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The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation,
differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the
UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies
focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate
osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3
ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or
osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and
downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors,
drug molecules, and noncoding RNAs so far and prospects the future research and treatment.

1. Introduction

The ubiquitin-proteasome system (UPS) is comprised of
several key components: ubiquitin (Ub), Ub-activating
enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase
(E3), deubiquitinating enzyme (DUB), and proteasome.
UPS is an enzymatic cascade reaction that mediates the
labeling of target proteins with ubiquitin tags, leading to
their degradation via the proteasome pathway. The entire
ubiquitination process can be briefly described as follows:
Step 1: E1 activates ubiquitin and forms an E1-ubiquitin
intermediate. This process requires the consumption of
ATP. Step 2: ubiquitin is transferred from E1s to E2s, form-
ing an E2-ubiquitin intermediate. Step 3: the E3s first recog-
nize the target protein to be degraded and then recognize the

E2-ubiquitin intermediate, forming a complex containing
the E2-ubiquitin intermediate, the E3s, and the target pro-
tein, and finally transfer the activated ubiquitin from E2s
to the target protein. Step 4: the E2 enzyme and E3 enzyme
are released from the complex, leaving the ubiquitin-tagged
target protein. Step 5: the above process is repeated until
multiple ubiquitin molecules are attached to the target pro-
tein to form a ubiquitin chain. Step 6: the ubiquitinated tar-
get protein is recognized and degraded into small fragments
by the 26S proteasome. This process can be reversed by a
group of proteases called the deubiquitinating enzymes
(DUBs) which hydrolyze the peptide bond that links the
target protein and ubiquitin [1].

During bone formation and reconstruction, osteogenic
and osteoclastic activities need to be precisely coordinated
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in order to maintain bone homeostasis. This is mainly medi-
ated through three cell lineages: osteoblasts, osteoclasts, and
osteocytes [2]. Osteoclasts differentiate from macrophages
and monocytes in the human hematopoietic system and play
essential roles in bone resorption [3]. Osteoblasts differenti-
ate from mesenchymal stem cells (MSC) and synthesize,
secrete, and mineralize bone matrix. Osteoblasts are the
main functional cells in bone formation [4]. Osteocytes are
the most common cells in mature bone tissue and are iso-
lated from osteoblasts, which sense and transmit signals
and secrete cytokines. These cells constitute the basic multi-
cellular unit (BMU) that performs the bone reconstruction
cycle [5]. Thus, the differentiation, function, and interaction
of these cells are critical for regulating bone remodeling and
maintaining bone homeostasis. E3 ubiquitin ligases have
been found to influence osteoblasts and osteoclasts from a
variety of mechanisms [6]. Therefore, regulating the relevant
E3 ubiquitin ligases is an ideal approach for the treatment of
the skeletal disorder.

In this review, we briefly describe the structure and func-
tion of the UPS, the mechanism of action of E3 ubiquitin
ligases in bone metabolism regulation, and the E3 ubiquitin
protein ligase inhibitors currently in use and molecules that
are promising targets for future drug therapy.

2. Effect of E3 Ubiquitin Ligases in Skeletal Cell
Fate and Pathology

E3 ubiquitin ligases can be classified into three major types
based on their structures: the “really interesting new gene”
(RING) family, the “homologous to E6-AP carboxyl termi-
nus” (HECT) family, and the RING-between-RING-RING
(RBR) family [7]. Different ligase domains can have specific
ubiquitin transfer modes. For example, the RING E3s act as
a scaffold that binds the E2 enzyme and substrate together,
and ubiquitin is transferred directly from the E2s to the sub-
strate without forming the E3-ubiquitin intermediate. How-
ever, in HECT E3s, an E3-ubiquitin intermediate is formed
before ubiquitin is transferred to its substrate. More than
600 types of E3 ligases have been identified in the human
genome, which contribute to the specificity of the UPS
system [8].

Differentiation of the osteoblast lineage is regulated by a
complex signaling pathway. Early osteoblast differentiation
is mainly regulated by the BMP-SMAD-RUNX2 pathway.
RUNX2 and its downstream molecule Osterix are the para-
mount osteoblast-specific transcription factors. This path-
way triggers the expression of osteoblast phenotype genes
and synthesizes bone matrix at a later stage [9]. In addition
to this, Hedgehog, JNK, TGF-β, and classical Wnt/β-catenin
signaling pathways are associated with the development of
osteoblasts [10]. Osteoblasts then embed in the bone matrix
as osteocytes or die at the end of their fate [11]. Many E3
enzymes can regulate these pathways and in turn affect oste-
ogenesis. For example, SMURF1 acts on multiple compo-
nents of the BMP-SMAD-RUNX2 and MEKK2-JNK-JUNB
pathways and inhibits osteogenesis. Cdh1 regulates the
MEKK2 pathway to inhibit osteogenesis. SMURF2 downre-
gulates the TGF-β pathway, thereby hindering the PI3-

