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Human gingiva-derived mesenchymal stem cells (GMSCs) are isolated from the gingival propria with promising regenerative,
immunomodulatory, and anti-inflammatory properties. Recently, several studies, including ours, have found that GMSCs have
the therapeutic potentials of nerve regeneration and skin disorders in various types such as the cell itself, cell-free conditioned
medium, or extracellular vesicles (EVs). However, the mechanobiological behavior of GMSCs is closely related to the culture
conditions. Therefore, the purpose of this study was to evaluate the function of human GMSCs on imiquimod- (IMQ-) induced
murine psoriasis-like skin inflammation in two-dimensional (2D) and three-dimensional (3D) culture conditions. Here, we
isolated and characterized GMSCs in 2D and 3D culture conditions and found that GMSCs in 2D and 3D infusion can
significantly ameliorate the IMQ-induced murine psoriasis-like skin inflammation, reduce the levels of Th1- and Th17-related
cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-21, and IL-22, and upregulate the percentage of spleen CD25+CD3+ T cells
while downregulate the percentage of spleen IL-17+CD3+ T cells. In summary, our novel findings reveal that GMSCs in 2D and
3D infusion may possess therapeutic effects in the treatment of psoriasis.

1. Introduction

Mesenchymal stem cells (MSCs) are multilineage cells with
self-renewal and multipotent differentiation, and immuno-
modulatory/anti-inflammatory properties play a vital role
in tissue repair and regeneration [1, 2]. They are present in
almost all tissues, including adipose tissue, bone marrow,
umbilical cord, synovium, skeletal muscles, dental pulp, gin-
gival, amnion, placenta, and skin [3–5]. MSCs commonly
express similar cell surface molecules, such as CD29, CD44,
CD73, CD90, and CD105, but typically lack hematopoietic

cell markers, such as CD14, CD19, CD34, and CD45 [2, 6].
Human gingiva-derived mesenchymal stem cells (GMSCs)
are isolated from the gingival propria with promising regen-
erative, immunomodulatory, and anti-inflammatory proper-
ties. Similar properties shared with other MSCs, including
BMSCs, UMSCs and ADMSCs, GMSCs have several unique
characteristics, specially their high proliferative capacity. In
addition, GMSCs can keep MSC characteristics and show
stable morphology and maintain telomerase activity under
long-term culture conditions. Besides the differentiation
potentials (osteocytes and adipocytes), GMSCs possess the
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potential to transdifferentiate into neural cells, endothelial
cells, keratinocytes, and odontogenic cells under different
induction conditions. Recently, several studies, including
ours, have found that GMSCs have the therapeutic potentials
of nerve regeneration and skin disorders in various types
such as the cell itself, cell-free conditioned medium, or extra-
cellular vesicles (EVs) [7–9]. A number of studies have found
that the mechanobiological behavior of MSCs is closely
related to the culture conditions. Most recently, some studies
found that 3D spheroid GMSCs significantly increased the
stem cell properties and therapeutic effects. In comparison
to the 2D cultured GMSCs, 3D spheroid GMSCs showed
enhanced multipotency and secreted an increased level of
several chemokines and cytokines related with cell migration,
proliferation, and angiogenesis; in vivo, 3D spheroid cultures
of GMSCs improved mitigation of oral mucositis. The pur-
pose of this study was to evaluate the function of human
GMSCs on imiquimod- (IMQ-) induced murine psoriasis-
like skin inflammation in two-dimensional (2D) and three-
dimensional (3D) culture conditions.

Psoriasis is a T cell-mediated inflammatory autoimmune
skin disease, with an imbalance between Th2 and Th1/Th17
cytokines [10]. MSCs could alleviate psoriasis skin lesions by
suppressing the local levels of angiogenic and proinflamma-
tory mediators and inhibiting activation and differentiation
of DC-mediated CD4+ T cells [11, 12]. More recently, some
studies showed that MSCs could be an effective treatment
for psoriasis [11–17]. Up to date, there are nine clinical trials
on MSC-based therapy of psoriasis. [2]. At present, this is
due to the easy accessibility, genomic stability, the highly
proliferative activity, less morbidity of harvesting, the potent
immunomodulatory, and regenerative potentials, as well as
well tolerated by all recipient hosts without any obvious sys-
temic adverse effects [18]. GMSCs have become an attractive
source of adult stem cells for regenerative therapy and tissue
engineering.

