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Previous studies have shown that the combination of mesenchymal stem cell (MSC) transplantation and electroacupuncture (EA)
stimulation is a neuroprotective strategy for treating intracerebral hemorrhage (ICH). However, the underlying mechanisms by
which the combined treatment promotes neuroprotection remain unclear. This study was designed to investigate the effects of
the combined treatment on synaptic plasticity and elucidate their underlying mechanisms. Therefore, rat ICH models were
established by injecting collagenase and heparin, and the animals were randomly divided into model control (MC), EA
stimulation (EA), MSC-derived neuron-like cell transplantation (MSC-dNLCs), and MSC-dNLC transplantation combined
with EA stimulation (MSC-dNLCs+EA) groups. We observed the ultrastructure of the brain and measured the brain water
content (BWC) and the levels of the microtubule-associated protein 2 (MAP2), galactocerebrosidase (GALC), and glial
fibrillary acidic protein (GFAP) proteins. We also measured the levels of the phosphorylated mammalian target of rapamycin
(mTOR) and 70 kDa ribosomal protein S6 kinase (p70S6K) proteins, as well as the expression of synapse-related proteins. The
BWC increased in rats after ICH and decreased significantly in ICH rats treated with MSC-dNLC transplantation, EA
stimulation, or combined therapy. Meanwhile, after ICH, the number of blood vessels increased more evidently, but only the
combined treatment reduced the number of blood vessels among rats receiving the three treatments. Moreover, the levels of
MAP2, GALC, postsynaptic density 95 (PSD95), and synaptophysin (SYP) proteins, as well as the levels of the phosphorylated
mTOR and p70S6k proteins, increased in the MSC-dNLCs+EA group compared with those in the MSC-dNLCs and EA
groups. Compared with the MC group, GFAP expression was significantly reduced in the MSC-dNLCs, EA, and MSC-dNLCs
+EA groups, but the differences among the three treatment groups were not significant. In addition, the number of synapses
increased only in the MSC-dNLCs+EA group compared to the MC group. Based on these data, the combination of MSC-
dNLC transplantation and EA stimulation exerts a synergistic effect on improving the consequences of ICH by relieving
cerebral edema and glial scarring, promoting the survival of neurons and oligodendrocytes, and activating mTOR/p70S6K
signaling to enhance synaptic plasticity.
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1. Introduction

Intracerebral hemorrhage (ICH) is a crucial cause of neurolog-
ical morbidity and mortality worldwide [1–3] and is estimated
to affect over 1 million people worldwide each year [4]. After
ICH, hematoma or edema induces oxidative stress and the
inflammatory response, excitotoxicity, and reactive oxygen
species (ROS) generation, which may induce the death of a
large number of neuronal cells. More than 30% of ICH survi-
vors live with severe movement dysfunction, and over 70% of
these patients suffer cognitive impairment [5, 6], but few
proven treatments are used in clinical practice [2, 7–9].

Mesenchymal stem cells (MSCs) are considered promis-
ing seed cells for nervous system diseases because they have
the properties of weak immunogenicity, good safety, and
easy cultivation [10–12]. Many studies have confirmed that
MSCs improve neurological functional recovery following
ICH [13–17]. However, transplanted MSCs display a limited
ability to repair damaged tissue because they do not substan-
tially increase synapse-related protein expression in the
damaged brain [18, 19]. Electroacupuncture (EA) is a part
of the traditional Chinese medicine field. Some studies have
shown that EA improves nerve function in the brain of sub-
jects with ICH [20–23]. Does the transplantation of MSCs
combined with EA therapy exert a good therapeutic effect?
Previous studies have indicated that the transplantation of
MSCs combined with EA stimulation promotes axonal
regeneration and functional recovery of the injured spinal
cord [24, 25] and leads to a better therapeutic effect by
increasing the expression of neurotrophic factors, regulating
neurogenesis, and increasing the neural differentiation of
transplanted cells in ischemic stroke compared with a single
therapy [26, 27]. We also confirmed that the combined treat-
ment improves neurological function in rats with ICH in a
previous study [28]. However, the exact mechanism by
which MSCs combined with EA improve neurological func-
tion remains to be further explored.