kinase-AKT pathway activation, which in turn inhibits oste-
ogenesis. WWP1 inhibits osteogenesis by promoting the
degradation of SMAD4, RUNX2, and JUNB ubiquitination
in osteoblasts. ITCH negatively regulates osteogenesis
through JunB degradation. On the other hand, there are a
number of E3 ubiquitinases that could promote osteogene-
sis. For example, TRIM16 reduces CHIP, therefore alleviates
CHIP-mediated degradation of RUNX2, and then enhanced
osteogenic. Besides, there are also proteins such as Cbl-b and
c-Cbl that positively or negatively regulate bone formation
by ubiquitinating the RTK-PI3K-AKT axis and other c-Cbl
target proteins. In addition, insulin, through insulin-like
growth factor-I (IGF-I), also affects the generation and
differentiation of osteoblasts, while Cbl-b inhibits IGF-I-
regulated osteogenic differentiation [12] (Table 1).

Osteoclasts are large multinucleated cells derived from
the hematopoietic spectrum and regulated by several factors.
Among them, the production of M-SCF and RANKL by
bone marrow stromal cells and osteoblasts is essential in
promoting osteoclastogenesis. M-CSF promotes the prolifer-
ation of osteoclast precursors, while RANKL stimulates the
differentiation of osteoclast precursors to mature osteoclasts.
In addition, the NF-κB and Wnt/β-catenin pathways also
play an important role during osteoclast differentiation,
which is regulated by E3 ubiquitin ligases [13]. For example,
SMURF2 promotes osteoclastic differentiation by regulating
RANKL expression; TRIM38 and CHIP negatively regulate
NF-κB and inhibit osteoclastic differentiation; RNF146 regu-
lates the 3BP2/SRC pathway and Wnt/β-catenin pathway
and inhibits osteoclastic differentiation; LNX2 promotes
activation of the NF-κB and JNK pathways and downregula-
tion of North pathway which enhances osteoclast differenti-
ation (Table 1).

Following, we reviewed the detailed effects of a series of
E3 ubiquitin ligases which have been found to regulate the
differentiation of osteoblasts and osteoclasts.

2.1. SMURF1. SMURF1, which belongs to the Hect family of
E3 ubiquitin ligases, interacts with BMP pathway-specific
receptor-regulated SMADs to trigger their ubiquitination
and degradation, thereby inactivating them. SMADs have
three subgroups: receptor-activated SMADs (for example,
SMAD1, -2, -3, -5, and -8), common SMADs (for example,
SMAD4), and inhibitory SMADs (for example, SMAD6
and SMAD7) [14]. SMURF1 selectively interacts with BMP
pathway-targeted SMAD1 and SMAD5 to induce their deg-
radation, thus blocking BMP-SMAD-RUNX2 signal trans-
duction [15]. In addition, SMURF1 and SMAD (SMAD6
or 7) inhibitors synergistically negatively regulate BMP by
downregulating activated BMP receptors as well as receptors
of R-SMADs [16]. A regulatory circuit exists between
RUNX2 and the E3 ligase SMURF1. SMURF1 acts on the
C-terminal PY motif of RUNX2 and mediates RUNX2 ubiq-
uitination, while SMAD6 enhances SMURF1-induced
RUNX2 degradation [17] and RUNX2 activates SMURF1
transcription in osteoblasts [18].

TGF-β1 plays a multifaceted role in regulating osteoblast
differentiation. In the early differentiation of osteoblast cells,
TGF-β1 promotes proliferation and differentiation through
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the SMAD2/3 pathways [19]. However, TGF-β1 promotes
the ubiquitination and degradation of TGF-β1 type I recep-
tor by inducing SMURF1 and SMURF2, which in turn
inhibits osteoblast mineralization during the late stages of
osteoblast differentiation [20–22]. Moreover, TGF-β1
degrades the C/EBPβ protein by inducing SMURF1 expres-
sion at the transcriptional level, thereby reducing C/EBPβ-
DKK1 and inhibiting matrix mineralization during osteo-
blast differentiation [23].

RAS-MAPK-ERK signaling pathway also plays a dual
role in bone metabolism. Crosstalk exists between the
TGF-β/BMP-SMAD and RAS-MAPK signaling pathways
[24]. TGF-β can upregulate the expression of SMURF1 by
activating the MAPK-ERK pathway, then increase the pro-
teasome degradation of RUNX2 and SMAD1, and inhibit
osteogenic differentiation [25]. Furthermore, SMURF1 can
directly interact with MEKK2 and affect the activation of
the downstream JNK signal cascade [26].

Tumor necrosis factor (TNF) is a proinflammatory cyto-
kine which is one of the main factors involved in pathologi-
cal bone loss [27]. One of the mechanisms of TNF in
inflammatory bone disease is the induction of the expression
of the ubiquitin ligases SMURF1 and SMURF2, thus pro-
moting the ubiquitination degradation of SMAD1/5 and
RUNX2 and leading to systemic bone loss [28, 29]. The pos-
sible molecular mechanism underlying is that the presence
of AP-1, RUNX2, and TNF-α activates JNK and ERK, which
induces JNK binding of RUNX2 and c-Jun to the SMURF1
promoter, thus promoting SMURF1 transcription [30].

