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Background. Angiogenic tissue engineering is a vital problem waiting to be settled for periodontal regeneration. Erythropoietin, a
multieffect cytokine, has been reported as a protective factor for cell fate. According to our previous study, erythropoietin has a
significantly angiogenic effect on periodontal ligament stem cells. To further explore its potential effects and mechanism, we
studied biological behaviors of periodontal ligament stem cells under inflammatory microenvironment induced by different
concentrations (0, 10, 20, 50, and 100 ng/mL) of tumor necrosis factor-α (TNF-α) and examined how different concentrations
(0, 5, 10, 20, and 50 IU/mL) of erythropoietin changed biological behaviors of periodontal ligament stem cells. Materials and
Methods. Cell Counting Kit-8 was used for cell proliferation assay. Annexin V-PI-FITC was used for cell apoptosis through
flow cytometry. Matrigel plug was adopted to measure the angiogenic capacity in vitro. RNA sequencing was used to detect the
downstream signaling pathway. Quantitative real-time polymerase chain reaction was conducted to examine mRNA expression
level. Western blot and immunofluorescence were applied to testify the protein expression level. Results. Periodontal ligament
stem cells upregulated apoptosis and suppressed autophagy and angiogenesis under inflammatory microenvironment.
Erythropoietin could activate autophagy to rescue apoptosis and angiogenesis levels of periodontal ligament stem cells through
the Akt/Erk1/2/BAD signaling pathway under inflammatory microenvironment. Conclusions. Erythropoietin could protect
periodontal ligament stem cells from inflammatory microenvironment, which provided a novel theory for periodontal
regeneration.

1. Introduction

Periodontitis, a commonly infectious oral disease, is deemed
as the sixth disease of the globe, which would risk psycholog-
ical and physical health [1]. Periodontitis is characterized as
loss of periodontal tissues and detachment of teeth, which is

caused by a series of microbiological and immune factors [2,
3]. Hitherto, there is still lack of effective therapy to reverse
the periodontal loss [4, 5]. Many researchers have turned
to odontogenic stem cells for novel strategies [6], such as
periodontal ligament stem cells (PDLSCs) [7] and apical
papilla stem cells (APSCs) [8]. PDLSCs have shown the great
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ability of multidirectional differentiation, especially in osteo-
genesis and angiogenesis [9]. However, two crucial problems
are waiting to be solved. Firstly, it is essential to reverse the
differentiational capacity of PDLSCs, which is always under-
mined by inflammatory environment. Secondly, it is vital to
regenerate vascularized bone in periodontal regeneration,
which offers nutrition to the bone [10].

Tissue reconstruction also relies on the cytokines. Erythro-
poietin (EPO), a glycoprotein secreted by the kidney, is
reported as a promising candidate cytokine for periodontal tis-
sue engineering. EPO plays a great effect on osteogenic and
angiogenic differentiation of mesenchymal stem cells (MSCs)
[11, 12]. It is widely investigated that biomaterials loaded with
EPO could promote osteogenesis and angiogenesis of bone
marrow stem cells (BMSCs) and vein endothelial cells (VECs)
through upregulating the EphB4/EphrinB2 signaling pathway
[13–15]. Furthermore, EPO regulatesWnt/β-catenin and p38/
MAPK signaling pathway to enhance osteogenesis of PDLSCs
[16, 17]. EPO is also seen as an anti-inflammation factor,
which provides a stable microenvironment for tissue engineer-
ing. Relative researches have proven that oxidative stress and
cell apoptosis can be improved by EPO through reducing
IL1β, iNOS, and CD68 expression [18, 19]. Collectively,
EPO dually regulates multidirectional differentiation and
anti-inflammation effects, which could be used for periodontal
regeneration.

Cumulative studies have proved that autophagy is closely
related to cell differentiation and apoptosis. Autophagy is
considered as a helpful process for cell viability, which could
enable cells to adapt to the change and pressure of circum-
stance [20]. Jiang et.al [21] explored the relationship
between autophagy and Akt signaling pathway, which indi-
cated that increasing LC3 expression could enhance the
remodeling of alveolar bone. Autophagy decreased apoptosis
and retained the osteogenic ability of PDLSCs and osteo-
blasts [22, 23]. Angiogenesis of PDLSCs could also be
induced via upregulating autophagy [24]. Researchers also
found that higher autophagy-related gene expression of
LC3, Beclin1, Atg7, and Atg12 protected PDLSCs from apo-
ptosis in inflammatory microenvironment [25]. It is evi-
denced that autophagy could be activated through
overexpression of the tumor necrosis factor alpha-induced
protein 3 (TNFAIP3) to diminish inflammation of peri-
odontal ligament cells (PDLCs) induced by lipopolysaccha-
ride (LPS) and nicotine [26].