After ICH, the destroyed brain structure induces the
destruction of the synaptic structure. Increasing synaptic
plasticity and rebuilding neural functional networks are the
basis of restoring neural function. Synaptic plasticity is the
ability of neurons to modify their connections and is
involved in brain network remodeling following brain dam-
age [29]. Although synaptic plasticity has been widely clari-
fied in many other diseases, including Alzheimer’s disease
[30] and mood disorders [31], it has rarely been studied in
hemorrhagic brain injury. The mammalian target of rapa-
mycin (mTOR) signaling pathway senses and integrates var-
ious environmental signals to regulate organismal growth
and homeostasis and regulates important cellular processes,
including proliferation, growth, survival, and mobility [32].
Moreover, activated mTOR increases the levels of synaptic
signaling proteins and increases the number and function
of new spine synapses in depressed rats [33]. mTOR pro-
motes protein synthesis by phosphorylating two key effec-
tors, one of which is 70 kDa ribosomal protein S6 kinase
(p70S6K) [34]. To date, studies have seldom focused on
changes in mTOR/p70S6K signaling related to synaptic plas-
ticity after ICH.

In this experiment, we examined the effects of a com-
bined treatment with MSC-derived neuron-like cells
(MSC-dNLCs) and EA on the brain water content (BWC),
numbers of blood vessels and synapses, expression of marker
proteins of neurons, oligodendrocytes and astrocytes,
synapse-associated proteins, and levels of phosphorylated
mTOR and p70S6K proteins in rats with ICH. We also
investigated the effect of the combined treatment on synap-
tic plasticity and possible mechanisms.

2. Materials and Methods

2.1. Animals. Healthy adult Sprague–Dawley rats weighing
between 200 and 250 g were provided by the SPF Laboratory
Animal Center of Southwest Medical University (Luzhou,
Sichuan, China). All of them were housed in the same ani-
mal care facility with a standard temperature (23 ± 2°C),
lighting (12/12 h light/dark cycle), and relative humidity
(65 ± 5%) and free access to food and water. The procedures
for the animal experiments were performed in accordance
with the Guidance and Suggestions for the Care and Use
of Laboratory Animals formulated by the Ministry of Sci-
ence and Technology of China. The animal protocol was
approved by the Animal Ethics Committee of the Animal
Center of Southwest Medical University (Luzhou, Sichuan,
China), and the experimental procedures were optimized
to minimize the number of animals and alleviate the pain
experienced by the experimental animals. The rats were ran-
domly divided into five groups: the sham operation (SO)
group, the model control (MC) group, the MSC-dNLC
transplantation (MSC-dNLCs) group, the EA stimulation
(EA) group, and the combined treatment with MSC-dNLC
transplantation and EA stimulation (MSC-dNLCs+EA)
group, which were assigned to the following five experimen-
tal procedures, respectively (Figure 1(a)).

2.2. Rat Model of Intracerebral Hemorrhage. Rats were anes-
thetized by intraperitoneally injecting a dose of 40mg/kg of
1% pentobarbital sodium and fixed on a stereotaxic appara-
tus (in a prone position) while maintaining the anterior and
posterior fontanelles at the same level. The scalp was incised
sagittally approximately 10mm; then, the anterior fontanelle
was exposed after treatment with 30% H2O2. A burr hole
(1mm) was drilled on the right calvarial bone at a point
3mm lateral and 0.2mm anterior to the anterior fontanelle.
A mixture containing heparin (1μl, 2.0U/μl) and collage-
nase I (2μl, 0.125U/μl) was drawn into a 5μl microsyringe.
The needle was fixed on the stereotaxic apparatus and
inserted into the caudate nucleus (location: 6mm depth to
the hole); the location of the injection point is shown in
the schematic diagrams (Figure 1(b)). Then, the mixture
was slowly injected. After injection, the burr hole was sealed
with bone wax, and the skin was sutured. The sham group
underwent the same procedure as described above, except
that the mixture was not injected.