Furthermore, SMURF1 can regulate cell polarity and
process formation by targeting the RhoA ubiquitination deg-
radation [31] and negatively regulating MSC proliferation
and differentiation by promoting JunB degradation [32]. Con-
tinuous PTH treatment can increase SMURF1 expression in
osteoblasts, leading to RUNX2 degradation and reducing anti-
apoptotic signaling in osteoblasts [33] (Figure 1).

Table 1: E3 ubiquitin ligases and bone metabolism.

Broad group of
ligase

Name Function References

HECT SMURF1 Inhibits osteoblast differentiation and mineralization
[15–23, 25, 26,

28–33]

HECT SMURF2
Inhibits osteoblast differentiation; enhances osteoclast differentiation; inhibits angiogenesis;

stimulates endochondral ossification
[34–39]

HECT Nedd4-1 Enhances osteogenic differentiation [62–64]

HECT Nedd4-2 Inhibits osteoblast differentiation and mineralization [65]

HECT WWP1 Inhibits osteoblast differentiation and mineralization [35, 66–68]

HECT WWP2 Enhances osteogenic differentiation [69–71]

HECT Itch Inhibits or enhances osteogenic differentiation; inhibits osteoclastogenesis [84–87]

RING
APC/
CCDH1 Inhibits osteoblast differentiation and mineralization [42]

RING
APC/
CCDC20 Enhances osteogenic differentiation [41]

RING TRAF4 Enhances osteogenic differentiation [43]

RING TRAF6 Enhances osteoclast differentiation [44–46]

RING TRIM21 Inhibits osteogenic differentiation [51]

RING TRIM33 Protects osteoblasts against oxidative stress-induced apoptosis in osteoporosis [52, 53]

RING TRIM38 Enhances osteogenic differentiation; inhibits osteoclastogenesis [54]

RING RNF40 Enhances osteogenic differentiation [56, 57]

RING RNF146 Enhances osteogenic differentiation; inhibits osteoclastogenesis [58–60]

RING RNF185 Inhibits osteoblast differentiation and mineralization [61]

RING Mdm2 Enhances osteogenic differentiation [76, 77]

RING
Cbl-b and
c-Cbl

Inhibits osteoblast differentiation and mineralization; enhances osteogenic differentiation [6, 91–95]

RING LNX2 Enhances osteoclast differentiation [99]

RING Arkadia Enhances osteogenic differentiation [105]

B-box TRIM16 Enhances osteogenic differentiation [49, 50]

F-box SCFSkp2 Inhibits osteoblast differentiation and mineralization [80]

F-box FBL12 Inhibits osteoblast differentiation and mineralization [96, 97]

U-box CHIP Inhibits osteoblast differentiation and mineralization; inhibits osteoclastogenesis [88, 89]

RBR Parkin Enhances osteogenic differentiation [102, 103]
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2.2. SMURF2. SMURF2 is an E3 ligase of the Hect family
which mainly regulates TGF-β/BMP signaling through a
pathway similar to but independent of SMURF1. SMURF2
preferentially targets SMAD1 for ubiquitination and degra-
dation and has weaker affinity for SMAD2 and SMAD3
[34]. In addition, when SMURF2 was coexpressed with R-
SMAD and SMAD2, SMURF2 showed the ability to down-
regulate SMAD4 similarly to SMURF1 [35]. Under IFNγ
induction, SMURF2 and inhibitory SMADs (such as
SMAD7) form a SMAD7-SMURF2 complex, which targets
TGF-β receptors for degradation and thus bone metabolism
[36]. A study showed that SMURF2 mice showed severe
osteoporosis with an increased number of osteoclasts. A pos-
sible mechanism is that SMURF2-mediated SMAD3 ubiqui-
tination affects the interaction between SMAD3 and vitamin
D receptors, which regulates RANKL expression [37]. AKT
is one of the key cytokines in bone anabolic signaling [12],
and the PI3-kinase-AKT pathway intersects with the BMP
pathway. Experiments have shown that AKT enhances
RUNX2 expression by inducing SMURF2 ubiquitination
and degradation which enhances the stability of the RUNX2
protein [38]. SMURF2 also stimulates chondrocyte matura-
tion during endochondral ossification. Specifically, SMURF2
induces GSK-3 β ubiquitination and proteasome degrada-
tion, leading to the upregulation of β-catenin which pro-
motes endochondral ossification via the Wnt signaling
pathway [39].

2.3. APC/CCDC20 and APC/CCdh1. The anaphase-promoting
complex or cyclosome (APC/C) is a multisubunit ubiquitin
ligase that regulates multiple cell cycle transitions. Two
APC/C activators, Cdc20 and Cdh1, directly bind to APC/
C, activate its ubiquitin ligase activity, and contribute to its
substrate recognition and specificity [40]. APC/C also has
cell cycle-independent functions. APC/CCDC20 promoted

the osteogenic differentiation of BMSCs by ubiquitination
and degradation of p65 [41]. Conversely, the interaction
between Cdh1 and SMURF1 enhances Smurf1-mediated
ubiquitination of its downstream targets and inhibits osteo-
blast differentiation by regulating the activity of the MEKK2
pathway [42].

