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Background. Poor graft function (PGF) is a life-threatening complication following hematopoietic stem cell transplantation
(HSCT). Current therapies, such as CD34+ cell infusion, have shown limited effectiveness. Conversely, mesenchymal stem cells
(MSCs) show potential in addressing PGF. Adipose-derived mesenchymal stem cells (ADSCs) effectively support long-term
hematopoietic stem cell proliferation. Therefore, this study aimed to investigate the mechanisms underlying the long-term
hematopoietic support provided by ADSCs. Methods. ADSCs were isolated from mice and subsequently identified. In vitro
experiments involved coculturing ADSCs as feeders with Lin-Sca-1+c-kit+ (LSK) cells from mice for 2 and 5 weeks. The number
of LSK cells was quantified after coculture. Scanning electron microscopy was utilized to observe the interaction between ADSCs and
LSK cells. Hes-1 expression was assessed using western blot and real-time quantitative PCR. An γ-secretase inhibitor (GSI) was used
to confirm the involvement of the Jagged-1/Notch-1/Hes-1 pathway in LSK cell expansion. Additionally, Jagged-1 was knocked
down in ADSCs to demonstrate its significance in ADSC-mediated hematopoietic support. In vivo experiments were conducted to
study the hematopoietic support provided by ADSCs through the infusion of LSK, LSK+ fibroblasts, and LSK+ADSCs, respectively.
Mouse survival, platelet count, leukocyte count, and hemoglobin levels were monitored. Results. ADSCs showed high-Jagged-1
expression and promoted LSK cell proliferation. There was a direct interaction between ADSCs and LSK cells. After coculture, Hes-1
expression increased in LSK cells. Moreover, GSI-reduced LSK cell proliferation and Hes-1 expression. Knockdown of Jagged-1
attenuated ADSCs-mediated promotion of LSK cell proliferation. Furthermore, ADSCs facilitated hematopoietic recovery and
promoted the survival of NOD/SCID mice. Conclusion. The hematopoietic support provided by ADSCs both in vivo and in vitro
may be mediated, at least in part, through the Jagged-1/Notch-1 signaling pathway. These findings provide valuable insights into the
mechanisms underlying ADSCs-mediated hematopoietic support and may have implications for improving the treatment of PGF
following HSCT.

1. Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is
an effective means to treat hematological diseases. However,
poor graft function (PGF), with an incidence of 10%–20%, is a
common complication after transplantation, which is closely

related to the damage of the bone marrow microenvironment
after radiotherapy and chemotherapy [1, 2].

The bone marrow niche, which is composed of bone
marrow endothelial stromal cells, osteoblasts, bone marrow
mesenchymal stem cells (BMSCs) etc., plays a vital role in the
homing, proliferation, and differentiation of hematopoietic
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stem cells [3]. Of note, BMSCs can provide certain supporting
effects on hematopoiesis [4]. However, in the clinical practice,
BMSCs may weaken the anti-leukemia effect of grafts and
increase the risk of recurrence [5]. Adipose-derived mesen-
chymal stem cells (ADSCs) were first identified by Zuk et al.
[6] in 2002. ADSCs and BMSCs have similar biological char-
acteristics [7] but have unique mechanisms in immune regu-
lation and differentiation. ADSCs have less adverse impact
on the proliferation and function of natural killer (NK) cells,
and thus more GVL effects may be retained [8]. Meanwhile,
ADSCs can secrete more IL-33, which can bind to ST-2+ Treg
cells to promote their proliferation and suppress excessive
immune responses [7]. ADSCs have been mainly applied in
orthopedics, but little attention is paid to their role in the
hematopoietic system [9, 10]. In our previous study, we found
that ADSCs promoted the proliferation of rat hematopoietic
stem cells in vivo and in vitro for a long time and compared
with BMSCs, ADSCs have a stronger ability to promote
hematopoiesis [10]. However, the mechanisms underlying
the role of ADSCs in hematopoiesis remain largely unknown.

It has been confirmed that mesenchymal stem cells
(MSCs) together with other important components such as
osteoblasts, reticular matrix, and vascular/sinus endothelial
cells in bone marrow can maintain the proliferation and
differentiation of hematopoietic stem/progenitor cells by
providing growth factors and secreting matrix proteins
[11] and via cell–cell contact [12]. The Jagged/Notch signal
pathway is a highly conservative signal pathway that trans-
mits signals through cell–cell contact, and Jagged-1 plays an
important role in maintaining self-renewal and differentia-
tion of hematopoietic stem cells [13–15]. However, whether
the Jagged/Notch signal pathway is involved in the role of
ADSCs in hematopoiesis is unclear.