2.3. EA Stimulation. EA stimulation was conducted as
described in our previous study [20]. The rats in the MSC-
dNLCs+EA and EA groups were stimulated with EA 48
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hours after successful modeling. Two sterile acupuncture
needles with diameters of 0.25mm were inserted into the
Baihui (GV20) and Dazhui (CV14) acupoints and connected
to the type G-6805 EA stimulator (HM6805, China). The
rats were stimulated with continuous waves at a current of
1mA, frequency of 3Hz, and stimulation duration of
10min once a day. EA was performed consecutively for
fourteen days until the rats were sacrificed.

2.4. Resuscitation and Culture of MSCs. Rat MSCs labeled
with green fluorescent protein (GFP) (Cyagen Biosciences,
China) [28] were removed from liquid nitrogen, thawed in
a 37°C water bath, and then centrifuged. After centrifuga-
tion, MSCs were resuspended in alpha-minimum essential
medium (α-MEM) (HyClone) supplemented with 10% fetal
bovine serum (FBS, HyClone), 100mg/ml streptomycin, and
100U/ml penicillin and incubated in a humidified atmo-
sphere with 5% CO2 at 37

°C. When the MSCs grew to 80%
confluence, the cells were trypsinized using 0.25% trypsin
and 1mM EDTA and passaged. MSCs at passages 3-6 were
used for subsequent experiments.

2.5. MSC Transplantation. Before transplantation, MSCs
were induced as described in our previous study [35]. In
brief, MSCs were treated with preinduction medium com-
posed of α-MEM supplemented with 10% FBS and
1mmol/l β-mercaptoethanol (β-ME) for 24 hours and then

with neuronal induction medium composed of α-MEM sup-
plemented with 1mmol/l β-ME, 2% dimethylsulfoxide
(DMSO), and 1μmol/l all-trans retinoic acid (RA) (Sigma)
for 6 hours. Afterward, MSC-dNLCs were collected, and
the cell density was adjusted to 2:5 × 107 cells per ml. Then,
an MSC-dNLC suspension (20μl) was extracted with a
microsyringe and injected into the brains (location: right of
anterior fontanelle: 3mm; anterior of anterior fontanelle:
0.2mm; depth: 6mm) of rats in the MSC-dNLCs+EA and
the MSC-dNLCs groups at an injection rate of 2μl/min after
48 hours when the rats were successfully modeled. Then, the
needle hole was sealed with bone wax, and the skin was
sutured and disinfected.

2.6. Brain Edema Examination. The BWC was measured
using a previously reported method [36]. Briefly, animals
were anesthetized and then decapitated. The brains were
quickly removed, and the right basal ganglia were separated
and weighed immediately on a precise electronic balance to
determine the wet weight. After drying in an oven for 24 h
at 100°C, the right basal ganglia were weighed again to mea-
sure the dry weight. The BWC was calculated as ½ðwet
weight – dry weightÞ/wet weight� × 100%.

2.7. Immunohistochemistry. Rats were anesthetized by
administering an intraperitoneal injection of an overdose of
pentobarbital sodium and successively transcardially perfused
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Figure 1: Conceptual illustrations of the experimental protocols. (a) Grouping and treatment strategies for experimental animals and brief
timelines of the experimental procedures. (b) Schematic diagrams of the rat ICH model along with MSC-dNLC transplantation and EA
stimulation.
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with 0.9% normal saline and 4% paraformaldehyde in 0.01M
phosphate-buffered saline (PBS, pH7.4). Subsequently, the
brains were removed, postfixed, and dehydrated before frozen
sections were cut at a thickness of 10μm with a freezing
microtome (CM1950, Leica, Germany).