However, whether GMSCs also has an effective treatment
for psoriasis and whether this effect is related to the different
mechanobiological behavior of GMSCs is unknown. To date,
some studies have reported that aggregation of MSCs in 3D
spheroid culture can significantly enhance their multipotent
differentiation, anti-inflammatory properties, and angiogenic
and tissue regenerative effects [19]. In this study, we isolated
and characterized GMSCs in 2D and 3D culture conditions
and found that GMSCs in 2D and 3D infusion can signifi-
cantly ameliorate the IMQ-induced murine psoriasis-like
skin inflammation, reduce the levels of Th1- and Th17-
related cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-
21, and IL-22, and upregulate the percentage of spleen
CD25+CD3+ T cells while downregulate the percentage of
spleen IL-17+CD3+ T cells. Our novel findings reveal that
GMSCs in 2D and 3D infusion may possess therapeutic
effects in the treatment of psoriasis.

2. Materials and Methods

2.1. GMSC Isolation and Culture. Approved by the Ethics
Committee of Binhaiwan Central Hospital of Dongguan,
human gingival tissue samples were collected from clinically

healthy patients without history of periodontal disease. The
isolation of human GMSCs was described previously [3].
The gingival tissues were treated aseptically and washed sev-
eral times with phosphate buffered saline (PBS). Then, the
tissues were minced into small fragments (1-3mm3) and
digested with collagenase IV (Sigma) solution at 37°C for
1 h and centrifuged at 1000 rpm for 5min, and the superna-
tant was discarded. The cells were suspended in complete
minimum essential medium α (α-MEM) containing 10%
fetal bovine serum (FBS), penicillin (100U/ml), and strepto-
mycin (100μg/ml), then placed into 10 cm cell culture dish,
and maintained at 37°C and 5% CO2 in a humidified incuba-
tor. The medium was refreshed every three days. After
reaching 80% confluence, cells were digested with trypsin-
EDTA solution (0.25%). Cells of passages 3-8 were used
for the present experiments.

2.2. Multipotent Differentiation of GMSCs

2.2.1. Osteogenic Differentiation. The GMSCs were seeded in
6-well plates (5 × 105 cells/well) and incubated with α-MEM,
allowed to adhere overnight, and replaced with osteogenic
induction medium (Scien Cell) every 3 days. Four weeks
later, in vitro mineralization was assayed by Alizarin Red S
staining.

2.2.2. Adipogenic Differentiation. As described above, the
GMSCs were cultured in adipogenic differentiation medium
(Scien Cell). The medium was refreshed every 3 days. Two
weeks later, the cells were fixed and assessed by Oil Red O
staining.

2.3. Spheroid Generation and Dissociation. GMSCs were
seeded into ultralow attachment dishes (2 × 105/ml) and
incubated with complete α-MEM to allow 3D spheroid for-
mation for up to 3 days. To acquire spheroid-derived
GMSCs, spheroids were incubated with 0.25% trypsin at
37°C for 15min while pipetting every 5min; the single cells
were collected by centrifugation.

2.4. Cell Proliferation Analysis. CCK-8 (Dojindo) assay was
used to measure the viability of GMSCs in 2D (2D-GMSCs)
and GMSCs in 3D (3D-GMSCs) culture conditions on a
normal culture plate. Briefly, a total of 1000 cells per well
were cultured in five replicate wells in a 96-well plate. Then,
10μl CCK-8 reagent was added to each well and cultured for
2 h. The absorbance was measured at 450 nm using a micro-
plate reader. We performed this assay on day 1, day 3, day 5,
and day 7.

2.5. Flow Cytometry. GMSCs were collected and suspended
in cell staining buffer (0.5% BSA in PBS with 2mM EDTA)
followed by incubation with CD14 (PE), CD19 (PerCP-
Cy5.5), CD29 (APC), CD34 (PE), CD44 (FITC), CD45
(PE), CD73 (PE), CD90 (FITC), and CD105 (PE) antibodies
(Biolegend) in the dark at room temperature for 30 min. For
intracellular staining, splenocytes from mice were first
stained with CD3 (APC/Cy7), CD4 (FITC), and CD25
(APC) antibodies (Biolegend) and then fixed, permeabilized,
and stained intracellularly for IL-4 (PE/Cy7) and IL-17 (PE).
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Figure 1: Continued.
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After staining, cells were washed twice with PBS and submit-
ted to flow cytometric analysis (BD). Data were analyzed
using the FlowJo 7.6 software.

