to calculate the
oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-
protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore
the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results. There
was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0:05). Forty-one
OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI
score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network,
which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship
between the oxidative stress score and autophagy score was observed (p < 0:05), and 125 significantly related gene pairs were
obtained (jrj > 0:90, p < 0:05). Conclusion. Stem cell therapy might repair the degenerative IVD via reducing the oxidative
stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide
new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.

1. Background

Low back pain (LBP) has become a very common health con-
cern in the modern society, which generates a social and eco-
nomic burden to human beings [1–3]. It is estimated that
approximately 80% of population experience the LBP at least
once in their lifetimes [4]. Intervertebral disc degeneration
(IDD) is the principal contributor to the LBP [2, 5]. IDD is
an inflammatory-catabolic process triggered by a series of

pathogenic factors, including gene susceptibility, increased
mechanical stress, abnormal immunity, metabolic disorders,
and oxidative stress [3, 6, 7]. The standard treatments for
LBP caused by IDD include the bed rest, administration of
nonsteroid anti-inflammatory drugs and analgesics, discect-
omy, and lumbar interbody fusion [2, 5]. However, the exist-
ing treatments can only relieve the clinical symptoms instead
of reversing the degeneration process. Therefore, novel ther-
apies targeting the degeneration process are urgently needed.
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In recent years, stem cell therapy has shown a promising
effect and potential clinical applicability in the management
of IDD [8–12]. Accumulating evidence has indicated that
mesenchymal stem cells (MSCs) might exert therapeutic
functions mostly through the paracrine process, such as
the release of growth factors, cytokines, extracellular vesicles,
and noncoding RNAs [8]. However, the definite underlying
mechanisms remain unclear. Oxidative stress has been dem-
onstrated to play important roles in the development of IDD
[13, 14]. Under normal circumstances, the microenviron-
ment of intervertebral disc (IVD) tissue is hypoxic, and there
is a dynamic balance between the generation and scavenging
of intracellular reactive oxide species [15]. However, the oxi-
dative stress occurs when this balance is disrupted, which
can lead to senescence and apoptosis of nucleus pulposus
cells (NPCs), and degradation of extracellular matrix [16].

Long noncoding RNAs (lncRNAs) refer to a type of non-
coding RNA longer than 200 nucleotides [17, 18]. Although
lncRNA lacks the ability to encode proteins, lncRNAs can
act as the competing endogenous RNAs (ceRNAs) by spong-
ing the microRNAs (miRNAs) to repress the translation of
genes [19, 20]. Autophagy is a well-known conserved cellu-
lar process through which cells can realize the self-
protection by scavenging the unwanted senescent organelles
and misfolded proteins [21, 22]. The dysregulation of
autophagy has been proved to associate with the develop-
ment of several human diseases, including the IDD [21,
23]. Previous studies have shown that the oxidative stress
could be relieved by activating the autophagy in degenerative
NPCs, thereby reducing the apoptosis and degradation of
extracellular matrix [22, 24, 25]. Nevertheless, to our knowl-
edge, few articles focus on the effects of MSCs on the allevi-
ation of oxidative stress via regulating the autophagy in IDD.

With the huge improvement of sequencing techniques,
many key genes and noncoding RNAs associated with the
IDD have been determined using the bioinformatic
approaches [13, 26, 27]. We previously reported that oxida-
tive stress is an important pathogenic factor for IDD [13].
Wang et al. found that infiltrating macrophages play impor-
tant roles in the pathogenesis of IDD [26]. In Li et al. study,
305 genes closely related to IDD were obtained, and the
authors also reported that DNA repair, oxidative phosphor-
ylation, peroxisome, IL-6-JAK-STAT3 signaling, and apo-
ptosis contributed to the development of IDD [27].
However, few bioinformatic analysis focusing on the role
of stem cell therapy in the management of IDD are pub-
lished to date. Hence, this study was conducted to explore
the underlying mechanisms of stem cell therapy in the man-
agement of IDD using the strict and mature bioinformatic
algorithms based on the relevant sequencing data.

2. Materials and Methods

This study has been approved by the Ethics Committee of
Peking University Third Hospital, and the informed consent
was not necessary because all data was obtained from public
databases. The flow chart of this study has been shown in
Figure 1.

