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Objectives. Osteoarthritis is the leading disease of joints worldwide. Osteoarthritis may be treated by exosomes derived from
Runx2-overexpressed bone marrow mesenchymal stem cells (R-BMSCs-Exos). R-BMSCs-Exos would promote the
proliferation, migration, and phenotypic maintenance of articular chondrocytes. Methods. BMSCs were transfected with and
without Runx2. Exosomes derived from BMSCs and R-BMSCs (BMSCs-Exos and R-BMSCs-Exos) were isolated and identified.
Proliferation, migration, and phenotypic maintenance were determined in vitro and compared between groups. The
mechanism for activation of Yes-associated protein (YAP) was investigated using small interfering RNA (siRNA). The
exosomes’ preventive role was determined in vivo using Masson trichrome and immunohistochemical staining. Results. R-
BMSCs-Exos enhance the proliferation, migration, and phenotypic maintenance of articular chondrocytes based on the YAP
being activated. R-BMSCs-Exos prevent knee osteoarthritis as studied in vivo through a rabbit model. Conclusions. Findings
emphasize the efficacy of R-BMSCs-Exos in preventing osteoarthritis. Potential source of exosomes is sorted out for the
advantages and shortcomings. The exosomes are then modified based on the molecular mechanisms to address their
limitations. Such exosomes derived from modified cells have the role in future therapeutics.

1. Introduction

Osteoarthritis (OA) is the chronic joint disease world over
[1, 2]. It affects around 10% men and 18% women of above
60 years age [3]. OA pathological characteristics include
articular cartilage degeneration, secondary bone hyperplasia,
and narrowing of joint space found on plain radiographs [4].
OA is clinically manifested through dysfunction, malforma-
tion, and pain [5]. OA is treated via the pharmacological,
nonpharmacological, and surgical procedures [6, 7]. There
is a symptomatic relief; however, the damaged cartilage tis-

sue cannot be effectively repaired [8]. Timely prevention
and reversal of OA progression are thus important.

Mesenchymal stem cells (MSCs) have the potential of
repairing damaged tissues. MSCs can be isolated from tis-
sues like synovium, perichondrium, adipose, muscle, perios-
teum, and bone marrow [9]. Bone marrow mesenchymal
stem cells (BMSCs) were first isolated from bone marrow
in 1968 [10]. Tissues through BMSCs specifically regenerate
the cartilage [11]. The direct use of stem cells causes chro-
mosomal variations and immunological rejection [12]. It is
therefore important to efficiently use MSCs without risks.
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The activation of resident cells via paracrine mechanism
helps in cell-mediated tissue repairing [13]. Exosome-
membrane-bound vesicles of 30-150nm diameter are produced
by all humor and cell types and are important for communica-
tion between the cells [14, 15]. Exosomes have the biological
characteristics of the cells where they are derived from [16].
The direct use of such exosomes has no impact of chromosomal
variation or immunogenicity [12]. There are limited studies
available regarding OA therapy using exosomes derived from
BMSCs (BMSCs-Exos) [17] while this work hypothesizes their
effectiveness in preventing or reversing OA.

2. Materials and Methods

2.1. Ethics Statement. The experiments of animal model were
approved by the Ethics Committee of Wuhan Third Hospi-
tal, Tongren Hospital of Wuhan University, and Guide for
the Care and Use of Laboratory Animals was followed.
These experiments were conducted in the Animal Manage-
ment Center. The number and sufferings of included ani-
mals were kept minimal.

2.2. Isolation, Purification, and Characterization of
rbBMSCs. BMSCs were isolated from bone marrow as the
previous protocol [18]. The cells were induced to differenti-
ate by converting to osteogenic, adipogenic, and chondro-
genic differentiation mediums. Differentiation was analyzed
by the cell surface markers using flow cytometer (CytoFLEX,
USA). The details are given in Supplementary Method 1.

2.3. Adenovirus Transfection. Adenovirus Runx2 (Ad-
Runx2) was transfected by using reported method [19].
The target gene Runx2 with 1015bp-2559bp in length was
designed by Shanghai Jikai Biotech Co., Ltd and cloned into
Teasy vector. Ad-Runx2 was stored at -80°C refrigerator (New
Cell & Molecular Biotech, China). Manufacturer’s protocol
was followed to transfect Ad-Runx2 with GFP fluorescence into
MSCs and observed the fluorescence intensity. Transfection
efficiency was verified through western blot and qRT-PCR.