2.6. Cytokine Analysis. For tissue cytokine analysis, the pro-
tein was extracted from skin tissue, then homogenate was
centrifuged at 10,000 × g for 10min at 4°C, and superna-
tant was collected. Protein concentration was determined
using BCA protein Assay Kit. Cytokines (IL-6, IL-10, IL-
17A, IL-17F, IL-21, IL-22, TNF-α, and IFN-γ) in the serum
and skin lysate were measured by the LEGENDplex Multi-
Analyte Flow Assay kit (Biolegend, 740749) following the
manufacturer’s instructions. Briefly, 25μl of the standard,
serum or skin lysate, and buffer solutions was added to
the wells. To each well, 25μl of mixed beads was added.
Then, the plate was covered with a plate sealer and shook
at 500 rpm for 2 h at room temperature. After 2 washes,
25μl of biotinylated detection antibodies was added to each
well. The plate was then covered with a plate sealer and
shook at 500 rpm for 1 h at room temperature. Subse-
quently, 25μl of Streptavidin-phycoerythrin was added to

each well, and the plate was covered with a plate sealer and
shook at 500 rpm for 30min at room temperature. After 2
washes, the samples were tested on a flow cytometer. The
results were analyzed using the LEGENDplex data analysis
software. The concentration of each analyte was quantified
in pictograms per milliliter.

2.7. RNA Sequencing. The cells were collected and lysed by
TRIzol, and total RNA was extracted according to the man-
ufacturer’s instructions (Invitrogen). RNA was quantified
using Nanodrop spectrophotometer (Thermo Scientific).
RNA sequencing was carried out by the Guangdong Longsee
Biomedical Co., Ltd following standard protocols. Standard
bioinformatics analysis was performed by the Guangdong
Longsee Biomedical Co., Ltd.

2.8. Animals. Female C57BL/6 mice weighing 20 g (8 weeks
old) were purchased from the Guangdong Medical Labora-
tory Animal Center (Foshan, China). Animal experiments
in the study were approved by the Animal Experimental
Ethics Committee of Guangdong Medical University in
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Figure 1: Characterization of GMSCs. (a) Representative images of 2D cultured GMSCs (A). Morphology of GMSCs cultured on a low
attachment culture dish (B). Representative images of adipogenesis (C) and osteogenesis (D). (b) Flow cytometric analysis of surface
markers in GMSCs under 2D or 3D conditions. (c) Proliferation assay for GMSCs cultured on a low attachment culture dish.
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compliance with the National Guidelines for the Care and
Use of Animals. Mice were group-housed in polycarbonate
cages in the animal facilities with controlled temperature
(23°C ± 2°C), 40%-65% humidity, and a 12-hour light/dark
cycle. Mice were acclimatized for at least 1 week before the
study, fed with a standard laboratory diet, and allowed free
access to drinking water.

2.9. Establishment and Treatment of IMQ-Induced Murine
Psoriasis-Like Skin Inflammation. Fifteen mice were ran-
domly divided into three groups, with five mice in each, as
follows: the IMQ control group, 2D-GMSC treatment group,
and 3D-GMSC treatment group. On the day 0, the backs of
mice were shaved using depilatory machine and cream. 5%
imiquimod (IMQ) cream (Sichuan Mingxin) was used to
induce psoriasis-like skin inflammation with a daily dose
of 62.5mg from day 1 to day 7, consecutively.