Herein, we investigated the role of ADSCs in hematopoi-
esis. The mechanism involving the Jagged/Notch signal path-
way was analyzed and discussed. Our findings may provide
experimental evidence for the application of ADSCs in
hematopoiesis and for improving PGF after HSCT.

2. Materials and Methods

2.1. Animals. NOD/SCID mice (n= 30; age 8 weeks; body
weight 22–28 g; female) (Beijing Vital River Laboratory Ani-
mal Technology Co., Ltd., China) and C57/BL mice (n= 20;
age 8 weeks; body weight 25–28 g; male) (the Animal Center
of Xinjiang Medical University) were used in this study. All
animals were kept in standard conditions. All animal experi-
mental procedures were approved by the Ethics Committee of
the First Affiliated Hospital of Xinjiang Medical University.

2.2. Isolation and Identification of ADSCs. ADSCs were iso-
lated from the inguinal adipose tissues of male C57/BL mice
(n= 3), according to the previous description [10]. In brief,
the inguinal adipose tissues were obtained under aseptic con-
ditions. After removing the blood vessels, lymph nodes, and
fascia, the adipose tissues were cut into small pieces (1mm3)
and digested with 0.1% type I collagenase (cat.# LS004200;
Worthington Biochemical Corp., NJ, USA) at 37°C for
30min. Then, the samples were centrifuged at 2,000 r/min

for 10min, and the cells in the precipitate were collected,
resuspended, and cultured in the low-glucose Dulbecco’s
modified Eagle’s medium (DMEM) (cat.# SH30021.FS;
Hyclone. UT, USA) medium containing 10% fetal bovine
serum (FBS) (cat.# 10099-141C; Gibco; Thermo Fisher Sci-
entific, Inc. MA, USA), 100U/mL penicillin, and 100mg/mL
streptomycin (cat.# SV30010; Hyclone, UT, USA). Cells were
plated at a density of 4× 104 cells/cm2 in T25 cell culture
bottles and kept at a temperature of 37°C, 5% CO2, and satu-
rated humidity. After culturing for 48 hr, the culture medium
was replaced and the cells were passed at a cell confluence of
80%–90%. The morphology of P3 cells was observed.

To evaluate the cell differentiation ability of ADSCs, P3 cells
were, respectively, cultured in the osteogenic medium and adi-
pogenic medium [16]. The adipogenic medium was composed
of low-glucose DMEM supplemented with 10% FBS,
0.1 µmol/L dexamethasone (cat.# HY-14648; MedChemEx-
press, NJ, USA), 200 µmol/L indometacin (cat.# HY-14397;
MedChemExpress, NJ, USA), 10 μmol/L insulin (cat.# HY-
P0035; MedChemExpress, NJ USA), and 0.5mmol/L 3-iso-
butyl-1-methylxanthine (cat.# HY-12318; MedChemExpress,
NJ, USA). The osteogenic medium consisted of low-glucose
DMEM, 10% FBS, 0.1 µmol/L dexamethasone, 50 µmol/L
ascorbic acid (cat.# HY-103701 A; MedChemExpress, NJ,
USA), and 10mmol/L sodium β-glycerophosphate (cat.#
HY-126304; MedChemExpress, NJ, USA). After culturing at
37°C, with 5% CO2 and saturated humidity for 2 weeks,
ADSCs were fixed with 4% paraformaldehyde and washed
twice with phosphate buffers (PBS) (cat.#SH30256.FS, UT,
USA). Then, they were stained with 1% Alizarin Red (cat.
#A5533, Sigma–Aldrich, Darmstadt, Germany) at a pH of
4.2 over a period of 3min and 0.5% Oil red O (cat. #O1391,
Sigma–Aldrich, Darmstadt, Germany) for 10min, respectively,
to determine their multidirectional differentiation ability.
Meanwhile, P3 ADSCs were trypsinized using 0.25% trypsin
and prepared as a single-cell suspension. The suspension was
centrifuged at 1,000 g for 5min, and the supernatant was dis-
carded. The cells were then washed twice with PBS. ADSCs
(1× 106) were incubated with monoclonal antibodies at 4°C
in the dark for 30min. The antibodies included: CD34-PE
(cat. # 119307; BioLegend, SanDiego, CA, USA), CD105-PE
(cat. # 120407; BioLegend, SanDiego, CA, USA), CD45-FITC
(cat. # 157607; BioLegend, SanDiego, CA, USA), and CD29PE
(cat. # 102207; BioLegend, SanDiego, CA, USA). Finally, the
cells were detected on the CytoFLEXV2B4R0 flow cytometer
(C02944; Beckman Coulter, Inc. Indianapolis, USA), and the
results were analyzed with Kaluza software (Beckman Coul-
ter, Inc. Indianapolis, IN, USA).