2.4. TRAF4. TNF receptor-associated factor 4 (TRAF4), a
member of the TRAF family and a ubiquitin ligase in the
RING family, plays an important role in the embryogenesis
and development of the skeletal system. It was demonstrated
that TRAF4 acts as an E3 ubiquitin ligase that positively reg-
ulates the osteogenesis of MSCs by mediating the ubiquitina-
tion of the K48 linkage of SMURF2 at the K119 locus and
leading to its degradation [43].

2.5. TRAF6. Tumor necrosis factor receptor-associated fac-
tor 6 (TRAF6), a ubiquitin ligase in the RING family, is a
key bridging molecule of the NF-κB pathway and plays an
important role in the regulation of osteoclast formation. Pre-
vious studies have shown that TRAF6-deficient mice have
bone abnormalities and osteosclerosis [44]. TRAF6 is essen-
tial for RANKL signaling and osteoclast differentiation.
RANKL recruits TRAF6 binding to E2 ligase Ubc13/Uev1A
which promotes site-specific autoubiquitination, thus acti-
vating the IKK/NF-κB and JNK/SAPK pathways which pro-
mote osteoclast differentiation [45, 46].

2.6. TRIM Family

2.6.1. TRIM16. The TRIM protein family includes about 75
proteins with E3 ligase activity and has multiple functions
in proliferation, differentiation, apoptosis, carcinogenesis,
and autophagy [47]. TRIM16, which belongs to the TRIM
family, does not have a RING domain but has E3 ubiquitin
ligase activity [48]. A study has shown that TRIM16 and
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Figure 1: The E3 ubiquitin ligase SMURF1 mediates the ubiquitination and degradation of key factors from BMP/TGF-β pathway, NF-κB
pathway, MAPK pathway, and other pathways, thereby regulating osteogenic differentiation. Notably, these pathways interconnected with
each other and formed a complex regulatory network.
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Galectin-3 coregulate the osteogenic differentiation of
hBMSCs [49]. Furthermore, TRIM16 reduces CHIP, which
reduces CHIP-mediated RUNX2 degradation, thus promot-
ing osteogenic differentiation of hPDLSCs [50].

2.6.2. TRIM21. Tripartite motif containing 21 (TRIM21) is a
member of the TRIM protein family with E3 ubiquitin ligase
activity. TRIM21 modulated the osteogenic process of MSCs
by acting as an E3 ubiquitin ligase to mediate the K48-linked
ubiquitination of Akt and cause degradation [51].

2.6.3. TRIM33. Triplex protein 33 (TRIM33) is a member of
the TRIM family and a RING type E3 ubiquitin ligase.
TRIM33 acts as a positive regulator of osteoblast differentia-
tion in the BMP pathway and its action is mediated by its
interaction and activation with Smad1/5 [52]. In addition,
TRIM33 protects osteoblasts against oxidative stress-
induced apoptosis in osteoporosis by inhibiting ubiquitina-
tion and degradation of FOXO3a [53].

2.6.4. TRIM38. Triplex protein 38 (TRIM38) is a member of
the TRIM family and a RING type E3 ubiquitin ligase.
TRIM38 is involved in various cellular processes such as
proliferation, differentiation, apoptosis, and antiviral
defense. TRIM38 regulates the NF-κB pathway involved in
osteoclast and osteoblast differentiation through ubiquitina-
tion and degradation of TGF-Beta Activated Kinase 1
(MAP3K7) Binding Protein 2 (TAB2) protein. Overexpres-
sion of TRIM38 in osteoclast precursor cells attenuates
RANKL-induced NF-κB activation and osteoblast prolifera-
tion and differentiation. Ectopic expression of TRIM38 in
osteoblast precursors negatively regulates NF-κB activation
and promotes BMP2-induced IκBα phosphorylation and
degradation for osteoblast differentiation [54].

2.7. RNF40. RNF40, a RING family of E3 ubiquitin ligases,
monoubiquitinates histone H2A at K119 or H2B at K120,
is known to function in transcriptional elongation, DNA
double-strand break (DSB) repair processes, maintenance
of chromatin differentiation, and exerting tumor suppressor
activity [55]. A recent study has found that RNF40-driven
H2B monoubiquitination is important for bone integrity in
osteoblasts. RNF40 expression is essential for the early stages
of lineage specification but is dispensable in mature osteo-
blasts [56, 57].