After permeabilization with 0.3% Triton X-100 in 0.01M
PBS for 30min at room temperature (RT) and blocking with
10% goat serum, sections were immunostained with the fol-
lowing primary antibodies: rabbit anti-laminin (Boster,
China, diluted 1 : 100), mouse anti-MAP2 (Santa Cruz,
USA, diluted 1 : 200), rabbit anti-GALC (Invitrogen, USA,
diluted 1 : 200), mouse anti-GFAP (Santa Cruz, USA, diluted
1 : 200), rabbit anti-mTOR (CST, USA, diluted 1 : 200),
mouse anti-p70S6K (Santa Cruz, USA, diluted 1 : 200),
mouse anti-PSD95 (Santa Cruz, USA, diluted 1 : 200), and
mouse anti-synaptophysin (SYP) (Santa Cruz, USA, diluted
1 : 200), which were diluted with 1% BSA/PBS (w/v). The
sections were incubated with the primary antibodies over-
night at 4°C and then incubated with horseradish peroxi-
dase- (HRP-) conjugated goat anti-rabbit or anti-mouse
secondary antibodies (Invitrogen, USA) at RT for 1.5 h.
The sections were sequentially stained with diaminobenzi-
dine and hematoxylin. Finally, the slices were imaged using
a microscope (Olympus, Japan).

2.8. Immunofluorescence Staining. Frozen sections were
washed with 0.01M PBS for 10 minutes and then treated
with 0.3% Triton X-100 at RT for 20 minutes. After blocking
with 10% normal goat serum at 37°C for 30 minutes, the
samples were incubated with primary antibodies (MAP2,
GALC, GFAP, PSD95, and SYP) overnight at 4°C under
humidified conditions and then incubated with Alexa Fluor
594-conjugated goat anti-mouse/rabbit IgG (1 : 500, Invitro-
gen) at RT for 60min. Finally, sections were stained with 4′
,6-diamidino-2-phenylindole (DAPI) and covered with fluo-
rescence mounting medium (Dako).

2.9. Western Blotting. After anesthetization, the animals
were decapitated, and brain tissues collected from rats in dif-
ferent groups were homogenized in ice-cold protein extrac-
tion reagent. Then, the total protein concentration in every
sample from different groups was quantified using the
BCA protein assay. Equal amounts of protein (50μg) were
separated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and transferred to polyvinylidene fluoride
(PVDF) membranes. Then, the membranes were incubated
with primary antibodies against MAP2 (diluted 1 : 1000),
GALC (diluted 1 : 1000), GFAP (diluted 1 : 1000), mTOR,
p-mTOR (CST, USA, diluted 1 : 1000), p70S6K, p-p70S6K
(Santa Cruz, USA, diluted 1 : 1000), PSD95 (diluted
1 : 1000), SYP (1 : 1000), and GAPDH (Abcam, United King-
dom, diluted 1 : 10000) at 4°C overnight. After incubation
with HRP-conjugated goat anti-mouse/rabbit IgG (Bio-
Rad, USA, diluted 1 : 2000) at RT for 2 h, the membranes
were immersed in an enhanced chemiluminescence (ECL)
solution (Millipore, USA) and exposed using an Image-
Quant ECL Imager. The protein levels were normalized to
the corresponding amount of GAPDH and analyzed using
Quantity One software.

2.10. Ultrastructural Observation. Rats were anesthetized,
their brains were removed, and caudoputamen samples
(the peripheral hematoma zone) were dissected into 1mm3

pieces and fixed with 3% glutaraldehyde at 4°C. After fixa-
tion with 1% osmium tetroxide for 2 h, the pieces were dehy-
drated through a graded series of acetone solutions,
infiltrated with propylene epoxide, and embedded in Epon
618 resin. Sections were cut at a thickness of 40nm,
mounted onto a 200-mesh copper grid, and observed with
a JEM-1400 series transmission electron microscope
(TEM) (Japan Electron Optics Laboratory, Japan). Digital
images of the specimens were acquired using an integrated
high-sensitivity complementary metal-oxide-semiconductor
(CMOS) camera and analyzed by experienced electron
microscopists.