The Akt signaling pathway always participates in
autophagy, apoptosis, and differentiation. Akt-related
autophagy maintains the stemness of mouse embryonic pal-
atal mesenchymal stem cells, which could suppress cleft pal-
ate development [27]. It has been discussed that autophagy
could be augmented by upregulating the Akt signaling path-
way to regulate cell fate [28–30]. The Akt signaling pathway
is also involved in the angiogenesis of BMSCs, VECs, and
adipose-derived stem cells (ASCs) to promote fracture repair
[31–34].

According to the existing literatures and our previous
study, we aimed to investigate the antiapoptosis and angio-
genesis of EPO under inflammatory microenvironment.
We also explored the involvement of autophagy and Akt sig-

naling pathway in this process, wishing to find a novel
approach for periodontal repair.

2. Methods and Materials

2.1. Isolation and Cultivation of PDLSCs.With fully informed
consent, we collected 50 healthy orthodontic teeth from adoles-
cent patients (12-20 years old) under the approval of the Bio-
medical Ethics Committee of the Affiliated Stomatology
Hospital of Southwest Medical University (Lot No.
2020112600). After collecting teeth, the periodontal ligaments
were scraped from the tooth root and incubated reversely for
4 hours in a culture flask. The medium, mixture of α-MEM
(Gibco, CA, USA), 10% fetal bovine serum (FBS) (EveryGreen,
Shanghai, China), and 1% penicillin-streptomycin solution
(Beyotime, Shanghai, China), was added into the flask to obtain
periodontal ligament stem cells. The cells usually crawled out
about 2 weeks later. The culturing incubator (Thermo Fisher,
CA, USA) was set as 37°C and 5% CO2.

2.2. Flow Cytometry Detection for Surface Marker. After
digesting and washing, the fourth-generation (p4) PDLSCs
were used to detect specific surface markers under flow
cytometry instrument (BD Biosciences, NJ, USA). Mesen-
chymal stem cell surface antibodies (CD90, CD44, and
CD105) (BD Biosciences, NJ, USA) and hematopoietic stem
cell surface antibodies (CD45, CD31) (BD Biosciences, NJ,
USA) were selected to examine.

2.3. Osteogenic and Lipogenic Induction Assays. Osteogenesis
and lipogenesis induction were used to detect the multidi-
rectional differentiation ability of PDLSCs. The osteogenic
induction solution formulation consisted of D-MEM
(Hyclone, USA), 10% FBS, 10mmol/L sodium β-glycerate
(Macklin, Shanghai, China), 0.1μmol/L dexamethasone
(Solarbio, Beijing, China), and 50mg/L vitamin C (Solarbio,
Beijing, China). Osteogenic induction solution was changed
every 3 days and maintained for 28 days. Then, cells were
fixed by paraformaldehyde and stained by alizarin red solu-
tion (Solarbio, Beijing, China). The lipogenic induction solu-
tion was formulated with D-MEM, 10% FBS, 10μmol/L
dexamethasone (Solarbio, Beijing, China), 200μmol/L indo-
methacin (Solarbio, Beijing, China), 0.5mmol/L 3-isobutyl-
1-methylxanthine (IBMX) (Sigma, USA), and 10mg/L insu-
lin (Solarbio, Beijing, China). Cultured for 28 days, the cells
were fixed and stained by oil red O solution (Solarbio, Bei-
jing, China). Calcium nodules and lipid droplets were
observed under a fluorescent inverted microscope (Olym-
pus, Japan).

2.4. Cell Proliferation Assay. Cell Counting Kit-8 (CCK8)
(Dojindo, Japan) was used for cell proliferation assay. The
p4 PDLSC was inoculated in 96-well plates at a density of
2000 cells per well, and the cells were divided into different
treated groups. Detection was performed on days 1, 3, 5,
and 7 after inoculation, respectively. Overall, 10μL of
CCK8 solution and 90μL α-MEM were added to each well,
incubated for one hour and then detected at 450 nm absor-
bance in an enzyme microplate reader (BioTek, USA).
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2.5. Annexin V-FITC-PI Double-Staining Assay (Cell
Apoptosis Assay). Annexin V-FITC-PI double-staining assay
was performed under flow cytometry to detect cell apoptosis
level. Cells were collected after incubating for 1 day and diffused
in 400μL binding buffer. Then, PDLSCs were stained with 2μL
Annexin V and 1μL propidium iodide (PI) (BD Biosciences,
NJ, USA) and incubated for 30min.