2.8. RNF146. RNF146 is a RING domain E3 ubiquitin ligase.
Mice lacking RNF146 develop a syndrome similar to cranio-
synostosis dysplasia (CCD) [58]. AXIN is a key node in the
Wnt pathway, and RNF146 controls the Wnt/β-linked pro-
tein pathway through ubiquitination of its substrate AXIN to
inhibit osteolysis [59]. 3BP2 is the bridging protein required
for the activation of SRC tyrosine kinases and coordinates
the attenuation of β-linked proteins, which are necessary
for osteoclast development. RNF146 also affects bone
remodeling via 3BP2 ubiquitination. Furthermore, by regu-
lating the WNT3a-FGF18-TAZ axis, RNF146 can promote
osteoblast differentiation and proliferation [60]. Overall,
RNF146 regulates the 3BP2/SRC and Wnt/β-catenin path-

ways on bone metabolism by ubiquitination of 3BP2 and
AXIN1.

2.9. RNF185. RNF185, a RING type E3 ubiquitin ligase,
inhibits osteogenic differentiation of mouse cranial-derived
MC3T3-E1 cells. The mechanism is the interaction between
RNF185 and Dvl2, a key mediator of the Wnt signaling
pathway. RNF185 inhibits Wnt signaling and negatively reg-
ulates osteogenesis by promoting ubiquitin and degradation
of Dvl2 [61].

2.10. NEDD4 Family

2.10.1. NEDD4-1. NEDD4/NEDD4-1, an E3 ubiquitin ligase
in the NEDD4 family, is essential for osteoblast differentia-
tion and proliferation. Lack of Nedd4 in preosteoblasts
results in reduced cell proliferation and altered osteogenic
differentiation. Nedd4 promotes the expansion of osteoblast
progenitor cell pools which plays an important role in cra-
niofacial development [62]. NEDD4 promotes bone forma-
tion primarily by enhancing TGF-β1 signaling. NEDD4
promotes osteoblast proliferation by degrading PTEN and
TGF-β1-activated pSMAD1, upregulating pSMAD2, and
promoting TGF-β1 gene expression by upregulating
PERK1/2 [63, 64].

2.10.2. NEDD4-2. NEDD4-2/NEDD4L is an E3 ubiquitin
ligase in the NEDD4 family. NEDD4-2/NEDD4L is similar
to SMURF1 and SMURF2. Under SMAD7 participation,
NEDD4-2 mediates its degradation by interacting with
TβR-I. In addition, NEDD4-2 interacts with SMAD2 and
induces its ubiquitinization and degradation. In general,
NEDD4-2 negatively regulates the TGF-β and BMP signal-
ing pathways [65].

2.11. WWP Family

2.11.1. WWP1. WWP1 is a member of the SMURF-like C2-
WW-HECT (WW is Trp-Trp and HECT is homologous to
the E6-accessory protein) type E3 ubiquitin ligases. WWP1
inhibits osteogenesis by promoting SMAD4 in osteoblasts
and RUNX2 ubiquitination [35, 66]. In patients with chronic
inflammatory diseases, elevated TNF inhibits bone forma-
tion through a variety of mechanisms. Junb protein is a
key transcription factor that modulates MSCs to differentiate
into osteoblasts. Under TNF-mediated mechanisms, WWP1
targets Junb protein proteasome degradation which inhibits
bone formation [67]. In addition, WWP1 negatively regu-
lates bone mass by inhibiting MSC migration and osteoblast
differentiation. It was also found that WWP1 expression is
lower in young MSCs and increases with aging [68].

2.11.2. WWP2. WWP2 is a member of the SMURF-like C2-
WW-HECT type E3 ubiquitin ligases, which promotes Sox6
expression through monoubiquitination of Goosecoid under
the transcriptional regulation of Sox9 and then promotes
craniofacial development [69]. Besides, both WWP2 and
Med25 could enhance Sox9 transcriptional activity [70].
Moreover, WWP2 promotes osteogenesis by enhancing
RUNX2 through nonproteolytic monoubiquitination [71].
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2.12. MDM2. MDM2 is an important negative regulator of
p53 and an E3 enzyme, which promotes p53 degradation
by p53 ubiquitination. P53 is an important tumor suppres-
sor gene in the apoptosis pathway. P53, as a transcription
factor, regulates cell cycle arrest, DNA repair, and apoptosis
[72]. MDM2 suppresses the action of p53 on the MDM2
gene response element, thus forming a p53-MDM2 regula-
tory feedback loop. Therefore, in normal cells, p53 is contin-
uously degraded through MDM2-mediated ubiquitination,
resulting in a sustained low expression level of p53 [73].
Studies have shown that p53 inhibits osteoblast differentia-
tion and osteoma formation by inhibiting the expression of
RUNX2 or Osterix without affecting osteoclast differentiation
[74, 75]. MDM2 negatively regulates p53 in favor of RUNX2
activation and is one of the necessary conditions for osteoblast
differentiation and appropriate bone formation [76]. Dlx3 is a
transcription factor that plays an important role in odonto-
blast differentiation. MDM2-ubiquitinated Dlx3 upregulates
Dspp expression, and MDM2 ubiquitinates P53, which
degrades it, reducing the inhibitory effect of mDPCs on
odontoblast-like differentiation [77].