2.11. Statistical Analysis. Parametric data were analyzed
using GraphPad Prism 8 software and displayed as the
means ± standard errors of the means (SEM). Significant dif-
ferences between multiple groups were analyzed using one-
way ANOVA, and P < 0:05 was considered statistically
significant.

3. Results

3.1. Induction and Transplantation of MSCs. MSCs labeled
with GFP grew in a cluster shape and presented green fluo-
rescence under a fluorescence microscope (Figure 2(a)).
After induction with neuronal induction medium, MSC-
dNLCs showed changes resembling neuron-like cells
(Figure 2(b)). The hemorrhagic area was still seen in the
basal ganglia region in the coronal incision (Figure 2(c)).
Transplanted MSC-dNLCs were observed in rats from the
MSC-dNLCs and MSC-dNLCs+EA groups (Figure 2(d)).

3.2. The Combined Treatment Reduced the Number of Blood
Vessels and Attenuated Brain Edema. Immunohistochemical
staining for laminin was used to observe blood vessels. The
number of blood vessels increased obviously in rats after
ICH (P < 0:05), and the combined treatment significantly
reduced the number of blood vessels (30:32 ± 9:71%) com-
pared with the MC group (P < 0:05), but the numbers of
blood vessels in the three treatment groups were not signif-
icantly different (P > 0:05) (Figures 3(a) and 3(c)). TEM
showed that although the tissue structure around blood ves-
sels was loose in ICH rats, the vascular structure of each
group was intact (Figure 3(b)). The BWC increased signifi-
cantly in rats after ICH (P < 0:05) but was decreased in the
EA, MSC-dNLCs, and MSC-dNLCs+EA groups compared
with the MC group (P < 0:05) (Figure 3(d)). Moreover, EA
stimulation and the combined treatment reduced the BWC
to a greater extent than MSC-dNLC transplantation in
ICH rats (Figure 3(d)).

3.3. The Combined Treatment Increased the Levels of the
MAP2 and GALC Proteins and Decreased the Level of the
GFAP Protein. The expression of the MAP2 (neuron
marker), GALC (oligodendrocyte marker), and GFAP
(astrocyte marker) proteins was detected using immunohis-
tochemical staining and western blotting. Figures 4(a)–4(c)
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show the distribution of MAP2-, GALC-, and GFAP-
positive cells. Immunofluorescence staining revealed that a
few of the transplanted cells (GFP-positive cells) coexpressed
MAP2, GALC, and GFAP in both the MSC-dNLCs and
MSC-dNLCs+EA groups (Figures 4(d)–4(f)). The results of
western blotting showed that the levels of the MAP2 and
GALC proteins decreased, but the level of the GFAP protein
was increased in rats after ICH (P < 0:05, Figures 4(g)–4(j)).
Compared with the MC group, the expression level of the
MAP2 protein was increased in the EA and MSC-dNLCs
+EA groups, and the level of the GALC protein was
increased in the MSC-dNLCs and MSC-dNLCs+EA groups,
but the level of the GFAP protein was decreased in the EA,
MSC-dNLCs, and MSC-dNLCs+EA groups (P < 0:05,
Figures 4(g)–4(j)). Moreover, levels of the MAP2 and GALC
proteins increased significantly in the MSC-dNLCs+EA
group compared with the EA and MSC-dNLCs groups
(P < 0:05, Figures 4(g)–4(i)).

