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In the oral and maxillofacial region, the treatment of severe bone defects, caused by fractures, cancers, congenital abnormalities,
etc., remains a great challenge. In addition, neurological disorders are frequently accompanied by these bone defects or the
treatments for them. Therefore, novel bone regenerative techniques and methods to repair nerve injury are eagerly sought.
Among them, strategies using dental pulp stem cells (DPSCs) are promising options. Human DPSCs can be collected easily
from extracted teeth and are now considered a type of mesenchymal stem cell with higher clonogenic and proliferative
potential. DPSCs have been getting attention as a cell source for bone and nerve regeneration. In this article, we reviewed the
latest studies on osteogenic or neural differentiation of DPSCs as well as bone or neural regeneration methods using DPSCs
and discussed the potential of DPSCs for bone and nerve tissue regeneration.

1. Introduction

In the oral and maxillofacial region, bone defects caused by
fractures, cancers, or congenital abnormalities result in not
only functional disabilities but also cosmetic disturbances.
Neurological disorders such as lingual nerve injury, mental
nerve paresthesia, and facial nerve paralysis are also caused
by third molar extraction, orthognathic surgeries, and
benign or malignant tumor surgeries. The psychological suf-
fering of patients with such disorders in the oral and maxil-
lofacial region is unfathomable.

To repair these defects or recover lost functions, recon-
structive surgeries for bone or nerve tissue have been per-
formed. However, procedures such as autografts (e.g., iliac
crest graft or fibula graft) entail additional surgical stress,
and there is a limitation on the amount of tissue that can
be grafted. Allograft or xenograft can overcome these prob-
lems, but the efficiency of bone regeneration is lower in those
procedures than in autografts. There are also a number of
methods to repair nerve injury, such as external decompres-
sion, direct suture/neurorrhaphy, and autogenous grafts [1].

However, these reconstructive methods do not achieve full
recovery, and patients sometimes exhibit limited sensory
impairment. Recently, polyglycolic acid sleeves and absorb-
able collagen sleeves have achieved functional sensory recov-
ery for inferior alveolar nerve and lingual nerve injuries in
the oral and maxillofacial region [2]. These sleeves repair
small defects of the nerve. On the other hand, the recon-
struction of extensive nerve injuries using artificial materials
involves a lot of challenges that need to be resolved.

Mesenchymal stem cells (MSCs) are known to be a use-
ful cell source for regenerative therapy. Many types of MSCs,
such as bone marrow stromal stem cells (BMSCs) and adi-
pose tissue-derived stem cells (ASCs), have been reported
for bone or nerve tissue regeneration [3–13]. Among them,
dental pulp stem cells (DPSCs) have been considered a
promising cell source for regenerative medicine and tissue
engineering. DPSCs, which were first identified in 2000,
can differentiate into multiple-lineage cells such as adipo-
genic, neurogenic, and osteogenic cells [14, 15]. DPSCs dem-
onstrate higher clonogenic and proliferative potential than
BMSCs [14, 15]. In addition, DPSCs are very easily isolated
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from extracted teeth in a less-invasive manner without any
ethical issues. Thus, tissue engineering techniques using
DPSCs must be established in order to overcome current tis-
sue reconstruction limitations in the oral and maxillofacial
region. Herein, we reviewed the advancement of DPSC
applications for bone and nerve tissue regeneration and dis-
cussed the potential of DPSCs as a target of bone and neural
regenerative medicine.

2. Bone Regeneration of DPSCs

Craniofacial bones originate from the neural crest, which
displays different osteogenic differentiation traits than meso-
derm for long bones [16, 17]. A previous study indicated
that neural crest-derived progenitors displayed more effi-
cient regeneration of bone tissue than their mesoderm-
derived counterparts [18]. Therefore, neural crest-derived
MSCs, such as DPSCs, may be suitable for bone regeneration
therapy in the oral and maxillofacial region [13, 19]
(Figure 1). Many studies have reported that DPSCs have
osteogenic/odontogenic differentiation ability. However,
some problems remain to be overcome in applying DPSCs
in a clinical setting. For example, there are individual differ-
ences in the capacity of osteogenic differentiation of DPSCs
[20, 21], and both the proliferation and differentiation
potential of MSCs including DPSCs also decline with age
and after repeated passage [22]. Moreover, the number of
cells obtained from dental pulp is limited because physiolog-
ical secondary dentin and pathological tertiary dentin are
formed by odontoblasts with age, resulting in a decrease in
pulp tissue volumes [23]. For clinical application, efficient
and stable culture methods for osteogenic differentiation of
DPSCs or transplantation strategies combining DPSCs and
scaffolds are required. In order to establish them, many stud-
ies have reported on the molecular mechanism of osteogenic
differentiation or bone regeneration using DPSCs. Here, we
summarized the recent in vitro and in vivo studies on osteo-
genic differentiation of DPSCs or osteogenesis using them,
focusing especially on growth factors or small molecules as
osteogenic factors, gene engineering, scaffolds, and culture
conditions.