2.13. SCFSKP2. SKP2 is a SCF family protein, and its complex
with SKP1 and CUL1 (SCFSKP2) is an E3 ubiquitin ligase
[78]. This plays an important role in regulating the cell cycle
[79]. SKP2 targets RUNX2 for ubiquitin-mediated degrada-
tion and thus negatively regulates osteogenesis. Moreover,
RUNX2 and SKP2 expression levels in vivo are negatively
related [80]. Therefore, SKP2 may be a therapeutic target
for osteoporosis.

2.14. ITCH. ITCH is a HECT family E3 ligase containing the
WW domain. ITCH E3 ubiquitin ligase deficiency in
humans and mice leads to syndromic multisystem autoim-
mune disease [81]. The molecular mechanism of ITCH defi-
ciency leading to autoimmune disease and multiorgan
inflammation is related to its negative regulation of JNK
and NF-κB signaling pathways [82, 83]. Therefore, the inves-
tigators found that Itch negatively regulates osteoblast differ-
entiation from bone marrow mesenchymal stem cells
through proteasome degradation of JunB protein [84]. Fur-
thermore, Itch binds to the N-terminal part of NICD
through its WW structural domain and inhibits the Notch
pathway by promoting Notch ubiquitination through its
HECT ubiquitin ligase structural domain [85]. Itch defi-
ciency leads to increased expression of the Notch signal
pathway and reduced differentiation of MSCs into osteo-
blasts, therefore resulting in osteopenic bone phenotype
[86]. A study also noted an increase in osteoclasts in the
bone marrow of ITCH−/− mice. One of the mechanisms is
that ITCH promotes the deubiquitination of TRAF6 by
recruiting CYLD to TRAF6 signal transduction complexes.
TRAF6 plays an important role in RANKL signal transduc-
tion in osteoclasts and osteoclast precursors (OCP). Thus,
deubiquitinated TRAF6 negatively regulates osteoclast for-
mation via the RANKL signaling pathway [87].

2.15. CHIP. The carboxyl terminus of Hsp70 interacting
protein (CHIP or STUB1) is an E3 ligase that regulates the

stability of several proteins involved in different cellular
functions. Deletion of the CHIP gene leads to a reduced
bone mineral phenotype and increased osteoclast formation.
CHIP interacts with TRAF6 to promote TRAF6 ubiquiti-
nation and proteasomal degradation, thereby inhibiting
TRAF6-mediated NF-κB signaling, and plays an important
role in osteoclastogenesis and bone reconstruction [88]. In
addition to regulating TRAF6, CHIP inhibits TNFα-
induced NF-κB signaling by promoting the degradation
of TRAF2 and TRAF5 [89].

2.16. Cbl-b and c-Cbl. The Cbl (Casitas b lineage lymphoma)
proteins are an evolutionarily conserved protein family that
includes three different gene products (Cbl or c-Cbl; Cbl-b;
and Cbl-c, Cbl-3, or Cbl-SL). Cbl-b and c-Cbl proteins are
members of the mammalian CBL (Casitas B lineage lym-
phoma) family and are also Ring E3 ubiquitin ligases which
regulate bone metabolism [90]. The effects of Cbl-b and c-
Cbl on bone metabolism have been extensively studied, with
the literature suggesting that Cbl proteins control osteoblast
proliferation, differentiation, and survival through ubiquiti-
nation affecting the RTK-PI3K-AKT axis and other c-Cbl
target proteins [6, 91, 92]. In addition, Cbl-b and c-Cbl have
some less noticeable regulatory effects on bone metabolism.
Osterix (also known as Sp7) is an osteogenic-specific cellular
regulator which acts downstream of RUNX2 [93]. It was
found that Cbl-b/C-cbl reduced the function of Osterix by
degrading Osterix with ubiquitin, which inhibited bmp2-
mediated osteogenic differentiation [94]. Cbl-b has been
shown to be significantly increased in osteoblasts of dener-
vatedmice which inhibits IGF-I-regulated osteogenic differen-
tiation by increasing IRS-1 ubiquitination and degradation
during denervation [95].

2.17. FBL12. FBL12 is an F-box protein induced by TGF-β1.
p57KIP2 is a cyclin-dependent kinase (CDK) inhibitor (CKI)
that plays an important role in cell proliferation and differ-
entiation and affects bone development [96]. Under the
stimulation of TGF-β1, FBL12 and SCF form the SCF
FBL12 complex, which directly ubiquitinates p57KIP2 and
leads to its degradation, thereby inhibiting osteoblast differ-
entiation [97].

2.18. LNX2. Notch signaling regulates proliferation, differen-
tiation, and apoptosis in a cell-cell contact-dependent man-
ner. It plays a crucial role in regulating the proliferation
and differentiation of osteoblasts and osteoclasts in skeletal
development and homeostasis in vivo [98]. LNX2 is a
RING-type E3 ubiquitin ligase, which promotes the activa-
tion of ERK and AKT induced by M-CSF and the activation
of NF-κB and JNK pathways stimulated by RANKL, which
in turn promote osteoclast differentiation. Numb protein is
an inhibitor of the Notch pathway and LNX2 binding to
Numb mediates its ubiquitinated degradation and inhibits
Numb-mediated inhibition of osteoblast differentiation by
downregulation of the Notch pathway [99].