2.6. Total RNA Extraction and Real-Time Quantitative
Polymerase Chain Reaction (qPCR). Total RNA was extracted
according to the instructions of the Total RNA Extraction Kit
(TIANGEN, Beijing, China), and then, RNA was reverse tran-
scribed to cDNA using the Takara Reverse Transcription Kit
(TOYOBO, Tokyo, Japan) for subsequent experiment. We pre-
pared a 20μL amplification system using the SYBR FAST qPCR
Master Mix Kit (TOYOBO, Tokyo, Japan) and then performed
amplification in Bio-Rad/CFX96 fluorescence quantitative PCR
instrument (Bio-Rad, USA). The specific conditions of denatur-
ation, annealing, and extension were as follows: 95°C for 3min,
95°C for 5 sec, 56°C for 10 sec, and 72°C for 25 sec in 40 cycles.
The forward and reverse primer (BI, Shanghai, China)
sequences used in the experiment are shown in Table 1. The rel-
ative expression of target genes was normalized to the expres-
sion of β-actin, and the changes in gene expression were
calculated by the 2-△△CT method.

2.7. Total Protein Extraction and Western Blot Assay. Total
protein was extracted under the guidance of the kit (Solarbio,
Beijing, China) instructions. The protein concentration of each
group was determined using the BCA protein concentration
assay kit (Solarbio, Beijing, China). SDS-PAGE gels were con-
figured, and the proteins were electrophoresed vertically and
transferred to PVDF membranes (Millipore, Germany). The
membranes were blocked for 2 hours in blocking buffer (Solar-
bio, Beijing, China) at room temperature. Then, membranes
were incubated with primary antibody at 4°C overnight.
Washed in TBST solution for 3 times, membranes were incu-
bated with anti-rabbit IgG, HRP-linked antibody (#7074, CST,
USA) at room temperature for 1 hour. ECL developer (Absin,
Shanghai, China) was added and photographed in a chemilu-
minescence imaging system (Tanon, Shanghai, China). The pri-
mary antibodies are listed in Table 2 (Supplementary Figure 1,
raw data of western blot).

2.8. Matrigel Plug Assay. Melted matrix gel (Corning, USA)
was evenly added in the volume of 50μL to the precooled
96-well plate and placed in the incubator for 30 minutes.
Pretreated PDLSCs were added to the wells at a density of
2000 cells per well. Tube formation in each well was
observed after 6 hours and photographed under fluorescent
inverted microscope.

2.9. RNA-Sequencing Assay. The transcriptome expression of
PDLSCs in control groups (TNF-α treatment) and treated
groups (TNF-α and EPO treatment) was examined through
mRNA sequencing to discover downstream regulatory path-
ways of EPO. Each group had 3 biological replicates. RNA
extraction, specific RNA library preparation, RNA sequenc-
ing, and bioinformatics analysis were done by OE biotech
Co., Ltd. (Shanghai, China). The sequence raw data has been

submitted to NCBI Sequence Read Archive (Accession num-
ber PRJNA824457). The sequence results have been vali-
dated by qPCR.

2.10. Immunofluorescence and Confocal Laser Microscope
Observation. PDLSCs were treated under different condi-
tions on the cell climbing sheets for 1 day. Fixed by parafor-
maldehyde, 1000μL blocking buffer (0.2% Triton-100 and
5% donkey serum) was added onto each sheet. Then, the
cells were incubated with the primary antibody (VEGF-a
or LC3B) at 4°C overnight. After rewarming to room tem-
perature, the cells were dealt with the secondary antibody,
DyLight680 (Invitrogen, CA, USA) for 1 hour. DAPI and
phalloidin (CoraLite488, Proteintech, Wuhan, China) were
used to stain cell nucleus and cytoskeleton. Images of cells
were observed and captured under Olympus SpinSR confo-
cal laser microscope (Olympus, Tokyo, Japan).

2.11. Study Design. All experiments were all performed
under p4 PDLSCs. Experiment groups of this research were
mainly divided into 4 parts:

(1) Concentration gradient of TNF-α (treated for 3 days):
0, 10, 20, 50, and 100ng/mL

(2) Concentration gradient of EPO (under inflammatory
microenvironment induced by 20ng/mL TNF-α)
(treated for 3 days): 0, 5, 10, 20, and 50 IU/mL

(3) To explore the roles of the Akt/ERK1/2/BAD signaling
pathway (treated for 1 day): ① TNF-α (50ng/mL), ②
TNF-α (50ng/mL)+LY294002 (10μM)+EPO (20 IU/
mL), and ③ TNF-α (50ng/mL)+EPO (20 IU/mL)

(4) To explore the roles of autophagy (treated for 1 day):①
TNF-α (50ng/mL),②TNF-α (50ng/mL)+3-methylad-
enine (3-MA) (5mM)+EPO (20 IU/mL), and ③ TNF-
α (50ng/mL)+EPO (20 IU/mL)

2.12. Statistical Analysis. Statistical calculation was completed
at GraphPad Prism 9.0 software (GraphPad, CA, USA). Results
were presented in the form ofmean ± standard deviation (SD).
Each experiment has been performed at least three times. One-
way ANOVA was used to determine multiple-group compari-
sons. And Students’ t-test was used to compare among two
groups. It was considered as statistically significant when P <
0:05.