The effects of GMSCs were tested by administration of
2 × 106 2D-GMSCs or 3D-GMSCs in 200μl PBS via the
mouse tail vein on day 1 and day 4 consecutive IMQ treat.
The IMQ control group received an intravenous injection
of 200μl PBS via the tail vein on day 1 and day 4. The sever-
ity of the inflammation of the psoriatic skin was assessed
using the Psoriasis Area Severity Index (PASI). The degree
of erythema, scaling, or thickening was each scored on a
scale from 0 to 4, as follows: 0, none; 1, slight; 2, moderate;
3, marked; and 4, severe. The cumulative PASI scores (ery-
thema+scaling+thickening) were calculated to reflex the
severity of inflammation. All mice were sacrificed on day 8,
and blood, spleen, and skin samples were collected for fur-
ther studies.

2.10. Histology and Immunohistochemical Analysis. The back
skin of all the mice was fixed with 10% Paraformaldehyde
solution (PFA). For histological study, paraffin-embedded
sections were stained with hematoxylin-eosin (HE) staining.
For immunohistochemical studies, the paraffin-embedded
sections (4μm) were deparaffinized with xylene, rehydrated
with graded ethanol, and heated in 10mmol/L sodium cit-
rate buffer (pH6.0) for antigen retrieval. After blocking with
2.5% goat serum in PBS, the sections were incubated over-
night at 4°C with primary antibodies (TNF-α, IL-6, IFN-γ,
and IL-17A) and then detected using the universal immuno-
peroxidase ABC kit. All the sections were counterstained
with hematoxylin. Images were captured using a light micro-
scope (Olympus).

2.11. Statistical Analysis. All data are presented as mean ±
standard deviation ðSDÞ from at least three independent
experiments. Differences between experimental and control
groups were analyzed by a two-tailed unpaired Student’s t-
test using the GraphPad Prism 7 software. A value of less
than 0.05 was considered statistically significant.

3. Results

3.1. Characterization of GMSCs under 2D and 3D Culture
Conditions. As shown in Figure 1(a), we have successfully
isolated GMSCs from gingival tissues and the cells exhib-
ited a spindle-like morphology in 2D culture conditions
(Figure 1(a), A) and spontaneously aggregated into 3D
spheroids under growth condition of ultralow attachment
(Figure 1(a), B). The results of osteogenic and adipogenic
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Figure 2: The 3D culture of GMSCs caused significant alterations in gene expression. (a) The difference of gene expression between 2D-
GMSCs and 3D-GMSCs was analyzed by RNA sequencing. (b, c) The representative global view of gene expression changes between 2D-
GMSCs and 3D-GMSCs. (d) Gene ontology analysis of differentially expressed genes. BP: biological process; CC: cellular component;
MF: molecular function.
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Figure 3: 2D-GMSCs and 3D-GMSCs significantly ameliorated psoriatic symptoms in IMQ-induced mice. MSC infusion ameliorated
psoriatic symptoms in IMQ-induced mice. (a) Experimental protocol showing treatment regimens using 2D-GMSCs and 3D-GMSCs in
psoriatic mice. (b) Typical presentation of the mouse back skin from IMQ, 2D-GMSCs, and 3D-GMSCs group on day 4 and day 8 was,
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9Stem Cells International



differentiation experiments demonstrated that GMSCs have
multiple differentiation capabilities (Figure 1(a), C and D).
Flow cytometry analysis showed that GMSC cells were
strongly positive for MSC markers CD29, CD44, CD73,
CD90, and CD105, but negative for hematopoietic cell
markers CD14, CD19, CD34, and CD45 (Figure 1(b)). These
results were consistent with our previous studies [3]. The
results of flow cytometry analysis showed that 3D-GMSCs
also negatively expressed CD14, CD19, CD34, and CD45
(Figure 1(b)). And the expression of CD29, CD44, CD73,
CD90, and CD105 was decreased, compared with 2D-
GMSCs (Figure 1(b)). The cell proliferation results showed
that the proliferation rate of GMSCs under 3D culture condi-
tions (3D-GMSCs) was reduced compared with GMSCs
under 2D culture conditions (2D-GMSCs) (Figure 1(c)). It
is worth noting that when the 3D-GMSCs were replanted
in the 2D culture conditions, the cell proliferation rate of
replanted 3D-GMSCs (RA-3D-GMSCs) was restored, similar
to 2D-GMSCs (Figure 1(c)). The RNA sequencing results
showed that among the 13844 screened genes, altogether
1312 genes were significantly upregulated and 1022 genes
were significantly downregulated in 3D cultured GMSCs
compared with 2D cultured GMSCs (jlog 2ðfold of gene
expression changeÞj ≥ 1) (Figures 2(a)–2(c)). Gene ontology
analysis of differentially expressed genes was performed
using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) online tool. The results of the
GO analysis found that alterations of biological processes
(BPs) in the differentially expressed genes were significantly
changed in the signal transduction, inflammatory response
and oxidation-reduction process (Figure 2(d)). The differen-
tially expressed genes’ alterations in the cell component
(CC) were mainly located in plasma membrane, extracellu-
lar exosome, and extracellular region (Figure 2(d)). The
alterations in gene functionality at the molecular level
(MF) were mainly associated with extracellular matrix struc-
tural constituent, collagen binding and growth factor activity
(Figure 2(d)).