3.4. The Combined Treatment Increased the Levels of
Synapse-Related Proteins. Figures 5(a) and 5(b) show the
distribution of PSD95 and SYP immunopositive products.
In addition, the histological evaluation of transplanted
MSC-dNLCs confirmed the coexpression of GFP and
PSD95 or SYP in the MSC-dNLCs and MSC-dNLCs+EA
groups (Figures 5(c) and 5(d)). Western blotting analyses
revealed decreased levels of the PSD95 and SYP proteins in
rats after ICH (P < 0:05, Figures 5(e)–5(g)). PSD95 expres-
sion increased in the EA, MSC-dNLCs, and MSC-dNLCs
+EA groups, and SYP expression increased in the MSC-
dNLCs and MSC-dNLCs+EA groups compared with the
MC group (P < 0:05, Figures 5(e)–5(g)). Furthermore, the
combined treatment obviously increased the levels of the
PSD95 and SYP proteins compared with the single treat-
ment (P < 0:05, Figures 5(e)–5(g)).

3.5. The Combined Treatment Increased the Number of
Synapses. The synapse density was calculated to quantita-

tively investigate synaptic degradation, and the results
showed a reduced number of synapses (per 100μm2) in rats
after ICH (P < 0:05). However, a significant difference in the
number of synapses was not observed among the EA, MSC-
dNLCs, and MSC-dNLCs+EA groups (Figure 6). In addi-
tion, the number of synapses increased in only the MSC-
dNLCs+EA group compared with that in the MC group
(P < 0:05, Figure 6).

3.6. The Combined Treatment Activated mTOR and p70S6K.
Immunohistochemical staining showed that mTOR and
p70S6K proteins were expressed in all groups (Figures 7(a)
and 7(b)). The western blot results showed significantly
decreased levels of the phosphorylated mTOR and p70S6K
proteins in rats after ICH (P < 0:05, Figures 7(c)–7(f)). EA
stimulation increased the level of the phosphorylated mTOR
protein, and MSC-dNLC transplantation increased the levels
of the phosphorylated mTOR and p70S6K proteins (P < 0:05
, Figures 7(c)–7(f)). Furthermore, compared with the MSC-
dNLCs and EA groups, the levels of the phosphorylated
mTOR and p70S6K proteins were obviously increased in
the MSC-dNLCs+EA group (P < 0:05, Figures 7(c)–7(f)).

4. Discussion

The present study investigated the effect of the combination
of MSC-dNLC transplantation and EA stimulation on syn-
aptic plasticity and its molecular mechanisms in ICH rats.
For this purpose, we evaluated cell survival, the number of
synapses, the levels of synapse-associated proteins, and the
levels of the phosphorylated mTOR and p70S6K proteins.
The results suggested that the combined treatment exerts a
synergistic effect on improving synaptic plasticity through
mTOR/p70S6K signaling.

After ICH, brain edema occurs early, with a substantial
increase of approximately 75% of its maximum volume dur-
ing the first 24 hours, and then continues to develop over an
extended period of days to nearly 2 weeks [2, 37, 38]. Brain

(a) (b)

(c) (d)

Figure 2: Induction and transplantation of MSCs. (a) Cultured MSCs labeled with GFP. Scale bar = 100μm. (b) MSCs induced by neuronal
induction medium. Scale bar = 100μm. (c) The hemorrhagic area in the basal ganglia of the ICH model. (d) Transplanted MSC-dNLCs/GFP
in the brains of ICH rats. Scale bar = 100 μm.
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edema is considered a radiological marker and contributes
to poor outcomes in patients with ICH due to secondary
injury after ICH [38–40]. In this study, our results showed
that the three different treatments all reduced the BWC in
ICH rats, and the BWC decreased more significantly in the
MSC-dNLCs+EA group than in the MSC-dNLCs group.
Thus, EA stimulation further alleviates brain edema after
MSC-dNLC transplantation. Laminin, one of the primary
functional components in basement membranes of blood
vessels in most tissues [41–43], has been used to visualize
blood vessels through immunohistochemical staining. Lam-
inin overexpression, which is one of the consequences of
vasogenic edema, may promote the migration of newly gen-
erated vessels to repair blood–brain barrier (BBB) disruption
[44]. Loss of laminin aggravates BBB damage by regulating
brain water homeostasis in ICH mice [45]. In this experi-
ment, we observed an increased number of blood vessels in
the MC, EA, MSC-dNLCs, and MSC-dNLCs+EA groups

compared with the SO group, and the vascular structure
was intact. Interestingly, the combined treatment reduced
the number of blood vessels in ICH rats. The combined
treatment inhibits hyperplasia of blood vessels, and a proper
number of blood vessels might decrease the BWC in rats
with ICH.