2.1. Data Collection and Processing. Gene expression data of
mRNAs and lncRNAs in GSE112216 was downloaded from
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/). This dataset contained the gene
chip sequencing data of 3 NPC/MSC samples and 3 NPC
samples, and compare the mRNA and lncRNA expression
of degenerative NPCs cocultured with adipose-derived
MSCs with degenerative NPCs solely. The oxidative stress-
related gene (OSRG) list was extracted from the Gene Set:
GOBP_RESPONSE_TO_OXIDATIVE_STRESS in Molecu-
lar Signatures Database (http://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) [26] (Supplementary Table 1). Besides,
the autophagy-related gene list was obtained from the
Human Autophagy Database (http://www.autophagy.lu/
index.html) (Supplementary Table 2).

2.2. Determination the Alteration of OSRGs during the
Coculture Process between NPCs and MSCs. The single sam-
ple gene set enrichment analysis (ssGSEA) is a bioinformatic
approach to determine that whether a priori defined set of
genes has statistical significance and concordant differences
between two biological conditions for a single sample [13].
To investigate the alteration of OSRGs during the coculture
process between NPCs and MSCs, the ssGSEA algorithm
was applied to calculate the oxidative stress score of each cell
sample [28]. The oxidative stress score was compared
between NPC/MSC samples and NPC sample.

2.3. Identification of Differentially Expressed Genes (DEGs),
Oxidative Stress-Related DEGs (OSRDEGs), and
Differentially Expressed lncRNAs (DElncRNAs). Both DEGs
and DElncRNAs were obtained from the GSE112216 with
the criterion of adjust p < 0:05 and fold change > 1:50. The
OSRDEGs were obtained with the intersection of DEGs
and OSRGs using the Venn diagram. Volcano plots and heat
maps were generated using the R package ggplot2.

2.4. Functional Enrichment Analysis and Protein-Protein
Interaction (PPI) Analysis of OSRDEGs. Gene ontology
(GO) analysis was conducted to explore the enriched biolog-
ical process, cell component, and molecular function of
OSRDEGs. Besides, the related signaling pathways of OSR-
DEGs were determined using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis. The GO and KEGG
functional enrichment analyses were performed using the
DAVID database (https://david.ncifcrf.gov/) [29]. GO and
KEGG items with p < 0:05 were considered as significantly
enriched, and some of significantly enrich items were visual-
ized using the R package ggplot2. The PPI analysis was con-
ducted using the STRING database (https://cn.string-db.org/
), and protein pairs with score > 0:40 were further used to
build the PPI network using the Cytoscape software
(https://cytoscape.org/). The PPI score was calculated using
the Degree method in the cytoHubba plug-in, and top 10
OSRDEGs ranked by the PPI score were considered as the
hub OSRDEGs.

2.5. Construction of DElncRNA-miRNA-Hub OSRDEG
Regulatory Network. The correlation analysis between
DElncRNAs and hub OSRDEGs was performed, and
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DElncRNA-OSRDEG pairs with r > 0:95 and p < 0:05 were
selected. The targeted miRNAs for 10 hub OSRDEGs were
predicted using TargetScan database (http://www
.targetscan.org/vert_80/) [30]. The targeted miRNAs for
DElncRNAs were predicted using the ENCORI database
(https://starbase.sysu.edu.cn/) [28]. Ultimately, the
DElncRNA-miRNA-hub OSRDEG regulatory network was
constructed using the Cytoscape software.

2.6. Correlation Analysis between Oxidative Stress and
Autophagy. To further explore the potential role of autoph-
agy during the coculture process, the autophagy score for
each cell sample was calculated using the ssGSEA algorithm
[5], and compared between NPC/MSC samples and NPC
samples. To obtain the autophagy-related DEGs, the inter-
section between autophagy-related genes and DEGs was
conducted using the Venn diagram. To detect the potential
relationship between oxidative stress and autophagy in
degenerative NPCs cocultured with MSCs, the correlation
analysis between oxidative stress score and autophagy score

was conducted. Furthermore, the relationship between hub
OSRDEGs and autophagy-related DEGs was explored using
the correlation analysis.

2.7. Statistical Analysis. All statistical analyses were per-
formed using the R software 4.1.2. The ssGSEA score for
oxidative stress and autophagy between NPC/MSC samples
and NPC samples were compared using the Student’s t
-test, and p < 0:05 indicated there was a significant difference
between NPC/MSC samples and NPC samples. Correlation
analysis was conducted using the Pearson test. All p values
were two sides, and p value less than 0.05 indicated there
was a significant difference.