2.4. Isolation and Identification of Exosomes. Exosomes were
isolated from the conditioned medium of BMSCs and Runx2-
transfected BMSCs [20]. Nanoparticle tracking analysis
(NTA) and transmission electron microscopy (TEM) deter-
mined the size and distribution of exosomes. Mark proteins
(CD63, CD81, and TSG101) were extracted from exosomes
using Total Exosome Protein Isolation Kit (Invitrogen,
USA). Exosome uptake by chondrocytes was observed via
the PKH-26-labeled exosomes. The details are provided in
Supplementary Method 2.

2.5. RNA Isolation and qRT-PCR. Total RNA was extracted
from the cells using TRIzol reagent (Invitrogen) and mRNA
by RNeasy/miRNeasy Mini Kit (Qiagen). For mRNA, cDNA
was synthesized using PrimeScript RT reagent Kit (Takara).
qRT-PCR was performed on CFX96™ Real-Time System
(Bio-Rad) using iTaq Universal One-Step RT-qPCR Kit
(Bio-Rad). GAPDH was employed as internal reference for
other mRNAs. The primer sequences are given in Supplemen-
tary Method 3. Experiments were performed in triplicate.

2.6. Protein Isolation and Western Blot. The adopted proto-
col was the same as our previous reports [21]. Total protein
content was isolated from cell lysis buffer having EDTA, and
equal amounts were loaded for western blotting. The anti-
bodies of anticollagen type II (COL-II), anti-SOX9, Runx2,
and anti-aggrecan primary antibodies were obtained from
Abcam (Cambridge, MA, USA), anti-YAP, anti-CD63,
anti-CD81, and anti-TSG101 from System Biosciences (Palo
Alto, CA, USA) and anti-CTGF, anti-Ankrd1, and GAPDH
from Protein Tech (Wuhan, China). COL-II was analyzed
using 8% (wt/vol) SDS-PAGE. The experiments were con-
ducted in triplicate.

2.7. In Vitro Response of Chondrocytes to BMSCs-Exos
and R-BMSCs-Exos

2.7.1. Isolation and Characterization of Articular
Chondrocytes. Rabbit articular chondrocytes (rbACs) were
isolated through sequential proteinase and collagenase
digestions [22]. The rbACs of third passage 2 (P2) were
seeded in 6-well plate as 105 cells/cm2 prior to treatment
for avoiding the phenotypic loss. The rbACs were stained
and identified using toluidine blue, fluorescent acridine
orange, and immunofluorescent type II collagen. The details
are described in Supplementary Method 4.

2.7.2. Proliferation of Chondrocytes. Chondrocytes with exo-
somes or Ad-Runx2 transfection were measured via the EdU
Cell Proliferation Kit (Invitrogen, Beijing, China). Normal
chondrocytes or chondrocytes transfected with exosomes
of different ratios or empty vectors were seeded into 24-
well plate for 12h at the density of 2 × 104 cells/well. The cell
culture was added to EdU solution (ratio of 1000 : 1) and incu-
bated for 2h at room temperature, followed by washing with
PBS, fixing by 4% paraformaldehyde for 30min, and incubat-
ing in glycine solution for 8min. Cultures were then digested
using trypsin EDTA. Cells were washed with PBS having
0.5% Triton X-100, stained with Apollo solution, and incu-
bated for 30min in the dark. Finally, Hoechst 3334 solution
was added into the cells, incubated for 20min in the dark,
and observed under fluorescent microscope.

Cell proliferation rate = Number of proliferative cells
× 100%.

The experiment was performed in triplicate.