ICH may cause massive cell death, including glial cells
and neurons [46, 47], in the brain through many mecha-
nisms, such as inflammation [48], oxidative stress [49], and
cytotoxicity [50]. Oligodendrocyte and neuron death are
associated with demyelination and neurological dysfunction
[51, 52]. Reactive astrogliosis, a pathological change associ-
ated with CNS injury, potentially promotes brain repair
and reduces neurological impairment [53]. Reactive astro-
cytes exert beneficial effects by secreting neurotrophic sub-
stances that protect neurons at early stages [54]. However,
excessive proliferation of reactive astrocytes leads to glial
scar formation, which definitely impairs axon growth and
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Figure 3: The combined treatment reduced the number of blood vessels and attenuated brain edema in rats with ICH. (a) Images of laminin
immunohistochemistry in the ipsilateral striatum of rats. The black arrows show blood vessels. Scale bar = 100μm. (b) Electron
photomicrographs of blood vessels in the peripheral area of hemorrhagic foci. The white arrows show capillaries, and ery indicates
erythrocytes. Scale bar = 5μm. (c) The number of blood vessels in different groups (n = 5 rats per group; ∗P < 0:05). (d) The brain water
content of brain samples from different groups (n = 5 rats per group; ∗P < 0:05).
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neural network reconstruction during later periods [53, 54].
Previous studies on MSC transplantation in stroke have
implied that MSCs improve neurological recovery, reduce
apoptosis, inhibit scar formation, and enhance reactive
astrocyte- and oligodendrocyte-related axonal remodeling

[55, 56]. MSCs and EA treatment could improve the expres-
sion levels of trophic factors such as brain-derived neuro-
trophic factor (BDNF), neurotrophin-4 (NT4), and
vascular endothelial growth factor (VEGF) in ischemic
stroke, which are all very helpful for brain tissue
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regeneration [26]. MSC transplantation combination with
EA treatment increased the number of neurofilament-200
positive fibers and BDA-labeled descending corticospinal
tract (CST) axons in the lesion site of the injured spinal cord
compared to MSC transplantation or EA treatment alone
and downregulated expressions of GFAP and chondroitin
sulfate proteoglycan (CSPG) proteins compared with the
operated control, which inhibited axonal degeneration as
well as promoted axonal regeneration [24]. In the present
study, EA stimulation increased the survival of neurons,
and MSC-dNLC transplantation increased the survival of
oligodendrocytes, and combination of the two also inhibited
the proliferation of astrocytes. Furthermore, some of the
transplanted cells expressed markers of neurons and glial
cells. Notably, the combined treatment exerted a synergistic
effect on promoting the survival of neurons and oligoden-
drocytes, which helped to improve the structure of the brain
tissue.

The effects of the combined treatment on synaptic plas-
ticity in the focal area were indicated by the increased levels
of synaptic structural molecules. PSD-95, a major compo-
nent of glutamatergic excitatory synapses, is a scaffolding
protein that modulates the synaptic localization of many
adhesion molecules, channels, receptors, and signaling pro-
teins [57, 58]. Previous studies have documented important
roles for PSD95 in the formation and maintenance of synap-
ses, and current reports have focused on PSD95 and its
molecular mechanisms underlying synaptic maturation and
plasticity [58, 59]. SYP has been authenticated as one of
the first nerve terminal proteins [60] and performs essential
functions in synaptic plasticity [61]. Some studies showed
that coculture with MSCs increases the expression of synap-
tic density markers (such as PSD95 and SYP) in Aβ42-
treated primary hippocampal neurons, and EA increases
the levels of the SYP, PSD-95, and GAP-43 proteins,
enhanced synaptic structural plasticity, and improved
behavioral performance in rats exposed to chronic unpre-
dictable mild stress [62, 63]. Based on our data, MSC-
dNLC transplantation increased the expression of the