3. Results

3.1. MSCs Might Alleviate the Oxidative Stress in
Degenerative NPCs. As shown in Figure 2(a), according to
the preset criterion (fold change > 1:5, p < 0:05), a total of
106 DEGs were determined, and the clustering analysis
showed these DEGs could clearly distinguish the NPC/

Download of GSE112216 from GEO database

Retrieval of oxidative stress-related gene list
from MSigDBdatabase

Calculation of the oxidative stress score using the ssGESA
algorithm

Identification of OSRDEGs
and DElncRNAs

Identification of autophagy-
related DEGs

GO, KEGG pathway, and PPI
analyses of OSRDEGs

Top 10 hub OSRDEGs

Construction of ceRNA
regulatory network

Prediction of targeted
miRNAs

Correlation analysis between
oxidative stress and autophagy

MSCs may alleviate the IDD by reducing the oxidative
stress in degenerative NPCs

Calculation of the autophagy
score 

Retrieval of autophagy-
related gene list from HADb

Figure 1: Flow chart of the bioinformatic analysis in the study.
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MSC samples and NPC samples (Figure 2(b)). Oxidative
stress is an important contributor to the IDD [6, 13]. To
explore whether MSCs changed the oxidative stress status
of degenerative NPCs, the oxidative stress score for each cell
sample was calculated. There was a significant difference
between NPC/MSC samples and NPC samples in terms of
oxidative stress score (Figure 2(c)). The principal compo-
nent analysis showed OSRGs could clearly distinguish the
NPC/MSC samples and NPC samples (Figure 2(d)), which
indicated that stem cell therapy might treat the IDD via
relieving the oxidative stress in NPCs. To further investigate
the underlying mechanisms, forty-one OSRDEGs were
obtained by intersecting the DEGs with OSRGs
(Figure 2(e)), and 11 of them were upregulated and 30 of

them were downregulated (Table 1). As shown in the heat
map (Figure 2(f)), the OSRDEGs significantly differed
between the NPC/MSC samples and NPC samples.

3.2. Function Enrichment Analysis and PPI Analysis of
OSRDEGs. The identified OSRDEGs were mapped into the
GO term and KEGG pathway enrichment analyses. As
shown in Figure 3(a), the following biological processes were
significantly affected: Response to oxidative stress, positive
regulation of transcription and DNA-templated, positive
regulation of transcription from RNA polymerase II pro-
moter, cellular oxidant detoxification, and so on. The most
enriched cellular component terms were Cytoplasm,
Nucleus, Cytosol, Extracellular exosome, and so on
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Figure 2: Determination of OSRDEGs in degenerative NPCs. (a) Volcano plot of DEGs; (b) Heat map of DEGs; (c) Comparison of oxidative
stress score between NPC/MSC samples and NPC samples; (d) Principal component analysis of OSRGs; (e) Venn diagram to obtain the
OSRDEGs; (f) Heat map of OSRDEGs.
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(Figure 3(b)). The most enriched molecular function terms
included Identical protein binding, Peroxidase activity, Anti-
oxidant activity, Protein homodimerization activity, and so
on (Figure 3(c)). With respect to the KEGG pathway enrich-
ment analysis, the following pathways were most affected:
TNF signaling pathway, MAPK signaling pathway, Reactive
oxygen species, Apoptosis, IL-17 signaling pathway, and so
on (Figure 3(d)).

The PPI analysis was conducted using the STRING data-
base and visualized using the Cytoscape software
(Figure 4(a)). Top 10 hub genes were obtained according
to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS,
APOE, EDN1, TXNRD1, LRRK2, and KLF2 (Figure 4(b)).
As listed in Table 2, 8 hub OSRDEGs were downregulated
and 2 hub OSRDEGs were upregulated in NPC/MSC sam-
ples when compared to NPC samples. Moreover, the corre-
lation analysis among these 10 hub OSRDEGs was
conducted, and 45 significantly related pairs (jrj > 0:90, p <
0:05) were observed (Figure 4(c)). JUN-EDN1 was the most
positively related pair (r = 0:99, p < 0:01) (Figure 4(d)), and
CAT-TXNRD1 was the most negatively related pair
(r = −0:99, p < 0:05) (Figure 4(e)).