2.7.3. Migration of Chondrocytes. Transwell assay deter-
mines the stimulating effect of BMSCs-Exos and R-
BMSCs-Exos on chondrocytes. Around 5 × 104 treated cells,
present in 200μL medium depleted serum, were added to
the apical chamber of 24-well 8μm pore-size transwell plate
(Corning, Corning, NY, USA). 600μL of chondrocyte cul-
ture medium including exosomes was added to the lower
chamber after 12 h of incubation at 37°C. The upper cham-
ber of transwell plate was fixed with 4% PFA for 15min,
stained with 0.5% crystal violet for 10min, and washed three
times with PBS. A cotton swab was used to remove the cells
which did not migrate to the lower surface. Five random
fields per well were photographed under Leica microscope.
The experiments were repeated three times.
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Figure 1: Continued.
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2.8. Animal Studies

2.8.1. Model Development and Groups. Twenty New Zealand
male rabbits (body weight 2:5 ± 0:5 kg) were provided by
Wuhan wan qian jia xing Biotech Co. Ltd (Lenience No.
SCXK Hubei 2019-0011). Rabbits were raised in separate
cages on normal diet. Animal laboratories were maintained
with 12 : 12 hours light/dark cycles, temperatures of 23-
25°C, and steady humidity of 55-70%. Based on Sasaki
et al. [23], the rabbit knee was opened through medial para-
patellar approach in sterile conditions and laterally dislo-
cated the patella to expose the articular surface of femoral
trochlea. OA model was developed by transecting the ante-
rior cruciate ligament and medial meniscus. The wound
was washed with saline and sutured. Inflammation was
avoided by administering an intramuscular injection of
800KU penicillin for 5 days. Rabbits were divided into 4
groups: [1] Con group (without surgery; received articular
cavity injection of normal saline every time), 10 knee joints
from 5 rabbits, and n = 10 (same for all groups); [2] Mo
group (received articular cavity injection of normal saline
on first day of every week from 2nd to 6th week after surgery);
[3] BMSCs-Exos group (received articular cavity injection of
1mL BMSCs-Exos transfect chondrocytes suspension (10μg

exosomes/mL) every time); [4] R-BMSCs-Exos group
(received articular cavity injection of 1mL R-BMSCs-Exos
transfect chondrocytes suspension (10μg exosomes/mL)
every time). Anesthetic rabbits were sacrificed after eight
weeks of surgery, and knee samples were recovered to eval-
uate the disease progression.

2.8.2. ELISA Test. The knee joint synovial fluid cytokines IL-
1β and TNF-α were detected by the ELISA kits from Biolog-
ical Technology Company, Ltd., Nanjing, China. The detec-
tions were made at 450nm on ultraviolet microplate reader
(Thermo Scientific Corporation, MA, USA).

2.8.3. Histology and Immunohistochemical Analysis. Knee
cartilage samples were fixed in 4% paraformaldehyde. They
were rinsed with pure water after 24 h and fixed in paraffin
embedding. After series of treatments, the specimens were
prepared as 2-3μm thick slices using frozen microtome.
The tissue sections were processed by Masson trichrome
staining. Collagen and cartilage were stained blue under
the microscope. The modified O’Driscoll Histologic score
assessed the degree of cartilage repair.

The fixed and embedded tissues were cut to 4mm sec-
tions. They were treated with 3% H2O2 and sodium citrate.

(f) (g)

(h) (i)

Figure 1: Characterizations of bone marrow mesenchymal stem cells (BMSCs) and chondrocytes, Original magnification, ×100. (a) BMSCs
displayed a representative spindle-like morphology. (b) BMSCs exhibited multipotential differentiation for osteogenesis, adipogenesis, and
chondrogenic. (c) BMSCs’ surface markers proteins (CD29, CD44, and CD45) determined by flow cytometric. (d) Chondrocytes displayed a
triangular or polygonal at the 3rd day. (e) Chondrocytes grew and displayed a “paving stone” shape at the 7rd day. (f) Chondrocytes matrix
with refracted light was visible around the chondrocytes. (g–i) Chondrocytes was confirmed by staining of acridine orange fluorescence,
toluidine blue, and immunofluorescence. This experiment was repeated independently three times.
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BMSCs were blocked and incubated overnight at 4°C with
anti-COL-II, SOX9, and aggrecan antibodies and at 37°C
for 1 h. After washing 3 times with PBS, the sections were
added with secondary antibody solution, incubated at 37°C
for 30min, and washed 3 times with PBS. Sections were
added with freshly prepared diaminobenzidine, counter-
stained with hematoxylin for 1min, dehydrated, cleared,
and mounted in neutral balsam. Positive control was set
using antigen positive sections and NC by replacing the pri-
mary antibody with PBS. Pictures were taken, and counts
made under an optical microscope.