3. Results

3.1. Identification of PDLSCs and Establishment of
Inflammatory Microenvironment. Cells were obtained from
the periodontal ligament tissues (Figure 1(a)). Cells could
differentiate into osteogenesis and adipogenesis under
induction, which suggested the capacity of multidirectional
differentiation (Figures 1(b) and 1(c)). Regarding the cell
surface markers, cells highly expressed specific markers of
MSCs (CD90, CD44, and CD105) but rarely expressed spe-
cific markers of HSCs (CD45, CD31) (Figure 1(d)). The
mRNA expression level of the inflammatory cytokines (IL-
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1β, IL-8) significantly upregulated with the ascent of TNF-α
concentration (Figure 1(e)).

3.2. PDLSCs Reduced Proliferation and Upregulated
Apoptosis under Inflammatory Microenvironment. CCK8
results showed that PDLSCs gradually reduced proliferation
under different concentrations of TNF-α on days 1, 3, 5, and
7 (Figure 2(a)). The mRNA expression of Bax/Bcl2 ratio was
significantly upregulated with the raising of TNF-α concentra-
tion (Figure 2(b)). The protein expression trend was the same
(Figure 2(c)). Annexin V-FITC-PI assay showed the enhance-
ment of apoptosis rate, accompanying with the increasing
TNF-α concentration (Figure 2(d)). In a short, TNF-α impaired
cell viability and upregulated apoptosis of PDLSCs.

3.3. PDLSCs Repressed Autophagy and Angiogenic Capacity
under Inflammatory Microenvironment. ThemRNA and pro-
tein expression levels of autophagy-related cytokines (Beclin1,
LC3B) indicated that TNF-α can significantly repress autoph-
agy, especially in 20 and 50ng/mL groups (Figures 3(a) and
3(b)). Additionally, the mRNA and protein expression levels
of vascularization-related cytokines (VEGF-a, IGF-1, and
FGF-2) descended when TNF-α concentration was enhanced,
particularly in 20, 50, and 100ng/mL groups (Figures 3(c) and
3(d)).

3.4. EPO Rescued Inflammation and Apoptosis Levels of
PDLSCs under Inflammatory Microenvironment. Cell viabil-
ity suggested that EPO could rescue the proliferation of inflam-
matory PDLSCs on days 3, 5, and 7, especially in 20 IU/mL
groups (Figure 4(a)). The mRNA expression level of IL-1β

Table 1: Primer sequences of target genes for qPCR.

Target gene name (human) Forward primer sequence Reverse primer sequence

IL-1β 5′-ACAGATGAAGTGCTCCTTCCA-3′ 5′-GTCGGAGATTCGTAGCTGGAT-3′
IL-8 5′-ATGACTTCCAAGCTGGCCGTGGCT-3′ 5′-TCTCAGCCCTCTTCAAAAACTTCTC-3′
Bax 5′-GATGCGTCCACCAAGAAGCTGAG-3′ 5′-CACGGCGGCAATCATCCTCTG-3′
Bcl2 5′-TGGACTGCCCCAGAAAAATA-3′ 5′-TCTTGATTGAGCGAGCCTTT-3′
VEGF-a 5′-CATGCAGATTATGCGGATCAA-3′ 5′-GCATTCACATTTGTTGTGCTGTAG-3′
FGF-2 5′-AAGAGCGACCCTCACATCAAG-3′ 5′-GTTCGTTTCAGTGCCACATACC-3′
IGF-1 5′-TGTCCTCCTCGCATCTCTTCT-3′ 5′-CCATACCCTGTGGGCTTGT-3′
Beclin1 5′-ATTCGAGAGCAGCATCC AAC-3′ 5′-AACAGGAAGCTGCTTCTCAC-3′
LC3B 5′-GGGGCCTCGGAGCAAGTCCA-3′ 5′-CCCCGGGAGCCTCGTTCAGGT-3′
DUSP4 5′-TACTCGGCGGTCATCGTCTACG-3′ 5′-CGGAGGAAAACCTCTCATAGCC-3′
EREG 5′-GGACAGACTTCCAAGATGAGCC-3′ 5′-CCACACTGCATTCATCAGGAGAG-3′
KDR 5′-GGAACCTCACTATCCGCAGAGT-3′ 5′-CCAAGTTCGTCTTTTCCTGGGC-3′
ITGA10 5′-CCTTTGCTTCCAAGTGACCTCC-3′ 5′-CAGAGCCATCAAATGCTGCACG-3′
CSF3 5′-TCCAGGAGAAGCTGGTGAGTGA-3′ 5′-CGCTATGGAGTTGGCTCAAGCA-3′
PCK2 5′-TAGTGCCTGTGGCAAGACCAAC-3′ 5′-GAAGCCGTTCTCAGGGTTGATG-3′
THBS4 5′-ACCGACAGTAGAGATGGCTTCC-3′ 5′-CGTCACATCTGAAGCCAGGAGA-3′
β-Actin 5′-CCTGGCACCCAGCACAAT-3′ 5′-GCCGATCCACACGGAGTA-3′