2.1. Growth Factors, Small Molecules. Many studies have
found that recombinant proteins promote the differentiation
ability of many types of stem cells. Osteogenic differentiation
of DPSCs also can be induced by various growth factors. For
example, the bone-healing potential of DPSCs was even
stronger when the cells were primed with fibroblast growth
factor 2 [24]. PTH (PTH, amino acid 1–34, known as teri-
paratide), which regulates serum calcium levels and affects
bone development, enhances the osteo-/odontogenic differ-
entiation capacity of DPSCs via the ERK and P38 signaling
pathways [25]. In addition, bone morphogenetic protein-7
(BMP-7), which belongs to the transforming growth fac-
tor-β (TGF-β) superfamily, is capable of inducing DPSCs
toward odontogenic differentiation at appropriate concen-
tration ranges [26]. Insulin-like growth factor-1 (IGF-1) is
a multifunctional peptide that plays an important role in
bone formation and mineralization [27]. IGF-1 activated

mTOR through the PI3K/Akt pathway to induce the differ-
entiation of DPSCs into osteoblasts [28].

Although recombinant proteins are useful for cell prolifer-
ation or differentiation, their high cost and instability may
require more stable and economical culture methods for clin-
ical application. To overcome these problems, many studies
have shown that small chemical compounds induce bone
formation. We previously reported that the helioxanthin
derivative 4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-
b]pyridine-2-carboxamide (TH), an osteogenic small mole-
cule, induced the osteogenic differentiation of DPSCs [20,
21, 29]. Moreover, TH successfully promoted the osteogenesis
of DPSCs derived from elderly patients, although the prolifer-
ation and differentiation potential of MSCs also declines with
age and after repeated passage [29–31]. Other small molecules
have also been reported as osteogenic molecules for DPSCs.
For example, the small molecule compound metformin, a
medicine used to treat type 2 diabetes, can induce osteo-/
odontogenic differentiation of DPSCs in an AMPK-
dependent manner [32]. However, the clinical application of
metformin to tissue regeneration is limited because of its rapid
dilution. To overcome this disadvantage, a drug delivery sys-
tem with a controlled release of metformin was developed by
using calcium phosphate cement containing chitosan [33].
Ferutinin is a naturally occurring nonsteroid estrogenic com-
pound and has been shown to prevent bone loss in ovariecto-
mized rats [34]. Ferutinin also promotes the osteogenic
differentiation of DPSCs by activating the canonical Wnt/β-
catenin signaling pathway [35]. Aspirin, which inhibits cyclo-
oxygenase and decreases the production of prostaglandins,
was reported to promote osteogenic differentiation of bone
marrow-derived stem cells by targeting their telomerase activ-
ity and to inhibit osteoclast activity in mice [36]. Aspirin also
improved the potential of osteogenic differentiation of DPSCs

Ectoderm

Non neural ectodermNon neural ectoderm
Notochord

Epidermal ectoderm Epidermal ectoderm

Neural crest 

Notochord

Neural sulcus 

Neuroepithelium 

Neural crest cells

Neural tubeSomites

Figure 1: Neural crest formation. DPSCs are derived from neural
crest cells.
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in vitro and in vivo [37]. Thus, we may be able to establish a
novel bone regeneration strategy by searching for osteogenic
molecules for DPSCs and their optimal conditions for the
osteogenic differentiation of DPSCs.

2.2. Gene Engineering. Previous studies have reported that
gene engineering enhances the osteogenic potential of
DPSCs. For example, transforming growth factor-beta 1
(TGF-β1) gene transfer into DPSCs increased osteogenic
and chondrogenic differentiation but decreased adipogenic
differentiation [38]. In addition, DPSCs overexpressing
Sirtuin-1 (SIRT1), an NAD+-dependent class III histone
deacetylase, promoted bone formation during distraction
osteogenesis in a rabbit model [39]. Integrin-α5 activity is
related to cell proliferation, differentiation, migration, and
organ development, and Integrin-α5 shRNA promoted the
odontogenic differentiation of DPSCs with the enhanced
formation of mineralized nodules [40].