3.3. Construction of DElncRNA-miRNA-Hub OSRDEGs
Regulatory Network. LncRNAs can exert the important bio-
logical functions as the miRNA sponges in the ceRNA regu-
latory network [29, 31]. A total of 27 DElncRNAs were
determined (fold change > 1:50, p < 0:05) (Figure 5(a)), and
the heat map showed these DElncRNAs could obviously dis-
tinguish the NPC/MSC samples and NPC samples
(Figure 5(b)). To construct the ceRNA regulatory work, the
correlation analysis between DElncRNAs and hub OSR-
DEGs was conducted, and DElncRNA-OSRDEG pairs with
r > 0:95 and p < 0:05 were selected to construct the ceRNA
regulatory network (Figure 5(c)). The targeted miRNAs for
DElncRNA-OSRDEG pairs were predicted using the
ENCORI database and TargetScan database. Ultimately, a
total of 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs
were applied to construct the ceRNA regulatory network
(Figure 5(d)) (Supplementary Table 3).

3.4. Relationship between Hub OSRDEGs and Autophagy-
Related DEGs. Previous studies have shown that autophagy
played a protective role against the oxidative stress in degen-
erative NPCs [24, 30, 32]. In this research, a significantly dif-
ferent autophagy score between NPC/MSC samples and
NPC samples was observed (Figure 6(a)). And there was
an obvious association between oxidative stress score and
autophagy score (Figure 6(b)), which indicated that MSCs

might resist again the oxidative stress through restoring the
autophagy in degenerative NPCs. To further explore the
underlying mechanisms, thirteen autophagy-related DEGs
were obtained through the intersection between DEGs and
autophagy-related genes (Figure 6(c)), and the cluster analy-
sis showed these autophagy-related DEGs could distinctly
distinguish the NPC/MSC samples and NPC samples
(Figure 6(d)). The correlation analysis between hub OSR-
DEGs and autophagy-related DEGs was conducted, and
125 significantly related pairs were obtained (jrj > 0:90, p <
0:05) (Figure 6(e)). GABARAP-CAT was the most positively
related pair (r = 0:99, p < 0:01) (Figure 6(f)) and
GABARAP-TXNRD1 was the most negatively related pair
(r = −0:99, p < 0:01) (Figure 6(g)).

4. Discussion

IDD has become the principal contributor to the LBP, which
heavily affects the life quality of patients and brings a huge
economic burden to the society [2, 5]. Stem cell therapy
has been considered as a promising therapeutic option for
IDD, however, the involved underlying mechanisms remain
unclear to date [33–36]. In the current study, we used a
series of strict bioinformatic algorithms based on the
sequencing data to determine the potential mechanisms
involved in the stem cell therapy for IDD. We observed a
significantly different oxidative stress score between NPC/
MSC samples and NPC samples, which indicated that MSCs
might alleviate the IDD via suppressing the oxidative stress
in degenerative NPCs. Then, we determine the OSRDEGs,
and explored the potential biological process and signaling
pathways relevant to these OSRDEGs. Moreover, we got 10
hub OSRDEGs most worthwhile further exploring, and con-
structed the ceRNA regulatory network. More importantly,
we found that autophagy might play an important role in
the process of MSCs relieving the oxidative stress in degen-
erative NPCs. To the best knowledge of us, this study was
the first bioinformatic analysis to investigate the possible
mechanisms involved in the stem cell therapy for IDD.

Oxidative stress has been demonstrated to play a key role
in the pathogenesis of IDD [6, 13, 16]. Oxidative stress could
induce the apoptosis of normal NPCs, destroy the matrix
proteins, and thus damage the mechanical characteristics
of IVDs [16]. Some studies have explored the potential role
of oxidative stress in the stem cell therapy for IDD [33, 37]
. Hu et al. study showed that bone MSCs could alleviate
the compression-induced apoptosis of NPCs through inhi-
biting the oxidative stress via the exosomes [37]. Similarly,
Chen et al. reported that bone MSCs could relieve the

Table 1: Detailed information of 41 OSRDEGs.

Expression Gene symbols
Number

(n)

Upregulated ERMP1, CAT, ATF4, GPX3, PML, GPX4, XRCC1, APOE, ATP13A2, PDLIM1, and PDGFD 11

Downregulated
EDN1, FOS, PKD2, KLF2, DUSP1, MET, GCH1, PTGS2, LRRK2, JUN, LDHA, TXNIP, FER, MSRB3, TLR4,

CFLAR, MYEF2, CD38, ADAM9, CPEB2, SRXN1, MAPT, PXDN, PRKD1, HP, TXNRD1, ANGPTL7,
CCNA2, STX2, and ERO1A

30

OSRDEGs, oxidative stress related differentially expressed genes.
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compression-induced mitochondrial damage of NPCs
through reducing the reactive oxygen species level and
maintaining the mitochondrial functions [33]. In the current
study, we observed a significantly different oxidative stress
score between NPC/MSC samples and NPC samples, which
indicated that stem cell therapy might improve the IDD

through alleviating the oxidative stress in degenerative
NPCs.