To assess the proliferation of ADSCs, P3 cells were plated
into a 96-well plate (500 cells per well) and cultured in a 5%
CO2 incubator at 37°C. On Days 1, 2, 3, 4, 5, 6, 7, and 8 of the
culture, cells from three wells were collected and counted.
Cell growth curves were plotted.

2.3. Isolation and Identification of Lin−Sca-1+c-Kit+ (LSK).
C57 mice were anesthetized with CO2 and euthanized to
retrieve bilateral femurs. The femurs were then incubated
in a PBS solution containing penicillin (100U/mL) and
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streptomycin (0.1mg/mL) for 20min. A buffer solution con-
taining PBS (pH 7.2), 0.5% BSA (bovine serum albumin),
and 2mM EDTA (Ethylene Diamine Tetraacetic Acid) was
prepared by diluting MACS BSA Stock Solution (cat.# 130-
091-376Miltenyi Biotec, North Rhine-Westphalia, Germany)
at a ratio of 1 : 20 with auto MACS™ Rinsing Solution (cat.#
130-091-222, Miltenyi Biotec, North Rhine-Westphalia,
Germany) and kept at 4–8°C. The cell suspensionwas obtained
by repeatedly flushing the bone marrow cavities using a 26G
needle. Mouse lymphocyte separation solution (cat.#P8620;
Solarbio, Beijing, China) was used for cell isolation, followed
by density gradient centrifugation at 2,000 r/min and 20°C for
30min using a centrifuge (5810R, Eppendorf, Hamburg,
Germany). Mononuclear cells were collected, and a resuspen-
sion of 1× 107 mononuclear cells was prepared. Additionally,
10μL lineage antibody [17] (cat.#130-090-858; Miltenyi Biotec,
North Rhine-Westphalia, Germany) was added to themononu-
clear cells, followed by incubation at 4°C for 10min. Subse-
quently, 30μL buffer and 20μL magnetic beads were added,
thoroughly mixed, and incubated on ice for 15min. The cells
were washed, followed by centrifugation at 300 g for 10min. The
supernatant was then discarded, and the cells were resuspended
in 500μL buffer per 1×108 cells. Lin− cells were obtained by
passing the single-cell suspension through the magnetic column
using MACS Columns (cat.# 130-041-202; Miltenyi Biotec,
North Rhine-Westphalia, Germany). The acquired Lin− cells
were centrifuged at 2,000 r/min for 5min, the supernatant was
discarded, and the cells were resuspended. After that, 10μL Sca-1
(cat. # 108105; BioLegend) and 10μL c-Kit PE-c-Kit (cat. #
105807; BioLegend) antibodies were added and incubated on
ice in the dark for 10min. Last, the cell suspension was filtered
through a 200-mesh sieve and subjected to cell sorting using a
flow cytometer.

2.4. Coculture of ADSCs and LSK Cells. P3 ADSCs, and mouse
fibroblasts (NIH3T3) (as control) were seeded at the density
of 8× 103/cm2. At the confluence of 70%–80%, mitomycin
C (50 ng/mL; cat.# M4287, Sigma–Aldrich, Darmstadt,
Germany) was added and incubated for 12 hr. When the
cell growth was stopped, the feeder cells were successfully
prepared. The feeder cells were plated in 6-well plates
(5× 105/well). After feeder cell adherence, 5× 103 LSK cells
were cocultured with the feeder cells. The long-term culture
medium (2mL) (cat.# MyeloCult™ M5300, Stem cell Tech-
nologies, Vancouver, Canada) and hydrocortisone (10−6 M;
cat.# 74142; Stem cell Technologies, Vancouver, Canada)
were added to the coculture system [18]. The culture medium
was replaced once a week. The coculture system was cultured
in a 5% CO2 incubator at 37°C for 2 and 5 weeks. LSK cells
were harvested and counted by flow cytometry.

To inhibit the activation of the Notch signal pathway, in
another independent experiment, γ-secretase inhibitor (GSI)
(10mol/L) (S2188, Sigma–Aldrich, Darmstadt, Germany)
[19] was added to the coculture system in the same environ-
ment as the experimental conditions described above.