3.2. GMSCs Attenuate the Symptoms of IMQ-Induced
Murine Psoriasis-Like Skin Inflammation under 2D and 3D
Culture Conditions. To determine whether GMSCs also have
an effective treatment for psoriasis, and whether this effect is
related to the different mechanobiological behavior of
GMSCs, we established a murine model of IMQ-induced
psoriasis-like skin inflammation that was injected with 2D-
GMSCs and 3D-GMSCs. The intervention strategy is shown
in Figure 3(a). The morphological observation of the back
skin is shown in Figure 3(b). IMQ control group mice exhib-
ited the most serious symptoms of erythema, scaling, and
thickness, which continuously increased in severity up to
the end of IMQ application on day 7. However, 2D-GMSC
and 3D-GMSC treatment significantly reduced the severity
of skin lesions in mice. We also assessed the severity of
psoriasis-like skin and total scores of skin lesions on days
1-8 via PASI scoring system. The PASI scores were gradually
increased in IMQ control group mice. Interestingly, 2D-
GMSC and 3D-GMSC treatment significantly decreased the
PASI score (Figure 3(c)). These results suggest that GMSCs

attenuate the symptoms of IMQ-induced murine psoriasis-
like skin inflammation under 2D and 3D culture conditions.

3.3. GMSCs Attenuate the Skin Inflammation of IMQ-
Induced Murine Psoriasis-Like Skin Inflammation under 2D
and 3D Culture Conditions. HE staining further confirmed
that 2D-GMSCs and 3D-GMSCs significantly decreased
epidermal thicknesses (Figure 4(a)). Immunohistochemical
studies demonstrated that treatment with 2D-GMSCs and
3D-GMSCs inhibited the expression of TNF-α, IL-6,
IFN-γ, and IL-17A (Figures 4(b) and 4(c)). We also ana-
lyzed the levels of IL-6, IL-17A, IL-17F, IL-21, IL-22,
TNF-α, and IFN-γ in the skin lysate. 2D-GMSC and 3D-
GMSC treatment significantly reduced the levels of IL-6,
TNF-α, IL-17A, IL-17F, and IL-21 and increased the level
of IL-10 in the skin compared to that in control
(Figure 4(d)). These results suggest that GMSCs signifi-
cantly reduced the proinflammatory response, while upreg-
ulating the anti-inflammatory response of IMQ-induced
murine psoriasis-like skin inflammation under 2D and
3D culture conditions.

3.4. GMSCs Strongly Influence the Expression of Inflammatory
Mediators and Spleen CD25+CD3+ and IL-17+CD3+ T Cell
Responses of IMQ-Induced Murine Psoriasis-Like Skin
Inflammation under 2D and 3D Culture Conditions.Addition-
ally, the mouse spleen volumes and spleen/body weight ratio
in the 2D-GMSC and 3D-GMSC group were reduced com-
pared to the IMQ control group (Figure 5(a)). Furthermore,
we determined the percentage of Th17 and Treg cells in the
spleen of mice, and splenocytes from all the mice were stained
for CD3, CD25, and IL-17A. After 2D-GMSC and 3D-GMSC
treatment, the percentage of IL-17A+CD3+ T cells was notably
reduced, while the percentage of CD25+CD3+ T cells was sig-
nificantly increased compared with the IMQ control group
(Figures 5(b) and 5(c)). These data suggested that GMSCs
could modulate spleen Th17 and Treg responses of IMQ-
induced murine psoriasis-like skin inflammation under 2D
and 3D culture conditions. We also analyzed the levels of IL-
6, IL-10, IL-17A, IL-17F, IL-21, IL-22, TNF-α, and IFN-γ in
the serum. As shown in Figure 5(d), the levels of IL-6, TNF-
α, IL-10, IL-17A, and IL-22 in the serum of mice were signif-
icantly decreased in the 2D-GMSC and 3D-GMSC group
compared with the IMQ control group (Figure 5(d)). These
data suggested that GMSCs could modulate the expression
of serum inflammatory mediators of IMQ-induced murine
psoriasis-like skin inflammation under 2D and 3D culture
conditions.