Table 2: Primary antibodies for western blot and
immunofluorescence.

Primary antibody Source
Diluted
multiple

Anti-Bax
Abcam,
ab182733

1 : 2000

Anti-Bcl2
Abcam,
ab182858

1 : 2000

Anti-VEGF-a
Abcam,
ab185238

1 : 00000

Anti-FGF-2
Abcam,
ab208687

1 : 1000

Anti-IGF-1
Abcam,
ab133542

1 : 1000

Anti-Beclin1
Abcam,
ab210498

1 : 1000

Anti-LC3B
Abcam,
ab192890

1 : 2000

Anti-Akt CST, #4691 1 : 1000

Anti-p-Akt (Ser473) Abcam, ab81283 1 : 5000

Anti-Erk1/2 CST, #4695 1 : 1000

Anti-p-Erk1/2 (Thr202/
Tyr204)

CST, #4370 1 : 2000

Anti-BAD CST, #9292 1 : 1000

Anti-p-BAD
(Ser112)

Abcam,
ab129192

1 : 5000

Anti-β-actin CST, #4970 1 : 1000
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Figure 1: Continued.
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and IL-8 downregulated under the treatment of EPO
(Figure 4(b)).

Under EPO treatment, qPCR and western blot revealed
that the Bax/Bcl2 ratio was downregulated, indicating a
declining trend of cell apoptosis (Figures 4(c) and 4(d)).
The declining trend could also be observed in cell apoptosis
assay (Figure 4(e)). It was concluded that EPO attuned the
inflammation and cell apoptosis raised by TNF-α.

3.5. EPO Promoted Autophagy and Angiogenesis of PDLSCs
under Inflammatory Microenvironment. According to the
mRNA/protein expression trend, EPO improved the expres-
sion of VEGF-a, IGF-1, and FGF-2 in a concentration-

dependent manner (Figures 5(a) and 5(b)). Tube formation
in vitro exhibited that EPO contributed to the angiogenic
capacity of PDLSCs especially in 10, 20, and 50 IU/mL
groups (Figure 5(c)).

Autophagy depressed by TNF-α was also promoted by
EPO, based on the results of the mRNA/protein expression
trend of Beclin1 and LC3B (Figures 5(d) and 5(e)).

3.6. EPO Regulated Autophagy, Apoptosis, and Angiogenesis
of PDLSCs through the Akt/ERK1-2/BAD Signaling
Pathway under Inflammatory Microenvironment. RNA
sequencing was conducted to explore the signaling pathway
aroused by EPO, recommending significant upregulation of
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Figure 1: Identification of PDLSCs and establishment of inflammatory microenvironment. (a) Primary passage PDLSCs derived from
periodontal ligament and the first passage PDLSCs digested from primary passage. (b) Observed osteogenic induction of PDLSCs under
fluorescent inverted microscope. (c) Observed lipogenic induction of PDLSCs under fluorescent inverted microscope. (d) Flow cytometry
detected cell surface marker (CD44, CD105, CD90, CD31, and CD45). (e) mRNA expression level of IL-1β and IL-8 compared to β-
actin through qPCR. Data are presented as mean ± SD (n = 3); ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 2: PDLSCs reduced proliferation and upregulated apoptosis under inflammatory microenvironment. (a) Cell viability of TNF-α
treatment groups. (b) mRNA expression levels of Bax/Bcl2 ratio compared to β-actin through qPCR. (c) Protein expression levels of
Bax/Bcl2 ratio compared to β-actin through western blot. (d) Cell apoptosis rate of TNF-α treatment groups. Data are presented as
mean ± SD (n = 3); ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 3: PDLSCs repressed autophagy and angiogenic capacity under inflammatory microenvironment. (a, b) mRNA and protein
expression levels of Beclin1 and LC3B compared to β-actin through qPCR and western blot. (c, d) mRNA and protein expression levels
of VEGF-a, FGF-2, and IGF-1 compared to β-actin through qPCR and western blot. Data are presented as mean ± SD (n = 3); ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 4: EPO rescued inflammation and apoptosis levels of PDLSCs under inflammatory microenvironment. (a) Cell viability of EPO
treatment groups. (b) mRNA expression levels of IL-1β and IL-8 compared to β-actin through qPCR. (c, d) mRNA and protein
expression levels of Bax/Bcl2 ratio compared to β-actin through qPCR and western blot. (e) Cell apoptosis rate of EPO treatment
groups. Data are presented as mean ± SD (n = 3); ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 5: Continued.
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the Akt signaling pathway (Figure 6(a)). To test its valida-
tion and reliability, qPCR was used to compare mRNA
changing trend, affirming the result of RNA sequencing
(Figures 6(b) and 6(c)). Through searching for the KEGG
maps, some crucial regulatory factors of the P13K/Akt sig-
naling pathway (Akt, ERK1/2, and BAD) were focused and
phosphorylation levels were measured by western blot
(Figure 6(d)). And phosphorylation levels could be depleted
by LY294002, a specific inhibitor of the P13K/Akt signaling
pathway. qPCR and western blot demonstrated that
LY294002 could decrease effects of EPO on cell autophagy,
apoptosis, and angiogenesis (Figures 6(e) and 6(f)). Matrigel
plug showed that tube numbers increased in the TNF-
α+EPO group (Figure 6(g)). And cell apoptosis decreased
mostly in the TNF-α+EPO group (Figure 6(h)). Images of
immunofluorescence (VEGF-a, LC3B) were in accordance
with the results of western blot (Figures 6(i) and 6(j)).