Jagged-1 knockdown in ADSCs was achieved by siRNA
[20]. When the confluence of ADSCs reached 80%, Jagged-1
siRNA (Biosyntech, Suzhou, China) was thoroughlymixed with

lipofectamine 2000 (cat.#11668-027; Invitrogen, ThermoFisher,
MA, USA). The final concentration of Jagged-1 siRNA was
10nM. The transfection reagent was then cocultivated with
ADSCs for 24hr and subsequently discarded. PCR and protein
detection of Jagged-1 were performed 48hr after transfection.
ADSCs with Jagged-1 knockdown were prepared as feeder layer
cells by the same method and cultured with LSK cells under the
same conditions for 2 and 5 weeks.

The cocultured LSK cells were isolated. LSK cells (1× 103)
were seeded in 2mL methylcellulose (cat.# 3434; Stem cell
Technologies, Vancouver, Canada) and incubated at 37°C
with 5% CO2 for 2 weeks [21]. The formation of cell colonies
was observed under a microscope.

2.5. Detection with Scanning Electron Microscope. After
coculturing for 5 weeks, the cocultured ADSCs and LSK cells
were fixed with 2% glutaraldehyde for 12 hr. The samples
were stored at 4°C overnight. Dehydration was performed
sequentially with 50%, 70%, 80%, 90%, and 100% tert-buta-
nol. The samples were frozen at−20°C, and then coated using
a Sputter coater (SCD 050, BAL-TEC GmbH). The cell mor-
phology was observed under a scanning electron microscope
(PHILIPS XL 30 ESEMFEG; Philips, Eindhoven, The Nether-
lands) at an accelerating voltage of 10 kV.

2.6. Real-Time Quantitative PCR. The expressions ofNotch-1,
Jagged-1, and Hes-1 mRNA in ADSCs, fibroblasts, LSK
cells, and LSK cells after coculture were detected by real-
time quantitative PCR. Total RNA was extracted from cells
using Trizol (15596-018; Invitrogen,MA, USA). Reverse tran-
scription PCR was performed with TaqMan® MicroRNA
Reverse Transcription Kit (cat.#4366597; ThermoFisher,
MA, USA). The RNA quantity for reverse transcription
PCR was 2 ng, and the reaction system volume was 20 μL.
The reaction conditions were 42°C for 60min; 75°C for
5min, and 4°C for 5min, one cycle. The primers for real-
time quantitative PCR were designed and synthesized by
Sangon Biotech (Shanghai, China). The primer sequences
were Jagged-1, forward 5′- TCCAGGTCTTACCACCGAAC-3′
and reverse 5′- GACGCCTCTGAACTGAC-3′; Notch-1, for-
ward 5′-GTGGTTCCCTGAGGGTTTCAA-3′ and reverse
5′-GGAACTTCTTGGTCTCCAGGT-3′; Hes-1, forward 5′-
ACACGACACCGGACAAACCA-3′ and reverse 5′-TTATTC
TTGCCCTTCGCCTCTT-3′; and, β-actin, forward 5′-ATC-
TACGAGGGCTATGCTCTCTCC-3′ and reverse 5′-CTTT
GATGTCACGCACGATTTCC-3′. The PCR conditions were
95°C for 10min; 95°C for 15 s, 55°C for 30 s, and 75°C for 30 s,
for a total of 40 cycles. The cDNA volume was 2μL, and the
reaction system volume was 20μL. The expression level of the
target gene was determined by the ΔΔCt method.

2.7. Western Blot Analysis. Proteins were extracted from
ADSCs, fibroblasts, LSK cells, and cocultured LSK cells after
lysis with lysis buffer (cat.#78446; Thermo Scientific, Inc.
MA, USA). Protein concentration was determined using a
BCA Protein Assay kit (cat.# 23225; Thermo Scientific, Inc.
MA, USA). The protein samples, each containing 20 μg of
protein, were subjected to 10% SDS-PAGE electrophoresis
and the separated components were subsequently
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electrotransferred to a nitrocellulose membrane (cat. #24580;
Cell Signaling Technology, Danvers, USA). Then, the mem-
brane was blocked with 5% skim milk at room temperature
for 2 hr, and probed with rabbit anti-Jagged-1 (1 : 1000; cat. #
70109, Cell Signaling Technology, Danvers, USA), rabbit
anti-Notch-1 (1 : 2000; cat. # 36008, Cell Signaling Technol-
ogy, Danvers, USA), and rabbit anti-Hes-1 (1 : 2000; cat. #
11988; Cell Signaling Technology, Danvers, USA) monoclo-
nal antibodies. Then, goat anti-rabbit IgG (HRP) (1 : 1000;
cat. # 3678; Cell Signaling Technology, Danvers, USA) was
added for incubation at room temperature for 2 hr. The ECL
kit (cat.#143237; Biosharp, Anhui, China) was used for detec-
tion. Grayscale values of target proteins were measured using
Image Lab (version 6.1) software and normalized to those of β-
actin.