To further explore the potential underlying mechanisms
involved in the stem cell therapy for IDD, we obtained 41
OSRDEGs and explored their main biological functions.
The most enriched biological process was Response to
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oxidative stress, cellular component was Cytoplasm, and
molecular function was Identical protein binding. More
importantly, we also investigated the potential signaling
pathways involved in the repair process of NPCs cocultured
with MSCs, and some of these signaling pathways have been
proved to play important roles in the pathophysiology of
IDD [38–42]. TNF signaling pathway and IL-17 signaling
pathway both were inflammation-related pathways, which
indicated that MSCs might reduce the oxidative stress, and
then improve the inflammatory status of degenerative NPCs
[38, 39]. MAPK signaling pathway was another vital biolog-

ical pathway in the development of IDD [40–42]. Zhang
et al. reported that platelet-derived growth factor-BB could
prevent the IDD through activating the MAPK signaling
pathway [40]. Cui et al. study showed that microRNA-129-
5p could alleviate the IDD via blocking the LRG1-mediated
p38 MAPK activation [41]. Sun et al. research indicated that
calcitonin gene-related peptide could regulate the apoptosis
and inflammation of NPCs via the MAPK signaling pathway
during the IDD [42]. For the first time, we discovered that
Relaxin signaling pathway and Oxytocin signaling pathway
might exert vital functions in the biological remediation of
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degenerative NPCs cocultured with MSCs. Both relaxin and
oxytocin have been demonstrated to exert important protec-
tive effects in human diseases by inhibiting the cell apoptosis
[43–47]. Therefore, we speculate that MSCs may relieve the
oxidative stress by activing the Relaxin or Oxytocin signaling
pathways, and then prevent the apoptosis of NPCs, which is
very worthy of further investigation.

Through a series of bioinformatic methods, 10 hub OSR-
DEGs were selected, including JUN, CAT, PTGS2, TLR4,
FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. PTGS2
was upregulated in degenerative NPCs, and associated with
the inflammation in IDD [48]. TLR4 inhibition could reduce
the LBP, pain-related neuroplasticity, and inflammation of
disc in mice [49]. Knockout of APOE could accumulate
the selective inflammatory catabolic factors, which aggra-
vated the imbalances between catabolic and anabolic factors
and deteriorated the premature IDD [50]. LRRK2 contrib-
uted to the pathogenesis of IDD, and knockdown of LRRK2
could inhibit the oxidative stress induced apoptosis through
the mitophagy [51]. The potential roles of JUN, CAT, FOS,
EDN1, TXNRD1, and KLF2 in IDD have not been investi-
gated in details up to now, and deserve the further investiga-
tion. Plenty of studies have shown that lncRNAs could
sponge miRNAs, also named as ceRNA regulatory network,

to regulate the gene expression at a posttranscriptional level
[52, 53]. To further explore the potential underlying mecha-
nisms associated with hub OSRDEGs, we constructed the
DElncRNA-miRNA- hub OSRDEG regulatory network con-
taining 17 DElncRNAs, 240 miRNAs, and 10 hub OSR-
DEGs, which should be further studied in the future.

Autophagy is a catabolic process that recycles the cellular
components and damaged organelles caused by various
stress status [16, 54]. The autophagy level was higher in
degenerative NPCs compared with normal NPCs, which
indicated that autophagy might be involved in the deteriora-
tion of IDD [55]. Many investigations have indicated that
autophagy was an important protective factor for IVD, and
the restoration of autophagy was a promising research direc-
tion in IDD [13, 56–58]. Some studies have indicated that
MSCs could significantly increase the autophagy level, and
reduce the apoptosis of NPCs [25, 59]. More importantly,
there was a close relationship between oxidative stress and
autophagy in IDD. Chen et al. found that the overproduc-
tion of reactive oxygen species could enhance the autophagy
via the AMPK/mTOR pathway in rat NPCs [60]. Moreover,
Park et al. found that high glucose-induced oxidative stress
could improve the autophagy by mitochondrial damage in
rat notochordal cells [61]. Chen et al. reported that H2O2

Table 2: Detailed information of top 10 hub OSRDEGs.