Percentage of positive cells of COL − II, SOX9, and
aggrecan in each field = Number of positive cells in each
field/Total number of cells in each field.

2.9. Statistical Analysis. The data was expressed as mean ±
standard deviation (SD). Cell countings adopted mixed
model repeated measures (MMRM) and histological evalua-
tions made by Kruskal-Wallis test. Data was statistically ana-
lyzed using SPSS v.23.0 (IBM SPSS, Chicago, IL, USA),
GraphPad v.6.0 (San Diego, CA, USA), and Adobe Illustra-
tor CS6 (Adobe, San Jose, CA, USA). P < 0:05 indicated
the statistically significant difference.

3. Results

3.1. Characterizations of MSCs and Chondrocytes. Multiple
cell colonies grow on the plate after culturing bone marrow
for several days. Most passage 3 (P3) cells are long spindle-
shaped (fusiform), and their clone growth is managed in a
vortex (Figure 1(a)). P3 BMSCs proliferated in osteogenic,
adipogenic, and chondrogenic media have differentiated into
skeletal tissue (alizarin red: positive), adipose tissue (oil red
O: positive), and cartilage tissue (alcian blue: positive)
(Figure 1(b)). Flow cytometry identifies the surface markers
of rbBMSCs. The cultured rbBMSCs meet the International

Society for Cellular Therapy identification criteria of BMSCs
[24], as cells are negative for CD45 (below 3%) and positive
for CD44 and CD29 (above 95%) (Figure 1(c)). The isolated
chondrocytes are triangular or polygonal on 3rd day
(Figure 1(d)) and “paving stone” shaped on 7th day
(Figure 1(e)). The chondrocytes matrix around chondrocytes
are visible with refracted light (Figure 1(f)). Chondrocytes
are confirmed by staining with fluorescent acridine orange
(Figure 1(g)) and toluidine blue (Figure 1(h)). Type II collagen
of chondrocytes representative proteins is evaluated by immu-
nofluorescence staining (Figure 1(i)).

3.2. Ad-Runx2 Transfection Efficiency Test. P3 BMSCs of
transfection Ad-Runx2 show fluorescence with GFP green
at 48 h and observed in fluorescent inverted microscope
(Figure 2(a)). RNA is extracted for qRT-PCR detection,
and transfection group increases (316 ± 64) (Figure 2(b)).
Protein is extracted for western blotting, and band gray value
is calculated. Transfection group is increased, and difference
is significant (Figures 2(c) and 2(d)).

3.3. Isolation and Identification of Exosomes Derived from
rbBMSCs. Nanoparticle tracking analysis (NTA), transmis-
sion electron microscopy (TEM), and western blotting are
employed to characterize the particles secreted from BMSCs.
Most particles range from 30 to 150 nm in size (Figure 2(e)).
Particles display hollow spherical microvesicle morphology
(Figure 2(f)). They are further analyzed by western blotting.
The expressions of exosome markers CD63, CD81, and
TSG101 (Figure 2(g)) are enriched in exosomes, and inter-
nalization occurs by articular chondrocytes. BMSCs are
labelled using PKH-26 fluorescent dye before transfection
with exosomes. The labelled exosomes are observed in peri-
nuclear region of chondrocytes (Figure 2(h)) confirming the
internalization by chondrocytes.

MSCs Exos

CD81

CD63

TSG101

GAPDH

(g) (h)

Figure 2: Ad-Runx2 transfection efficiency and exosome characteristics. (a) The green fluorescent distribution of BMSCs by microscope
observation. Original magnification,×100. (b) The mRNA expression of Runx2 determined by qRT-PCR. (c, d) The protein expression of
Runx2 measured by western blot analysis. (e) Particle size distribution of exosomes measured by nanoparticle tracking analysis (NTA). (f
) Morphology of exosomes observed by transmission electron microscopy (TEM). (g) Exosome surface markers proteins (CD81,
TSG101, and CD63) measured using western blotting. (h) Representative immunofluorescence photomicrograph of PKH-26- (green)
labelled exosomes absorbed by chondrocytes, and the nuclei of which were stained by DAPI (blue). ∗∗∗P < 0:001 compared with MSCs,
respectively, with the unpaired Student’s t-test conducted. The statistical data were measurement data and expressed by means ± SE of 3
independent experiments. The experiment was performed in triplicates.
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3.4. BMSCs-Exos and R-BMSCs-Exos Induced Proliferation,
Migration, and Phenotypic Maintenance of rbACs. The exo-
somes functionality acts as regulatory signal for cargo
transport [25]. The rbACs are incubated with BMSCs-
Exos and R-BMSCs-Exos to determine their effect on
articular chondrocytes. Chondrocytes are stimulated by 0,
1, 5, or 10μg/mL of BMSCs-Exos and R-BMSCs-Exos for
24 h. The qRT-PCR and western blotting assays are con-
ducted. The levels of aggrecan, COL-II, and SOX9 genes
are enhanced in dose-dependent manner (Figures 3(a)
and 3(f)). R-BMSCs-Exos (Figure 3(f)) significantly pro-
mote articular chondrocytes-related gene expression com-