2.8. Transplantation of ADSCs and LSK Cells in Mice. Experi-
ments on animals were conducted in an SPF environment.
After acclimation for 1 week, the NOD/SCID mice were
subjected to irradiation with a linear accelerator [22] (irradi-
ation dose nine Gry; 0.2 Gry/min). They were randomly
divided into three groups utilizing the random number table
method, with 10 mice in each group. The LSK group was
infused with 1× 103 LSK cells. The LSK+ fibroblasts group
received an infusion of 1× 103 LSK cells and 1× 105 fibro-
blasts, and the LSK+ADSCs group was infused with 1× 103

LSK cells and 1× 105 ADSCs. The LSK cells, fibroblasts, and
ADSCs were obtained from C57/BL mice (n= 10). Cells were

administered via tail vein injection, with all cells being dispersed
in a total volume of 200μL of sterile PBS. The blood routine test
was performed weekly. The survival of mice was also observed.

2.9. Statistical Analysis. The data are expressed as
meanÆ SD. SPSS 17.0 software was used for statistical anal-
ysis. One-way ANOVA was used for multicomparison.
Student-t test was used for intergroup comparison.
Multiple linear regression analysis was employed to assess
and compare the hematological recovery among the three
distinct groups in the in vivo experiment. Survival was
calculated using the Kaplan–Meier method, and the
difference in survival was analyzed with the Log-Rank test.
P<0:05 was considered statistically significant. The graphs
were plotted with Primes 6.0.

3. Results

3.1. Identification of ADSCs. The long-spindle typed ADSCs
were observed, and there were swirl changes at the conflu-
ence of 80% (Figure 1(a)). Flow cytometry showed that there
was CD29 and CD105 expression on ADSCs (Figure 1(b)).
However, there was no expression of CD34 and CD45. This
is consistent with the recognized immune phenotype of
MSCs. Oil red O and alizarin red staining verified the multi-
directional differentiation ability of ADSCs (Figure 1(c)).
Cell growth curve showed that the ADSCs entered into an
obvious logarithmic growth phase at 72 hr and entered a
plateau phase after about 5 days (Figure 1(d)).
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FIGURE 1: Isolation and identification of ADSCs. (a) The morphology of ADSCs. (b) Flow cytometry analysis of the surface markers of ADSCs,
including CD105, CD29, CD34, and CD45. (c) The results of oil red O and alizarin red staining. (d) Growth curve of ADSCs.
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3.2. ADSCs Promote the Proliferation of LSK Cells In Vitro.
The LSK cells were cocultured with feeder cells prepared with
ADSCs or fibroblasts. As shown in Figure 2(a), at 2 and
5 weeks, LSK cells cocultured with ADSCs still could prolif-
erate and generate new cell colonies. However, this was not
observed in LSK cells cocultured with fibroblasts. As shown
in Figure 2(b), on Week 2 and Week 5, the number of LSK
cells cocultured with ADSCs was significantly more than that
cocultured with fibroblasts (ADSCs group: 6.8Æ 1.2× 104

at 2 weeks and 4.1Æ 0.6× 104 at 5 weeks; fibroblasts group:
5.0Æ 1× 103 at 2 weeks and 1Æ 0.2× 103 at 5 weeks;
P<0:05), suggesting that ADSCs can promote the prolifera-
tion of LSK cells in vitro.

The LSK cells obtained from the ADSCs coculture system
were incubated with methylcellulose. After 2 weeks of culture,

CFU-GM was observed under a microscope (Figure 2(c)).
This result showed that LSK cells cocultured with ADSCs still
maintained the ability of differentiation and proliferation
even after long-term coculture.

3.3. The Relationship between ADSCs Feeder and LSK Cells
Revealed by Scanning Electron Microscopy. The relationship
between LSK cells and the feeder layer was observed under a
scanning electron microscope (Figures 3(a) and 3(b)). After
coculture for 2 weeks, the morphology of LSK cells was
mainly oval or spherical, which changed with the prolonga-
tion of culture time (Figure 3(a)). The pseudopodia of LSK
cells increased, and filamentous and filamentous, and lamel-
lar pseudopodia were observed. At Week 5 of coculture, LSK
cells migrated to the bottom of the ADSCs feeder layer.
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These LSK cells and feeder cells were connected through
pseudopodia and linear structures (Figure 3(b)).