3.7. EPO Moderated Apoptosis and Angiogenesis of PDLSCs
through Targeting Autophagy under Inflammatory
Microenvironment. As an autophagy inhibitor, 3-MA was
added to investigate how EPO regulated cell autophagy on
apoptosis and angiogenesis. Both qPCR and western blot
inferred that 3-MA could downregulate cell autophagy, fur-
ther changing antiapoptosis and angiogenesis induced by
EPO (Figures 7(a) and 7(b)). Matrigel plug showed that tube
numbers increased in the TNF-α+EPO group (Figure 7(c)).
And cell apoptosis decreased mostly in the TNF-α+EPO
group (Figure 7(d)). Results of immunofluorescence
(VEGF-a, LC3B) were in concord with western blot
(Figures 7(e) and 7(f)).

4. Discussion

Periodontitis is always triggered by dental bacterial plaque
and accelerated by local or wholesome factors. Regarding
the pathological process, it involves the invasion of bacteria,
activation of immune reaction, recession of junctional epi-
thelium, and depredation of alveolar bone [35]. To defend
harmful LPS originated from bacteria, TNF-α is excessively
expressed in the process of periodontitis, which degrades
periodontal tissue and fastens cell apoptosis [36, 37]. TNF-

α is the core inflammatory cytokine during periodontitis,
which is suitable for establishment of inflammatory micro-
environment [38–40]. Biological behaviors of PDLSCs were
always undermined under such inflammatory microenvi-
ronment [41–44].

Here, we selected TNF-α to mock the microenvironment
of periodontitis, and we established a TNF-α concentration
gradient to explore biological behaviors of inflammatory
PDLSCs. Coherent with existed literatures [41, 45, 46],
TNF-α inhibited cell viability and increased expression of
inflammatory genes via the NF-κB signaling pathway. Fang
et al. [47] and Meng et al. [41] mentioned that TNF-α could
also induce apoptosis and oxidative stress of PDLSCs, which
was analogous to our study. In our research, TNF-α agitated
the expression of IL-1β and IL-8, suppressed cell prolifera-
tion, and enforced Bax/Bcl2 expression ratio, especially in
50 ng/mL and 100ng/mL groups. And other researchers also
used 20ng/mL or 50 ng/mL TNF-α to mimic the inflamma-
tory microenvironment, which supported results. As the
same, those also reckoned that proliferation rate was evi-
dently suppressed and inflammatory cytokines expressed
most on 72 hours [46, 48, 49].