Gene
symbols

Full names Gene function
Log2
(fold

change)

P
value

Regulation

JUN Jun proto-oncogene
This gene encodes a protein which can regulate the gene expression via

interacting directly with specific target DNA sequences.
-1.03 <0.01 Down

CAT Catalase
This gene encodes the catalase, which is an important antioxidant

enzyme in the bodies against the oxidative stress.
0.62 <0.01 Up

PTGS2
Prostaglandin-
endoperoxide
synthase 2

The protein encoded by this gene is a vital enzyme in the process of
prostaglandin biosynthesis, and acts both as a dioxygenase and as a

peroxidase.
-1.12 <0.01 Down

TLR4 Toll like receptor 4
The protein encoded by this gene is a member of the toll-like receptor
family, which is involved in the pathogen recognition and activation of

inherent immunity.
-0.88 <0.01 Down

FOS Fos proto-oncogene
This gene encodes one member of leucine zipper proteins that can

dimerize with proteins of the JUN family to form the transcription factor
complex AP-1.

-1.63 <0.01 Down

APOE Apolipoprotein E
The protein encoded by this gene is a major apoprotein of the

chylomicron, which is indispensable for the catabolism of triglyceride-
rich lipoprotein constituents.

1.19 <0.01 Up

EDN1 Endothelin 1
This gene encodes a preproprotein that is proteolytically processed to
produce a secreted peptide. This gene is involved with the tumorigenesis

and pulmonary arterial hypertension.
-2.08 <0.01 Down

TXNRD1
Thioredoxin
reductase 1

The protein encoded by this gene is a member of the pyridine nucleotide-
disulfide oxidoreductase family, and the thioredoxin system.

-0.69 <0.01 Down

LRRK2
Leucine rich repeat

kinase 2
This gene is a member of the leucine-rich repeat kinase family, and the
dysregulated expression of this gene may lead to the Parkinson disease-8.

-1.09 <0.01 Down

KLF2 Kruppel like factor 2

The protein encoded by this gene is a member of Kruppel family of
transcription factors. It plays an important role in the adipogenesis,
embryonic erythropoiesis, epithelial integrity, inflammation and t-cell

viability.

-1.29 <0.01 Down

OSRDEGs, oxidative stress-related differentially expressed genes.
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could stimulate an early autophagy response through the
ERK/m-TOR signaling pathway [62]. In the current study,
we obtained 13 autophagy-related DEGs and performed
the correlation analysis between hub OSRDEGs and
autophagy-related DEGs. At last, 125 significantly related
pairs were obtained, which showed that autophagy might
expert vital functions in the stem cell therapy for IDD. The
GABARAP-CAT pair was the most positively related pair

and GABARAP-TXNRD1 pair was the most negatively
related pair, and both of them should be firstly investigated
in the future.

There were some limitations in the current study. First,
this study was conducted based on the analysis of sequenc-
ing data. Therefore, our findings need further in vivo or vitro
experiment validation. Second, oxidative stress was only one
of the important pathogenic factors for IDD, and stem cell
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Figure 5: Construction of ceRNA regulatory network. (a) Volcano plot of DElncRNAs; (b) Heat map of DElncRNAs; (c) Correlation
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therapy might also repair the degenerative IVD though other
pathways, such as relieving the inflammation. Third, the
sequencing data used in this study was obtained from the
cell samples, which could not completely simulate the
degenerative IVDs treated with stem cell therapy. Forth,
only six sequencing cell samples from one GEO dataset were
used in this study, which might reduce the reliability of find-
ings. Fifth, the MSCs used in this study were extracted from
adipose tissues, however, there were several other sources for
MSCs, such as bone marrows and embryonal tissues, which
needed further investigation. Despite these limitations, the
current study, for the first time, indicated that stem cell ther-
apy might repair the degenerative IVD through resisting the
oxidative stress via the ceRNA regulatory network and resto-
ration of autophagy in degenerative NPCs.

5. Conclusion

Stem cell therapy might repair the degenerative IVD via
reducing the oxidative stress through the ceRNA regulatory
work and restoration of autophagy in degenerative NPCs.
Further experiment studies should be conducted to validate
our findings in the future.
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