3.4. The Notch Signal Pathway Is Activated during LSK Cell
Proliferation. Real-time quantitative PCR results showed that
Jagged-1 mRNA was expressed in both ADSCs and fibro-
blasts, and its level was significantly higher in ADSCs (Figure 3
(c)). Therewere alsoNotch-1 andHes-1 expressions in LSK cells.
Western blot results showed the same trend (Figure 3(d)). At
Week 5 of coculture, the mRNA of Hes-1 showed significant
increases (P<0:05), indicating the activation of theNotch signal

pathway. Moreover, after treating coculture system with GSI,
the number of LSK cells was significantly reduced at Week
2 (ADSCs group: 6.8Æ 1.2× 104 at 2 weeks and 4.1Æ 0.6× 104

at 5 weeks; ADSCs+GSI group: 8.2Æ 0.4× 103 at 2 weeks and
5.1Æ 0.6× 103 at 5 weeks; P<0:05) (Figures 4(a) and 4(b)). The
Hes-1mRNA level was also significantly decreased in LSK cells
cocultured with ADSCs+GSI (Figure 4(c)). The above results
reveal that the Notch signaling pathway plays an important role
in the proliferation of LSK cells and that GSI can block the
activation of Notch pathway and affect the proliferation of
LSK cells.
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3.5. ADSCs Promote LSK Cell Proliferation through Jagged-1.
To explore the mechanism underlying the effects of ADSCs
on LSK cell proliferation, Jagged-1 was knocked down in
ADSCs by siRNA, and then coculture was conducted. West-
ern blot (Figure 5(a)) and real-time quantitative PCR

(Figure 5(b)) verified that Jagged-1 was efficiently knocked
down in ADSCs. At Week 2 and Week 5 of coculture, the
proliferation of LSK cells decreased significantly after the
Jagged-1 knockdown (ADSCs group: 6.8Æ 1.2× 104 at 2 weeks
and 4.1Æ 0.6× 104 at 5 weeks; Jagged-1-knockdown ADSCs
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group: 3.1Æ 1× 104 at 2 weeks and 9.2Æ 0.6× 103 at 5 weeks;
P<0:05) (Figures 5(c) and 5(d)). Similarly, the level ofHes-1 of
LSK also decreased after cocultured with the Jagged-1 knock-
down ADSCs, indicating that the activation of the Notch signal
pathway was weakened (Figures 5(e) and 5(f)). Additionally,
after culture LSK with methylcellulose, CFU-GM was formed,
but the ability to proliferate and differentiate was diminished
(Figure 5(g)). These results show that Jagged-1 is the key factor
for ADSCs to support LSK cells, but it may not be the only
factor.

3.6. ADSCs May Promote Hematopoietic Recovery under the
Condition of Insufficient LSK Cells. After linear accelerated
irradiation, NOD/SCID mice received the infusion of LSK,

LSK+ fibroblasts, and LSK+ADSCs, respectively. The num-
ber of LSK cells infused was lower than the number required
for the recovery of hematopoietic function. The blood routine
results showed that the leukocyte (Figure 6(a)), hemoglobin
(Figure 6(b)), and platelets (Figure 6(c)) in the LSK+ADSCs
group were higher than those in the other two groups at dif-
ferent times, indicating that ADSCs can support hematopoietic
function, especially in platelets, although the results were not
statistically significant in leukocytes and hemoglobin (Table 1).
In terms of survival rate, eightmice in the LSK+ADSCs group
survived more than 28 days. There were two survival mice in
the LSK+ fibroblasts group, and only one survival mouse in
the LSK group. Themedian survival time was 28 days, 12 days,
and 10 days, respectively (Figure 6(d), P<0:01).
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4. Discussion

With the booming of haploidentical HSCT, the incidence of
PGF has been increasing, posing a challenge in clinical prac-
tice. A retrospective study found that 27.5% of patients were
diagnosed with PGF [23]. Additionally, PGF patients had a
higher risk of cytomegalovirus infection, further affecting
their overall survival. Currently, there is no standardized
treatment for PGF, and common clinical approaches include
selected CD34+ cell infusion and the use of TPO-RA.
Although CD34+ cell infusion has a high clinical response,
it can also lead to serious graft-versus-host disease. In con-
trast, research on MSCs for treating PGF is ongoing. MSCs
are important components of the bone marrow niche, play
an important role in maintaining the proliferation and
homeostasis of hematopoietic stem cells, and can improve
the poor implantation after allogeneic HSCT [24, 25]. Previ-
ous studies have mostly focused on BMSCs [26, 27]. Mugur-
uma et al. [28] reported that the injection of human BMSCs
into the medullary cavity of NOD/SCID mice could promote
the homing, proliferation, and differentiation of CD34+HSPCs
(hematopoietic stem/progenitor cells) derived from human
umbilical cord blood. In a study involving 20 patients [29],
patients were treated with BMSCs at a dose of 1–3× 106/kg, of
which 13 patients showed a positive treatment response, but
there was also a higher rate of Epstein–Barr virus and cyto-
megalovirus infections.