2.19. Parkin. Parkin (Park2) is a RING-between-RING
(RBR) E3 ligase [100]. Parkin can be recruited to mitochon-
dria and mediates mitochondrial autophagy, which is related

6 Stem Cells International



to the pathogenesis of Parkinson’s disease [101]. It reduces
ROS levels and inhibits apoptosis in osteoarthritic chondro-
cytes by promoting mitophagy to eliminate damaged/depo-
larized mitochondria [102] What is more, Parkin promotes
osteoblast differentiation of BMSCs by enhancing autophagy
and β-catenin signaling pathway [103]. NIPA2 is a selective
Mg2+ transporter and helps maintain Mg2+ influx. NIPA2
was found to be associated with the development of type 2
diabetic osteoporosis via the mitophagy pathway. The pos-
sible mechanism underlying this is that PINK1/Parkin-
mediated mitochondrial autophagy in osteoblasts is regulated
by NIPA2, which is regulated by the PGC-1α/FoxO3a/MMP
pathway [104].

2.20. Arkadia. Arkadia, a RING-type E3 ubiquitin ligase, is a
positive regulator of the TGF-β family of SMAD-dependent
signaling pathways. Arkadia promotes BMP-induced osteo-
blast differentiation by downregulating the BMP-specific
negative regulators SMAD6, SMAD7, and c-Ski/SnoN to
positively regulate BMP signaling [105].

3. UPS Inhibitors and Drugs Regulate Skeletal
Cell Fate and Pathology

The most commonly used UPS inhibitors in clinical practice
are proteasome inhibitors. In 2003, bortezomib (BTZ)
became the first proteasome inhibitor approved by the U.S.
Food and Drug Administration (FDA). BTZ has been shown
to positively affect bone metabolism in MM and promote
bone anabolism [106]. It directly inhibits osteoclastogenesis
and promotes osteoblastogenesis [107]. Specifically, BTZ can
upregulate BMP-2 expression and prevent the proteolytic deg-
radation of the osteoblast transcription factor RUNX2/Cbfa1
to regulate osteoblast differentiation [33, 108]. BTZ inhibits
osteoclast differentiation by inhibiting DKK1, RANKL, and
NF-κB pathway activity [109, 110]. Experiments have shown
that BTZ decreases skeletal complications of MM and prevents
mechanical unloading-induced bone loss and ovariectomy-
induced osteoporosis in mice [111–113].

In addition to specially developed UPS inhibitors, some
commonly used drugs have also been found to be involved
in bonemetabolism through the UPS system, including thalid-
omide, lansoprazole, carnosic acid, melatonin, clomipramine,
zoledronic acid, and Vitisin A. The immunomodulatory drug
(IMiD) thalidomide was originally considered a teratogenic
agent but is now used to treat a variety of clinical indications,
including MM. It has been found that the direct target of tha-
lidomide is the Cereblon (CRBN), a component of the cullin-4
RING E3 ligase complex. Thalidomide inhibits the ubiquitina-
tion of CRBN, leading to increased cullin-4 RING E3 ligase-
mediated degradation of target proteins [114]. Recent studies
indicate thalidomide has inhibitory effects on glucocorticoid-
induced osteoporosis and ovariectomy-induced osteoporosis
in mice, but excessive doses of thalidomide can exacerbate
osteoporosis [115, 116]. Lansoprazole, which is one of the
most commonly prescribed drugs for the treatment of acid-
related diseases, induces TRAF6 polyubiquitination, which
then activates the noncanonical TAK1–p38 MAPK pathway
and facilitates Runx2-mediated osteoblastogenesis [117]. Car-

nosic acid (CA) is a phenolic acid compound first found in
Salvia officinalis L., which possesses antioxidative and antimi-
crobial properties [118]. CA dually targets SREBP2 and ERRα,
thus inhibiting the RANKL-induced osteoclast formation and
improving OVX-induced bone loss [119]. Melatonin is a
signal molecule that modulates the biological circadian
rhythms of vertebrates. Melatonin treatment was found to
downregulate TNFα-induced SMURF1 expression and then
decrease SMURF1-mediated ubiquitination and degradation
of SMAD1 protein, leading to steady bone morphogenetic
protein-SMAD1 signaling activity and restoration of TNFα-
impaired osteogenesis [120]. Recent studies have shown that
clomipramine (CLP) induces bone loss and osteoporosis by
acting on Itch to promote osteoclastogenesis. On the contrary,
bisphosphonates, such as zoledronic acid (ZA) and prevent
bone loss from CLP treatment [121]. One such mechanism
is zoledronic acid- (ZA-) induced osteoclast cell ferroptosis
by triggering FBXO9-mediated p53 ubiquitination and degra-
dation [122]. A study found that oral administration of a drug
containing (+)-Vitisin A significantly improves bone loss in
ovariectomized mice. (+)-Vitisin A inhibits RANKL-induced
ubiquitination of TRAF6 and formation of the TRAF6-
TAK1 complex which inhibits activation of the IKK/NF-κB/
c-Fos/NFATc1 signaling pathway to inhibit osteoclast differ-
entiation [123].