Autophagy is reckoned as a double-edged sword for bio-
logical behaviors. In some views, autophagy played a harm-
ful role in the pathogenesis, which indicated that autophagy
was positively relevant to inflammatory level and apoptosis
[50, 51], while some viewpoints displayed its potential ther-
apeutic value, which could protect cells from apoptosis and
promote vascularization [52]. It is controversial that TNF-
α would decrease or increase cellular autophagy. Some
researchers pointed that TNF-α contributed to autophagy
to protect PDLSCs from apoptosis at an early stage, while
attenuating autophagy in a long run [25]. Chen et.al [53]
held that TNF-α often downregulated LC3B, Beclin1, and
Atg7, resulting the osteogenic decline of PDLSCs. According
to the results, the expression level of Beclin1 and LC3B was
further diminished with the increasing concentration of
TNF-α, which aggravated apoptosis. As the same, the secre-
tions of VEGF-a, FGF-2, and IGF-1 were declined with the
increasing concentration of TNF-α, which denoted the
decreasing angiogenic level. Taken together, autophagy
impaired by TNF-α was considered as a protective factor
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Figure 5: EPO promoted autophagy and angiogenesis of PDLSCs under inflammatory microenvironment. (a, b) mRNA and protein
expression levels of VEGF-a, FGF-2, and IGF-1 compared to β-actin through qPCR and western blot. (c) Tube formation under EPO
treatment. (d, e) mRNA and protein expression levels of Beclin1 and LC3B compared to β-actin through qPCR and western blot. Data
are presented as mean ± SD (n = 3); ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 6: EPO regulated autophagy, apoptosis, and angiogenesis of PDLSCs through the Akt/ERK1-2/BAD signaling pathway under
inflammatory microenvironment. (a) Bubble map of KEGG enrichment of RNA sequencing. (b, c) Heat map of enriched genes and
qPCR validation (CSF3, ITGA10, PCK2, THBS4, DUSP4, ERGE, and KDR). (d) Protein expression levels of Akt, p-Akt, Erk1/2, p-Erk1/
2, BAD, and p-BAD through western blot. (e, f) mRNA and protein expression levels of VEGF-a, FGF-2, IGF-1, Bax/Bcl2, Beclin1, and
LC3B through qPCR and western blot. (g) Tube formation under different treatments. (h) Cell apoptosis rate under different treatments.
(i, j) Immunofluorescence on DAPI, cytoskeleton, and VEGF-a/LC3B. Data are presented as mean ± SD (n = 3); ∗P < 0:05, ∗∗P < 0:01,
∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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for PDLSCs in the inflammatory microenvironment. Collec-
tively, 50 ng/mL TNF-α was picked for the continuing
experiment.

EPO has been learned as a multifunctional cytokine/
drug for wound healing and bone regeneration, particularly
in the realm of periodontology [54–56]. An avalanche of

DAPI Cytoskeleton VEGF-a Merge

TNF-𝛼

TNF-𝛼+EPO+3-MA

TNF-𝛼+EPO

(e)

DAPI Cytoskeleton LC3B Merge

TNF-𝛼
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(f)

Figure 7: EPO moderated apoptosis and angiogenesis of PDLSCs through targeting autophagy under inflammatory microenvironment. (a,
b) mRNA and protein expression levels of VEGF-a, FGF-2, IGF-1, Bax/Bcl2, Beclin1, and LC3B through qPCR and western blot. (c) Tube
formation under different treatments. (d) Cell apoptosis rate under different treatments. (e, f) Immunofluorescence on DAPI, cytoskeleton,
and VEGF-a/LC3B. Data are presented as mean ± SD (n = 3); ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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researches argued that EPO attenuated inflammation, con-
tributed to antiapoptosis, enhanced autophagy, and pro-
moted angiogenesis [13, 18, 57–59]. Meanwhile, some
researches [60–62] supported that EPO receptor (EPOR)
was expressed in many CD105+/CD90+/CD44+ stem cells—-
such as PDLSCs, dental pulp stem cells, and bone marrow
progenitor cells—which demonstrated that the EPO/EPOR
signaling pathway played a crucial role in regulating biolog-
ical behaviors of these cells. And PDLSCs were also charac-
terized as CD105+, CD90+, and CD44+ mesenchymal stem
cells. The expression of EPOR on CD105+/CD90+/CD44+

PDLSCs provided basics for EPO treatment. Therefore, we
conducted experiments focusing on the protective effects of
EPO for PDLSCs. In the inflammatory microenvironment,
proliferation of PDLSCs was enhanced with the treatment
of EPO, especially in the 20 IU/mL group. IL-1β and IL-8
were obviously resisted after the treatment of EPO. Likewise,
a similar experiment showed that the inflammation level of
PDLSCs could be attenuated by ascorbic acid, revealing that
inflammation of PDLSCs was significantly related with the
NF-κB signaling pathway and DNMT1, which could activate
expression of proinflammatory cytokines [63]. The expres-
sion ratio of Bax/Bcl2 was also inhibited, which protected
cells from early or late apoptosis. Additionally, the strength-
ening expression of VEGF-a, FGF-2, and IGF-1 could also
be noted under the treatment of EPO, which indicated the
upregulating angiogenesis of PDLSCs. Autophagy-related
genes Beclin1 and LC3B were also heightened by EPO, espe-
cially in 10 IU/mL and 20 IU/mL groups. Above these data, it
was speculated that EPO could preserve antiapoptosis,
angiogenesis, and autophagy of PDLSCs under inflamma-
tory microenvironment, which suggested its promising use
for controlling periodontitis. Regarding its various effects
on PDLSCs, therefore, 20 IU/mL EPO was the optimal group
for subsequent experiments.