Compared to current therapies for PGF, ADSCs offer
several advantages. First, ADSCs have a stronger effect on
supporting hematopoiesis both in vitro and in vivo compared
to BMSCs. Particularly, ADSCs exhibit a superior long-term
capacity for hematopoietic support [10]. Additionally, ADSCs
have a lesser impact on the function of NK cells in comparison
to BMSCs and umbilical cord-derived MSCs [8, 30, 31]. This
suggests that the antiviral effect of NK cells could be better
preserved during ADSC treatment for PGF. Furthermore,
there may be residual tumor cells in PGF patients after
HSCT, and excessive immune suppression may diminish
the graft-versus-tumor (GVT) effect. Notably, NK cells are
the main effector cells of the GVT effect. Since ADSCs have
a weaker effect on NK cells, the GVT effect can be better
preserved. Therefore, we suppose that ADSCsmay be a prom-
ising alternative for PGF treatment.

During our investigation into the mechanisms of ADSCs
in supporting hematopoiesis, we conducted a literature
search on PUBMED from 2001 to the present. Although
we found limited reports on this subject, several mechanisms
were identified. In 2010, Nakao et al. [32] first reported the
hematopoietic supportive role of ADSCs and suggested that
they may enhance the homing of LSK cells by releasing
CXCL-12. Another study by Ueda et al. [33] indicated that
ADSCs had the potential to differentiate into osteoblasts and
chondrocytes within the bone marrow niches, thereby sup-
porting hematopoiesis. Furthermore, Foroutan et al. [34]
found that ADSCs could regulate the proliferation and self-
renewal of hematopoietic stem cells through miR-145. In this
study, we detected the relationship between ADSCs and LSK
cells using scanning electron microscopy. The results showed
that the morphology of LSK cells varied when interacting
with feeder cells. LSK cells had several types of plasma mem-
brane processes, including microvilli, filaments, megapods,
and cauda pods. Meanwhile, we observed elevated expression
of Hes-1 in LSK cells cocultured with ADSCs, indicating the
activation of the Notch signal pathway. Therefore, we iden-
tified a novel mechanism suggesting that ADSCs may impact
LSK cell proliferation via direct cell-to-cell contact. We dem-
onstrate that this effect may be mediated by the Jagged-1/
Notch-1/Hes-1 signaling pathway.

The Notch/Jagged signal pathway, a highly conserved
pathway [35], is activated by close contact between cells.
The signal transduction in the Notch/Jagged signal pathway
is through protein hydrolysis of the Notch, but not phos-
phorylation [13]. After protein hydrolysis, the Notch protein
fragments (NICD or ICN) with transcriptional activity
would be released, which can then bind with the transcrip-
tion factor CSL-DNA binding protein to regulate the expres-
sion of downstream genes. The Hes-1 gene is one of the
downstream genes necessary for the activation and function
of the Notch/Jagged signal pathway [36]. The Notch/Jagged
signal pathway is involved in different physiological and dis-
ease processes [37, 38]. Importantly, Jagged-1 is closely
involved in hematopoietic function [39–42]. Duryagina
et al. [39] showed that the loss of Jagged-1 in the endothelial
cell from Jag1 ECKO mice led to the significant reduction of
hematopoietic function and premature depletion of the adult
hematopoietic stem cell pool. Notch-1 is detected in mouse

TABLE 1: Hematological recovery comparison among three experimental animal groups at different periods.