There are also a considerable number of E3 ligase drugs
in preclinical or clinical trials [124, 125]. The issue is that
most of these inhibitors are more effective in cell culture
studies and less effective in animal models and clinical trials.
Therefore, further research and technological advances will
be required in the future [125].

4. Noncoding RNAs Regulate Skeletal Cell
Fate through the UPS System

Noncoding RNAs (ncRNAs) include intronic RNAs, micro-
RNAs (miRNAs), long noncoding RNAs (lncRNA), circular
RNAs (circRNA), and extracellular RNAs [126]. The ability
of ncRNAs to control gene expression makes them viable
targets for drug development. To date, several ncRNAs were
found to act on E3 ubiquitin ligases to regulate bone metab-
olism. The lncRNA RP11-527N22.2, named osteogenic dif-
ferentiation inhibitory lncRNA 1 (ODIR1), acts as a key
negative regulator during the osteogenic differentiation of
hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/
OSX axis [127]. miR-142-5p promoted osteoblast activity
and matrix mineralization by targeting the gene encoding
WW-domain-containing E3 ubiquitin protein ligase 1 [128].
miR-25 secreted by BMSC-Exo regulates the ubiquitination
degradation of Runx2 by SMURF1 to promote fracture heal-
ing in mice [129]. Mesenchymal stem cell-derived exosomal
miR-19b represses the expression of WWP1 or Smurf2 and
elevates KLF5 expression through the Wnt/β-catenin signal-
ing pathway, thereby facilitating fracture healing [130].
BMSC-derived exosomal miR-101 augments osteogenic dif-
ferentiation in MSCs by inhibiting FBXW7 to regulate the
HIF1α/FOXP3 axis [131]. Silencing DCAF1 by miR-3175
activated Nrf2 signaling to inhibit dexamethasone-induced
oxidative injury and apoptosis in human osteoblasts [132].
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miR-764-5p positively regulates osteoblast differentiation
from osteoblast progenitor cells by inhibiting CHIP protein
translation [133]. In addition, biomaterials have also been
used as drug delivery platforms to deliver ncRNA. In this
research, regenerative siRNA against WW domain-
containing E3 ubiquitin protein ligase 1 (Wwp1) complexed
with hybrid nanoparticle (NP) were entrapped within poly
(ethylene glycol) (PEG)-based hydrogels and implanted at
sites of murine middiaphyseal femur fractures. Results
showed that fractures treated with siRNA/NP hydrogels
exhibited accelerated bone formation and significantly
increased biomechanical strength [134].

5. Conclusions

Recognition and understanding of the role of the ubiquitin-
proteasome system in osteogenic regulation have gained sig-
nificance in the past decades. Its discovery has helped us
understand the nature of biochemical processes behind
major developmental and homeostatic events. Numerous
ubiquitin enzymes have been discovered so far, with E3
ubiquitin ligases being the most important and diverse. In
this review, we discuss and present the role of E3 ubiquitin
ligases in bone metabolism, drawing from historical studies
on E3 ubiquitin ligases in bone metabolism, as well as recent
findings. They regulate bone metabolism through several key
factors and pathways that act on osteogenesis and osteoclast.

Designing therapies that target each component of the
UPS in order to treat pathology holds great promise for clin-
ical practice. Some proteasome inhibitors are already in clin-
ical use and have been shown to be effective in the treatment
of multiple myeloma. Some of these drugs, such as bortezo-
mib, were found to prevent osteoporosis in mice. The main
pharmacological effects of some clinical drugs such as thalid-
omide, lansoprazole, carnosic acid, melatonin, clomipra-
mine, zoledronic acid, and Vitisin A are not related to the
UPS system. However, several recent studies have found that
these clinical drugs could affect different E3 ubiquitin ligases,
which in turn regulate different bone metabolic pathways.
Noncoding RNAs, such as miRNA, lncRNA, and siRNA,
have also been used to regulate bone metabolism by target-
ing the UPS system. However, the application of noncoding
RNAs is challenged by their poor stability, poor pharmaco-
kinetics, and potential off-target effect. The use of corre-
sponding biomaterials will greatly improve the therapeutic
efficacy of noncoding RNA. But the research in this area is
relatively basic, and there is still room for further improve-
ment. Moreover, there are a considerable number of E3
ligase drugs in preclinical or clinical trials. Further research
and technological advances such as PROTAC (Proteolysis
targeting chimeras) may take the research to a new level
[135]. With the further discovery of the mechanisms of the
E3 ubiquitin ligases related to bone metabolism, more drugs
targeting E3 ligases will be designed for the treatment of
skeletal disorders.
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