The Akt signaling pathway always participated in the
regulation of apoptosis, autophagy, and angiogenesis [27,
29]. Akt was also the main target of EPO, bridging the
downstream signal and interacting with autophagy and then
stirring up biological activities and determining cell fate [58,
59, 64]. According to RNA-sequencing results, KEGG
enrichment demonstrated that the P13K/Akt signaling path-
way was significantly upregulated in EPO treatment groups.
Through analyzing the KEGG map, Akt, Erk1/2, and BAD
were taken into measurement. According to the existing ref-
erences, LY294002, an inhibitor for the PI3K/Akt signaling
pathway, has been confirmed that could also inhibit the
phosphorylation of Akt, ERK1/2, and BAD in human or
rat cells [65–67]. Phosphorylated Akt, Erk1/2, and BAD pro-
tein were raised by EPO and suppressed by TNF-α or PI3K/
Akt specific inhibitor—LY294002, denoting that the Akt/
Erk1/2/BAD signaling pathway was activated through phos-
phorylation. p-Erk1/2 and p-BAD changed following the
change of phosphorylated Akt. VEGF-a, FGF-2, and IGF-1
levels may be regulated by p-Erk1/2 [68]; Bax/Bcl2 ratio
may be relevant to p-BAD [69]; Beclin1 and LC3B may be
targeted by Akt [70]. Additionally, some researchers also
found that expression of LC3 and Erk/p-Erk played a vital
role in the regulation of dental pulp stem cell inflammation,

suggesting that the prompt LC3 and p-Erk rescued autoph-
agy, which was consistent with our results [71]. LY294002
could reverse tube numbers induced by EPO and also aggra-
vate cell apoptosis attenuated by EPO. Collectively, EPO
could enhance antiapoptosis, angiogenesis, and autophagy
of PDLSCs via the Akt/Erk1/2/BAD signaling pathway
under inflammatory microenvironment, which would be
blocked by LY294002.

Autophagy also dually moderates apoptosis and angio-
genesis [24, 25]. In one viewpoint, autophagy maintains cell
survivability through blocking the Akt signaling pathway
[72, 73]. Contradictorily, another view argued that autoph-
agy was reserved by activating the Akt signaling pathway
[28, 30]. Our data has revealed that autophagy could be reg-
ulated by the Akt/Erk1/2/BAD signaling pathway. Wonder-
ing whether autophagy increased by EPO could regulate
apoptosis and angiogenesis, autophagy inhibitor 3-
methyladenine (3-MA) was used to verify its effects. When
3-MA was added, Beclin1, LC3B, VEGF-a, FGF-2, and
IGF-1 levels decreased compared to the TNF-α+EPO group;
Bax/Bcl2 ratio increased compared to the TNF-α+EPO
group. Noticeably, 3-MA reduced tube numbers enhanced
by EPO and augmented cell apoptosis rescued by EPO.
Comprehensively, autophagy lifted by EPO could also mod-
erate apoptosis and angiogenesis of PDLSCs under inflam-
matory microenvironment.

However, there still exists drawback, such as lack of ani-
mal experiments. A step further, in vivo experiments would
be conducted to testify its in vivo effects. Due to the limita-
tions of fundamental experiment, clinical performance was
not certain, requiring further research.

Above all, EPO attenuated inflammation, reduced apo-
ptosis, rescued autophagy, and augmented angiogenesis of
PDLSCs under inflammatory microenvironment. And its
potential mechanism was also conducted. EPO activated
autophagy to moderate apoptosis and angiogenesis via the
Akt/Erk1/2/BAD signaling pathway (Supplementary
Figure 2, graphical abstract). Our research provided a
novel strategy for curing periodontal inflammation and
accomplishing angiogenic tissue engineering.

5. Conclusion

It could be demonstrated that EPO could protect biological
behaviors of PDLSCs from inflammatory microenvironment
and promote angiogenic tissue regeneration, which brought
a brand-new sight for periodontal tissue engineering.

Abbreviations

EPO: Erythropoietin
PDLSCs: Periodontal ligament stem cells
TNF-α: Tumor necrosis factor-α
APSCs: Apical papilla stem cells
MSCs: Mesenchymal stem cells
BMSCs: Bone marrow stem cells
VECs: Vein endothelial cells
TNFAIP3: Tumor necrosis factor alpha-induced protein 3
PDLCs: Periodontal ligament cells
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LPS: Lipopolysaccharide
ASCs: Adipose-derived stem cells
FBS: Fetal bovine serum
CCK-8: Cell Counting Kit-8
qPCR: Real-time quantitative polymerase chain
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