pared with BMSCs-Exos (Figure 3(a)). The cell migrated
ability measured by transwell assay. R-BMSCs-Exos
(Figures 3(b) and 3(c)) significantly promote articular
chondrocytes migrated compared with BMSCs-Exos
(Figures 3(g) and 3(h)). Protein expression using western
blotting shows same pattern. Compared with BMSCs-
Exos (Figures 3(d) and 3(e)), aggrecan, COL-II, and
SOX9 show higher protein expression levels for R-
BMSCs-Exos (Figures 3(i) and 3(j)). BMSCs-Exos and R-
BMSCs-Exos thus promote phenotypic maintenance.

Aggrecan, COL-II, and SOX9 genes are the markers of car-
tilage phenotype. Western blotting and qRT-PCR assays reveal
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concentrations of BMSCs-Exos, and the results of statistical analysis also shown. (f) Gene expression changes of aggrecan, COL-II, and
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that R-BMSCs-Exos promote more cartilage phenotypic main-
tenance compared with BMSCs-Exos (Figures 4(a), 4(c), and
4(d)). Proliferation ability is also evaluated by using CCK-8
and EdU. Compared with BMSCs-Exos, R-BMSCs-Exos bring
more increase in chondrocytes proliferation (Figures 4(b), 4(g),
and 4(h)). Transwell assay demonstrates higher number of
invasive cells in R-BMSCs-Exos than in BMSCs-Exos
(Figures 4(e) and 4(f)). R-BMSCs-Exos have thus the better
potential in promoting the proliferation, migration, and phe-
notypic maintenance of rbACs.

3.5. BMSCs-Exos Induced Proliferation, Migration, and
Phenotypic Maintenance of rbACs through YAP Activation.
The expression levels of YAP and target genes including
ANKRD1, CTGF, and Cyr61 are analyzed to study the
mechanism in chondrocytes stimulated by BMSCs-Exos.
Three sequences of YAP-siRNA are filtered by western blot-
ting and qRT-PCR where the inhibitory effect of si-2 is
prominent. The dose-effect of YAP-siRNA-2 is analyzed,
and the inhibitory effect of 40nmol/L for 48h is the stron-
gest (Figures 5(a)–5(c)). It is also studied if the change in
chondrocyte function is caused by YAP activation. More-
over, whether YAP is a key gene that makes BMSCs-Exos
to stimulate chondrocytes for its functioning, YAP,
ANKRD1, CTGF, and Cyr61 genes are detected by western
blotting, RT-qPCR, and immunohistochemistry staining
where their levels are enhanced (Figures 5(d)–5(h)).

YAP gene is silenced using small interfering RNA to ver-
ify the YAP role. Exos +YAP-siRNA group aggrecan, COL-
II, SOX9, YAP, ANKRD1, and CTGF genes, and proteins
are reduced compared to Exos (Figures 6(a)–6(d)). The pro-
liferation and migration abilities are restricted in chondro-
cytes transfected with YAP-siRNA and cannot be enhanced
by BMSCs-Exos (Figures 6(e)–6(h)).