PSD95 and SYP proteins, a few transplanted cells also
expressed PSD95 and SYP proteins, and EA further
increased the expression of the two proteins in ICH rats
transplanted with MSC-dNLCs. Interestingly, the combina-
tion therapy also increased the number of synapses. There-
fore, our results indicated that the combined therapy may
contribute to improving synapse plasticity in rats with ICH.

The mTOR/p70S6K pathway is involved in stroke [32,
64]. mTOR, a serine/threonine protein kinase, is a central
regulator of protein, lipid, and nucleotide synthesis, autoph-
agy, cell survival, and proliferation [32, 34, 65]. p70S6K is
one of the downstream targets of mTOR [66, 67]. The p-
mTOR and p-p70S6k proteins are regarded as markers of
mTOR activity [68]. However, controversy exists regarding
whether mTOR activity is beneficial or detrimental to the
damaged brain. Its activity increases when the injured brain
is protected by some neuroprotectants, including alpha-
lipoic acid, melatonin, and silibinin [64, 69, 70], suggesting
that activated mTOR is beneficial for brain injury. In con-
trast, studies have also reported that mTOR activity is detri-
mental to cognitive function and that minocycline prevents
cognitive deficits by inhibiting mTOR signaling, increasing
the autophagy process, and increasing the expression of
pre- and postsynaptic proteins (SYP and PSD95) in rats after
acute ischemic stroke [71]. Our results show that MSC-
dNLC transplantation increased the levels of the phosphor-
ylated mTOR and p70S6k proteins and that EA further
increased mTOR activity in ICH rats after MSC-dNLC
transplantation. Some researchers have reported that EA
improves learning and memory functions by upregulating
the expression of mTOR in rats with vascular dementia or
cerebral ischemia/reperfusion [72, 73], and MSCs affect
mTOR signaling through paracrine effects or exosomes
[74–76].

Recent studies have provided evidence that the neuro-
protective effects of mTOR on stroke may be due to its abil-
ity to increase PSD95 and GAP-43 protein levels or promote
neuronal structural stability in peri-infarct regions [77, 78].
Li et al. reported that the mTOR pathway activated by
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ketamine increases the levels of synaptic signaling proteins
(synapsin I, PSD95, and GluR1) and increases the number
and function of new synapses in the prefrontal cortex of
rat models of depression [33]. As mentioned above, the
combined therapy increased the expression of synapse-
associated proteins (SYP and PSD95), and the results suggest
that the protective effects of the combined therapy on

mTOR may be related to its ability to increase synaptic plas-
ticity in the hemorrhagic stroke.

The present study has some limitations. First, the obser-
vations of mTOR/p70S6K signaling and its regulation were
limited to the ICH rat model. This information should be
carefully considered when using the results to discuss the
role of the mTOR pathway in neurological disease. Second,
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we did not construct mTOR and p70S6K viruses to obtain
further proof. mTOR/p70S6K signaling is an interesting tar-
get in hemorrhagic stroke that requires further investigation
in subsequent research.

In summary, despite the shortcomings of this study, we
provide the first evidence for the synergistic effects of a com-
bined treatment consisting of MSC-dNLC transplantation
and EA stimulation on improving synaptic plasticity, which
may be associated with activated mTOR/p70S6K signaling
in rats with ICH. These findings not only provide new data
for the neuroprotective effect of a combined treatment con-
sisting of MSC-dNLC transplantation and EA stimulation
but also supply positive insights that will improve our
understanding of the underlying molecular mechanisms
and help to develop more precise therapeutic drugs and
treatments for alleviating the outcomes of ICH.
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