4. Discussion

In the present study, we successfully isolated GMSCs from
human gingival tissue, and these cells showed osteogenic
and adipogenic differentiation capabilities. Additionally, the
isolated GMSCs positively expressed CD29, CD44, CD73,
CD90, and CD105 but did not express hematopoietic stem
cell markers such as CD14, CD19, CD34, and CD45. Tradi-
tionally, 2D culture conditions have been used as a standard
technique for in vitro expansion of MSCs. Compared with
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Figure 4: Continued.
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2D cell culture, 3D culture was regarded as more physiolog-
ical with the characteristics better reserved [20]. In our study,
we firstly observed the growth of GMSCs under 3D culture
conditions. They spontaneously aggregated into spheroids
under condition of ultralow attachment. In addition, the
lower proliferation rate showed that 3D culture affected the
growth characteristics of GMSCs. Next, the RNA sequencing
analysis showed that a lot of genes involved in ossification,
cytokine, mesenchymal cell differentiation, and chemotaxis
were differentially regulated in 3D-GMSCs compared with
2D-GMSCs. Some previous studies on UC-MSCs and human
bone marrow- and adipose tissue-derived MSCs revealed
that 3D culture caused a significant upregulation of angioge-
netic genes and promoted expression of proinflammatory
and anti-inflammatory genes at the transcription level [21].

After RNA sequencing analysis, we focused on the effect
of 3D culture on the immunophenotype of 3D-GMSCs
through flow cytometry. Similar MSC marker expression
was observed in 3D-GMSCs and 2D-GMSCs, whereas inter-
estingly, the expression of CD44 and CD90 was downregu-
lated in 3D-GMSCs. CD73 (Ecto-5′-nucleotidase, e-5′NT),
a rate-limiting enzyme in the extracellular metabolism of
ATP, can convert ATP to immunosuppressive adenosine;
therefore, it is considered an important mediator of immu-
nity [22]. Some studies demonstrated that CD73 expression
was decreased in 3D spheroid-derived MSCs compared to the
2D cultured MSCs [23, 24]. Consistently, our results also
showed the CD73 expression was downregulated at protein
level in 3D spheroid-derived MSCs. CD90 (Thy1) is a
glycophosphatidylinositol-anchored membrane protein highly
expressed by MSCs [25]. According to reports, in vivo and
in vitro, periosteum-derived cells sorted with CD90 have
higher osteogenic potential than unsorted cells [26]. Recently,
a study showed that compared with MSCs from wild-type
mice, the osteogenic differentiation ability of MSCs from

Thy1 knockout mice was reduced [27]. Together, these find-
ings showed that CD90 was related with osteogenic differen-
tiation. Most recently, studies have shown that 3D spheroids
from AMSCs and WJ-MSCs showed higher expression of
the osteogenic markers Runx2, osteopontin, and ALP at
mRNA level than 2D cultured cells [28, 29]. Our present
study showed that 3D-GMSCs exerted lower expression of
the CD90 at mRNA and protein level than 2D-GMSCs.