MicroRNAs (miRNAs) also play key roles in regulating
the osteogenic differentiation of DPSCs. For example, miR-
140-5p, which regulates the proliferation and differentiation
of cells, is related to the odontoblast differentiation of DPSCs
via the Wnt1/β-catenin signaling pathway [41]. In addition,
the silencing of miR-143-5p promoted the hDPSC odonto-
blastic differentiation through the activation of the p38
MAPK signaling pathway by upregulating MAPK14 [42].
let-7c-5p, a let-7 miR family member that participates in
the regulation of cell proliferation, differentiation, and onco-
genesis, was reported to be suppressed in inflamed human
dental pulps [43]. Yuan et al. also showed that the induced
expression of let-7c-5p could suppress the inflammatory
phenomena and restore the osteogenic differentiation poten-
tial of inflamed DPSCs [44]. miR-488 suppressed the prolif-
eration and induced the apoptosis of cancer cells [45].

Long noncoding RNAs (lncRNAs) are emerging as
important molecules in the odontogenic differentiation of
DPSCs. lncRNA H19, one of the most classical lncRNAs,
induces the odontogenic differentiation of DPSCs via the
H19/S-adenosylhomocysteine hydrolase (SAHH) axis and
epigenetically regulates the distal-less homeobox (DLX3)
[46]. Thus, the controlled delivery of an osteogenic gene into
DPSCs might be a strategy for treating the osteogenesis of
DPSCs, although nucleic acids carry the risks of inducing
immune responses and genetic alterations through the inte-
gration of exogenous sequences into the genome.

2.3. Scaffold. These days, there are various scaffolds for the
treatment of bone defects in the jaws. Scaffolds with osteoin-
ductive potential for DPSCs have been reported. Collagen is
one of the most widely used materials for scaffolds in tissue
engineering due to these excellent properties. DPSC-loaded
dense collagen gel scaffolds improved bone healing in a rat
critical-size calvarial defect model [47]. In addition, β-glyc-
erophosphate is a critical factor during the osteogenic
differentiation process, and β-glycerophosphate-loaded
polycaprolactone/polyethylene oxide blend nanofibers dem-
onstrated the osteogenic induction of DPSCs [48]. Platelet
concentrates, such as platelet-rich plasma (PRP), platelet-
rich fibrin (PRF), and concentrated growth factor (CGF),

are also attractive autologous scaffolds suitable for regenera-
tive medicine owing to their fiber architectures and rich
growth factors [49, 50]. GCF not only possesses unique
fibrin networks and cytocompatibility as a scaffold but it also
extracts stimulated cell proliferation, mineralization forma-
tion, and odontoblastic differentiation of DPSCs [51]. Sev-
eral studies have demonstrated that a composite
biomaterial including fibrin glue can show increased osteo-
conductivity and biocompatibility [52]. Nanohydroxy apa-
tite/chitosan/gelatin scaffolds enriched by a combination of
platelet-rich plasma and fibrin glue increased the mineraliza-
tion and osteoblastic differentiation of DPSCs [53]. Mineral
trioxide aggregate (MTA) is widely used as a pulp-capping
material. MTA is also used for pulp regenerative treatment
because it activates cementoblasts and promotes the forma-
tion of cementum [54]. Odontogenic differentiation of
DPSCs was also induced in MTA, which served as a scaffold
in the presence of an odontogenic medium [55]. Gelatin
sponges, which are highly biodegradable and have good bio-
compatibility, are often used for hemostasis. Fu et al. added
poly-L-lysine, CaCl2, and NaHPO4 to gelatin sponges and
successfully induced the osteogenic differentiation of DPSCs
in this modified gelatin scaffold [56].

On the other hand, scaffold-free transplantation of
DPSCs is useful for bone regeneration. A 3D cell culture
using cell sheet technology successfully promoted the osteo-
genic induction of DPSCs [57]. In addition, our previous
study showed that DPSC sheets promoted bone regeneration
in a bone defect model [20]. We also reported that DPSC
sheets facilitated bone formation in fracture sites [21].
Therefore, DPSC sheets may be useful for safe clinical appli-
cation because infections or immune response after scaffold
implantation must be treated.

2.4. Cell Culture Conditions. Cell culture conditions affect
the properties of DPSCs. Dense culture conditions
enhance the osteogenic differentiation of DPSCs via integ-
rin signaling [58]. The conditioned medium of calcined
tooth powder, which is obtained from teeth calcined at
high temperature (300°C), promotes the osteo-/odonto-
genic differentiation of DPSCs by triggering MAPK signal-
ing pathways [59]. Moreover, the osteogenic medium for
DPSC culture may be improved for clinical application.
Supplementation of adenosine triphosphate (ATP) to an
osteogenic medium enhanced the osteoblast formation of
DPSCs [60]. ATP stimulation increases intracellular Ca2+