3.6. R-BMSCs-Exos Preventing OA. The potential of exo-
somes for OA prevention is verified in OA rabbit model
(Figure 7). No obvious adversity is observed in each experi-
mental group. In Mo group, severe joint wear and cartilage
matrix loss are recorded. The expressions of COL-II, aggre-
can, and SOX9 in cartilage have decreased while high
expressions of IL-1β and TNF-α in joint fluid are observed.
In Mo+BMSCs-Exos group, joint wear and cartilage matrix
loss are also found; however, the impact is less severe com-
pared to Mo group. The cartilage matrix consisting of
COL-II is thin, and chondrocytes are arranged in dense clus-
ters of cartilage cells rather than in the normal arrangement
of neat rows. Expressions of aggrecan and SOX9 are high
while those of IL-1β and TNF-α are low. In Mo+R-
BMSCs-Exos group, the joint wear is mild. The cartilage
matrix consisting of COL-II is slightly thinner than in the
Con group but better than in Mo or Mo+BMSCs-Exos
groups. There is an increase of aggrecan, COL-II, and
SOX9 expressions compared with Mo group. No obvious
TNF-α expression difference is observed in the joint fluid
compared with Con.

The results implicate that R-BMSCs-Exos slow the pro-
gression of early OA and prevent the severe trauma to knee
articular cartilage. The chondrocyte counts and OARSI
scores are shown in Figure 7(d).

3.7. Summary of Therapeutic Mechanism. The action mech-
anism of BMSCs-Exos is summarized in Figure 8. BMSCs-
Exos activate the YAP signal pathway. YAP activation
increases the chondrocyte proliferation, migration, and phe-
notype maintenance with decrease in IL-1β and TNF-α
expressions. Runx2 expressed in BMSCs-Exos brings chon-
drocyte proliferation, migration, phenotype maintenance,
and inflammatory indicators close to normal.
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Figure 4: Responses of rbACs stimulated by BMSCs-Exos and R-BMSCs-Exos in 10 μg exosome concentrations/mL. The E-10 indicates the
BMSCs-Exos; the RE-10 indicates the R-BMSCs-Exos. (a) Gene expression changes of aggrecan, COL-II, and SOX9 after stimulation by E-
10 and RE-10. (b) The OD value of rbACs measured by CCK-8 assay. (c, d) Protein expression levels of aggrecan, COL-II, and SOX9 were
detected by western blotting after stimulation by E-10 and RE-10, and the results of statistical analysis also shown. (e) The number of
invaded rbACs measured by transwell assay. Original magnification, ×200. (f) Quantitative analysis of the number of cell invasion. (g)
Proliferation of rbACs determined by EdU labeling assay. Original magnification, ×200. (h) Quantitative analysis for EdU-positive cells.
This experiment was repeated three times. ∗P < 0:05 compared to 0; ∗∗P < 0:01 compared to 0; &P < 0:05 compared to E-10; &&P < 0:01
compared to E-10.
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Figure 5: Continued.
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4. Discussion

Articular cartilage has limited potential of self-
regeneration due to the lack of potential stem cell niches
and cartilage precursor cells [26]. Runx2 overexpression

in BMSCs promotes cartilage regeneration in rabbit knee
articular cartilage defect model [21]. The overexpression
of Runx2 adenovirus has some side effects, and its action
mechanism is not clear. R-BMSCs-Exos avoid these
shortcomings.
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Figure 5: Filtering and function of YAP-siRNA. (a, b) YAP-siRNA protein expression levels of filter, action concentration, and action time
were detected by western blotting and the results of statistical analysis. ∗P < 0:05 compared to NC or 0; ∗∗P < 0:01 compared to NC or 0. (c)
The expression of filter, action concentration, and action time determined by qRT-PCR. ∗P < 0:05 compared to NC or 0; ∗∗P < 0:01
compared to 0. (d) Gene expression changes of YAP and its target genes (ANKRD1, CTGF, and Cyr61) were detected by qRT-PCR. ∗P
< 0:05; ∗∗P < 0:01 compared to 0; &P < 0:05 compared to E-10. (e, f) Protein expression levels of YAP and target genes including
ANKRD1, CTGF, and Cyr61 were detected by western blotting, and the results of statistical analysis also shown. ∗P < 0:05 compared to
0; ∗∗P < 0:01 compared to 0. (g, h)Gene expression changes of YAP and its target genes (ANKRD1, CTGF, and Cyr61) were detected by
immunohistochemical staining:∗∗P < 0:01 compared to 0, &&P < 0:01 compared to E-10. This experiment was repeated three times.
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BMSCs are isolated from bone marrow which is an ideal
source of seed cells due to easy availability and high differen-
tiation potential [27–29]. Tao et al. found that synovial mes-
enchymal stem cells (SMSCs) can maintain their
multidirectional differentiation potential after 10th genera-
tion [30]. Mesenchymal stem cells (MSCs) family can thus
be used for tissue regeneration [31, 32]. MSCs are a treat-
ment for cartilage tissue damage [33].