Psoriasis is a chronic, Th1/Th17-mediated inflammatory
disease, which is related to the excessive proliferation and
differentiation of abnormal keratinocytes, resulting in ery-
thema, thickness, and scaly plaques [30]. It affects an esti-
mated 125 million people worldwide [31]. Initially, Th1
cells and the cytokines produced by these cells, such as
TNF-α and IFN-γ, were associated with psoriasis [32].
Numerous studies showed that Th17 cells and their inflam-
matory mediators play an important role in the pathogenesis
of psoriasis [33]. Th17 cytokines, such as IL-6, IL-17A, IL-
17F, IL-21, and IL22, act on keratinocytes, leading to their
activation and overproliferation [34, 35]. The activated kera-
tinocytes in turn promote the recruitment of inflammatory
cells [34, 35]. The current clinical treatment of psoriasis
completely involves topical drugs, including vitamin D3
analogues, topical corticosteroids, calcineurin inhibitors,
keratolytics, and biologics that inhibit TNF-α, IL-12, IL-13,
IL-17, and IL-23 [31].

IMQ is an agonist of Toll-like receptors (TLR) 7 and 8,
used to treat warts, and has been widely used to induce
psoriasis-like skin inflammation [36]. Several studies have
shown that MSCs and exosomes derived from MSCs can
effectively improve psoriasis-like skin lesions in mouse
models [37–39]. Here, this is the first study to investigate
the therapeutic potential of 2D cultured GMSCs and
spheroid-derived GMSCs in psoriasis-like lesions induced
by IMQ administration in a mouse model. Our results

IL-6 TNF-𝛼 IL-10 IL-17A IL-17F IL-21 IL-22 IFN-𝛾
0

5

10

50
100

300
200

500
400

Co
nc

en
tr

at
io

n 
(p

g/
m

l)

Skin

⁎

⁎⁎

⁎⁎⁎

⁎⁎⁎
⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎⁎ ⁎⁎

⁎⁎⁎ ⁎⁎

Control
2D-GMSCs
3D-GMSCs

(d)

Figure 4: 2D-GMSCs and 3D-GMSCs significantly inhibited the skin inflammatory response in IMQ-induced mice. (a) Representative HE
staining of mouse back skin. (b) Immunohistochemical studies were performed using antibodies for mouse TNF-α, IL-6, IFN-γ, and IL-17A.
(c) The relative expression levels of TNF-α, IL-6, IFN-γ, and IL-17A were analyzed by pathological score (PS). ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p
< 0:001. (d) The protein expression level of inflammatory cytokines in the skin tissue lysate evaluated via multiplex LEGENDplex
analysis. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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showed that GMSCs reduced erythema, skin thickness, and
scaling exerted protective effects against psoriasis-like skin
inflammation induced by IMQ under 2D and 3D culture
conditions. Furthermore, HE staining confirmed that 2D-
GMSCs and 3D-GMSCs could prevent the proliferation
and abnormal differentiation of keratinocytes. The spleen is
a major organ of the immune system and secreting a variety
of immune-active cytokines; therefore, it plays an important
role in immune activities. In this study, we found that 2D-
GMSCs and 3D-GMSCs significantly inhibited the ratio of
spleen to body weight, indicating that GMSCs under 2D
and 3D culture conditions can regulate the inflammatory
immune cells of the spleen to produce an inflammatory
immune response with a systemic antipsoriatic effect.
GMSCs cultured in 3D and 2D have similar effects. We found
that 2D-GMSCs and 3D-GMSCs can inhibit IMQ-induced
inflammation in psoriasis-like mouse models. 2D-GMSCs
and 3D-GMSCs significantly reduced the serum levels of
Th1 cytokines (TNF-α and IL-6), Th17 cytokines (IL-17A
and IL-22), and IL-10, which means intravenous injection
2D-GMSCs and 3D-GMSCs inhibit IMQ-induced inflam-
mation. Consistently, these results were observed in the skin;
conversely, the level of IL-10 was increased. These results
indicate that 2D-GMSCs and 3D-GMSCs inhibit IMQ-
induced Th1/Th17 cytokine and psoriasis skin changes.
However, further research is needed to determine the exact
molecular mechanism of GMSC’s anti-inflammatory effects.
Finally, we measured the percentage of Treg and Th17 in
the mouse spleen. We found that the ratio of Treg cells
increased after treatment with 2D-GMSCs and 3D-GMSCs,
while the ratio of Th17 cells decreased, showing that 2D-
GMSCs and 3D-GMSCs exert immunomodulatory and
anti-inflammatory properties. In summary, we revealed that
transplantation of 2D-GMSCs and 3D-GMSCs has therapeu-
tic potential for the treatment of psoriasis-like skin lesions.
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