0 Week 1 Week 2 Weeks 3 Weeks 4 Weeks F P value

Leukocyte (109/L)
LSK 3.13Æ 0.63 0.26Æ 0.05 0.28Æ 0.15 1.05 1.52 2.509 0.120

Fibroblast+ LSK 3.48Æ 0.59 0.26Æ 0.08 0.28Æ 0.10 0.79Æ 0.37 1.30Æ 0.81
ADSCs+ LSK 3.52Æ 0.86 0.22Æ 0.05 0.30Æ 0.11 0.88Æ 0.21 1.69Æ 1.03

Hemoglobin (g/L)
LSK 136.00Æ 16.80 69.71Æ 7.71 58.20Æ 6.42 72.00 89.00 1.649 0.206

Fibroblast+ LSK 138.80Æ 22.84 70.80Æ 5.93 63.00Æ 9.30 65.00Æ 4.24 85.00Æ 7.07
ADSCs+ LSK 134.00Æ 12.63 73.20Æ 7.12 59.60Æ 5.53 67.40Æ 5.32 85.4Æ 6.31

Platelet (109/L)
LSK 662Æ 183 341Æ 33 253Æ 57 478 660 5.419 0.025

Fibroblast+ LSK 584Æ 184 311Æ 22 333Æ 130 516Æ 38 622Æ 55
ADSCs+ LSK 626Æ 145 299Æ 34 307Æ 137 595Æ 23 756Æ 155
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hematopoietic cells [40]. Jagged-1 [41] was also found in the
mesenchyme of the primary mouse fetal liver, which is the
earliest place for hematopoiesis. LSK cells could maintain
proliferative capacity after coculturing with 3T3 cells over-
expressing human Jagged-1 [42]. These findings indicate the
potential role of Notch ligands in the expansion of hemato-
poietic stem progenitor cells in vitro [43, 44]. In this study,
we found that compared with mouse fibroblasts, the expres-
sion of Jagged-1 in ADSCs cells was higher. Moreover, the
mRNA and protein expressions of Hes-1 in LSK cells cocul-
tured with ADSCs were higher, suggesting that Notch is
activated. Our results confirmed that ADSCs could activate
the Notch signal pathway and promote the proliferation of
LSK cells.

To further verify the role of the Notch signaling pathway
in the proliferation of LSK cells, ADSCs were first treated
with GSI [45] to inhibit Notch or transfected with Jagged-1
siRNA to knockdown Jagged-1, and then cocultured with
LSK cells. We found that after treatment with GSI, the Notch
pathway was not activated, and the proliferation ability
of LSK was weakened. After the Jagged-1 knockdown, the
hematopoietic support function of ADSCs was also weak-
ened. These data indicate that the Jagged-1/Notch pathway
importantly participates in the promoting effects of ADSCs
on the proliferation of LSK cells. However, when Jagged-1
was deficient, some hematopoietic support function of
ADSCs was maintained. The possible reason may be that
the hematopoiesis is complex. The signal pathways such as
Wnt-β- Catenin [46] and Hippo [47] play a regulatory role in
hematopoiesis. Meanwhile, ADSCs can secrete a variety of
important hematopoietic cytokines [48], such as LIF, M-CSF,
G-CSF, and GM-CSF, which are importantly involved in
hematopoiesis.

The role of ADSCs in supporting hematopoiesis in vivo
has also been reported. As early as 2010, investigators
[32, 49] infused ADSCs and LSK cells into NOD/SCID
mice, and found that ADSCs could promote the homing
and proliferation of LSK cells. In our previous study, we
found that ADSCs could reduce acute graft-versus-host dis-
ease and promote further hematopoietic recovery in the
mouse model with allogeneic transplantation [10]. In this
study, a small dose of LSK cells was infused, which may cause
poor implantation. Most mice in the LSK group and LSK
+ fibroblasts group failed to achieve hematopoietic recovery
and eventually died. However, mice in the LSK+ADSCs
achieved hematopoietic recovery, suggesting that ADSCs
have strong supporting effects on hematopoiesis.

In future studies, there is great interest in enhancing the
therapeutic potential of ADSCs in supporting hematopoiesis
in vivo. Nanomaterials [50, 51] are expected to play a crucial
role in addressing this challenge. On one hand, nanomater-
ials can act as carriers to guide the migration of ADSCs
toward the bone marrow, thereby improving the microenvi-
ronment necessary for hematopoiesis. On the other hand,
nanomaterials can modify the adhesion molecules on the sur-
face of ADSCs, facilitating their interaction with hematopoi-
etic stem cells [52]. This interaction enhances the signaling

pathway mediated by Jagged-1/Notch-1/Hes-1, ultimately
promoting hematopoietic function.

5. Conclusion

In our study, we confirm that ADSCs can support hemato-
poietic function in vitro. For the first time, we demonstrate
that Jagged/Notch plays an important role in the promotive
effect of ADSCs on LSK cell proliferation. Therefore, we
propose that ADSCs may activate LSK cells through Jag-
ged-1 and Notch-1, which may further activate the down-
stream transcription factors, and promote hematopoietic
function. We believe that ADSCs may have the potential to
improve PGF after HSCT.
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