Previous studies show that paracrine mechanisms
including exosomes are responsible for stem cell or progen-
itor cell-mediated tissue regeneration [13, 34]. Exosomes
derived from BMSCs (BMSCs-Exos) promote chondrocyte
proliferation, migration, and phenotype maintenance; how-
ever, they have no specific pathway. YAP is stimulated at
normal and silent levels where YAP and its target genes
change accordingly. YAP promotes articular chondrocyte
proliferation, migration, and phenotype maintenance and
decreases inflammatory indicators in knee joint fluid.

YAP is responsible for signal transduction from cell
membrane to nucleus and promotes cell proliferation [35,
36]. The precise mechanism of YAP in chondrocyte differen-
tiation is indistinct. Early chondrocyte proliferation is pro-

moted, and maturation is inhibited [37]. This phenomenon
and the use of BMSCs-Exos to activate YAP produce similar
results. The inhibition of SOX9 and its downstream genes
(aggrecan and type II collagen) is the key to YAP-induced
chondrocyte maturation inhibition. SOX9 shows good ther-
apeutic potential.

As we all know, Runx2 has a direct effect on cartilage, so
we did not pay attention to it at first, but we discovered
through high-throughput sequencing that some genes that
are beneficial to cartilage regeneration, such as miR-92a-
3p, are highly expressed in R-BMSCs-Exos [38, 39]. Previous
studies demonstrate that Runx2 plays important role in the
regulation of chondrocyte differentiation and matrix degra-
dation [40]. Runx2 is a positive regulator of chondrocyte dif-
ferentiation and vascular invasion. Runx2 may promote
chondrogenesis by maintaining or by initiating early chon-
drocyte differentiation [41]. Runx2 promotes cartilage repair
and maintains the cartilage phenotype in knee articular car-
tilage defect [21]. Nucleic acids can be incorporated into
exosomes through elevated intracellular RNA concentra-
tions obtained by the overexpressed nucleic acids using
adenovirus-based or lipid-based systems. Runx2 is
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Figure 6: YAP plays an important role in mediating the effects of BMSCs-Exos stimulation. (a, b) Gene expression changes of aggrecan,
COL-II, SOX9, YAP, ANKRD1, and CTGF after silence by YAP. The mark on the horizontal line applies to Figure 6. (c, d) Protein
expression levels of aggrecan, COL-II, SOX9, YAP, ANKRD1, and CTGF were detected by western blotting after silence by YAP, and the
results of statistical analysis also shown. (e, f) The number of invaded rbACs measured by transwell assay, and the results of statistical
analysis also shown. Original magnification, ×200. (g) Proliferation of rbACs determined by EdU labeling assay. Original magnification,
×200. (h) Quantitative analysis for EdU-positive cells. This experiment was repeated three times. ∗P < 0:05; ∗∗P < 0:01 compared to NC;
&P < 0:05; &&P < 0:01 compared to Exos.
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overexpressed in BMSCs where Runx2 is enriched in its
derived exosomes (R-BMSCs-Exos). Runx2-overexpressed
BMSCs are the superior cell lines for preventing OA.

OA rabbit model is developed based on the knee joint
instability induced by surgery. This model can simulate the
knee joint instability caused by knee injury including the
anterior cruciate ligament injury. It can also simulate joint
wear caused by anatomical factors. R-BMSCs-Exos are used
in OA rabbit model. The procession of early stage OA is
delayed, and knee joint cartilage damage caused by OA is
prevented by R-BMSCs-Exos, whereas the effect of BMSCs-
Exos is limited.

There are still several questions that need to be
addressed. The future studies may include the impact of
concentration and duration of action of BMSCs-Exos. The
rabbit model is chosen for this work; however, mouse model
being closer to humans may be selected. These attempts will
diversify the findings.

5. Conclusions

Combined data analyses from this study reveal that BMSCs
and their exosomes with or without a type of modification
show potential for future study and their use in clinical
practice.
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