and mediates intracellular Ca2+ signaling via the PLC–
IP3 pathway and is initiated by ER release followed by
an influx from the extracellular space. Nitric oxide (NO)
acts as a biological regulator under both physiological
and pathological conditions, and synthetic NO-releasing
compounds, called NO donors, induce DPSCs via the
TNFα-NF-κB axis to differentiate into mature odontoblasts
[61]. Low power light (LPL) treatment, which has been
known to reduce pain and inflammation and to promote
wound healing, also affects the differentiation ability of
DPSCs. It was reported that the very low power light at
810 nm enhanced the significant differentiation of hDPSCs
in the pulsed wave mode [62].
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Different methods of isolating cells from pulp tissue give
rise to different populations of DPSCs. The type of enzyme
affects the characteristics and behavior of isolated cells. Pre-
viously, DPSCs were isolated from pulp tissue by a digestion
method using collagenase/dispase or collagenase only. Com-
pared with collagenase I only, DPSCs obtained by collage-
nase I/dispase treatment had significantly higher numbers
of CD146+ cells, and the ability of osteogenic/chondrogenic
differentiation of DPSCs was higher when collagenase/dis-
pase was used [63].

3. Neural Regeneration of DPSCs

Treatment of neuropathies such as spinal cord injury (SCI)
includes methods of properly reactivating neural circuits,
wiring damaged neural circuits, and repairing neural sec-
ondary damage. These treatments can be improved not only
by directly regenerating damaged tissue but also by changing
the roles of nerves around the site of injury. Some studies
reported that methods using scaffolds for cell transplanta-
tion and neural circuit reformation can be expected to repair
nerves at the injured site [64]. MSCs such as neural stem
cells (NSCs) are used for this cell transplantation [65].
Among NSCs, DPSCs that originate from a neural crest ori-
gin may have a special potential for neural differentiation,
because DPSCs express several neural markers, such as Nes-
tin (neuroectodermal stem cell intermediate filament
marker), β-3 tubulin (Tuj1), neurotrophin receptors, and
neurofilaments [66]. Moreover, some studies differentiated
DPSCs into neural-like cells in vitro and in vivo [67]. DPSCs
also express pluripotency-related core factors such as Oct4,
Sox2, and Nanog, as well as neural crest markers like Snail,
Slugs, Sox10, and HNK1 [68]. Thus, DPSCs have a higher
potential for neural cell lineages as well as stemness and
are considered a suitable cell source for neural regeneration.

Axon regeneration is divided into the peripheral and
central nervous systems. NSCs for cell-based therapies are
among the most important therapies for the central and
peripheral nervous systems. NSCs derived from brain paren-
chymal and olfactory bulb can give rise to both neurons and
glial cells [69]. However, NSCs present some problems in
that the collection from neurosurgical procedures is highly
invasive and production is inefficient. Therefore, NSC-
based therapies lack versatility. On the other hand, DPSCs
are easily obtained from extracted teeth, such as wisdom
teeth, by less-invasive surgery and present no ethical issues.
Also, Sakai et al. reported that stem cells from human exfo-
liated deciduous teeth (SHED) transplanted into the severed
spinal cord preserve the myelin sheath and differentiate into
mature oligodendrocytes known as the central nervous sys-
tem myelin sheath [70]. In addition, DPSCs may be a candi-
date cell source for peripheral nerve regeneration because
DPSCs support nerve cell growth and can differentiate into
Schwann-like cells in vitro [71]. Schwann cells derived from
DPSCs have been shown to help guide peripheral axonal
elongation and myelination in vitro [71]. Moreover, DPSCs
differentiated into neuronal cells have characteristics similar
to those of peripheral neurons compared to peripheral ner-
vous system- (PNS-) derived neurons [67]. Further,

neuron-like cells derived from DPSCs have action
potential-dependent sodium and potassium channels and
generate action potentials [72]. Therefore, there are increas-
ing expectations for nerve regeneration using DPSCs as a
resource for neurodegenerative diseases and nerve defects.

3.1. Neural Characteristics and Neurogenic Differentiation of
DPSCs. In cell-based therapies, specific cells are transplanted
to the lesion site, but it is difficult for them to survive in an
unfavorable regenerative microenvironment. These trans-
planted cells need to adapt to the new environment and par-
ticipate in the activity of surrounding cells [73]. DPSCs are
considered highly versatile in nerve regeneration because
they have excellent adaptability to harmful metabolic states
and can secrete various neuroprotective and immunomodu-
latory factors [71, 74, 75]. For example, DPSCs are well
known for secreting neuroprotective growth factors such as
brain-derived neurotrophic factor (BDNF), nerve growth
factor (NGF), glial cell line-derived neurotrophic factor
(GDNF), neurotrophin-3 (NT-3), vascular endothelial
growth factor (VEGF), and platelet-derived growth factor
(PDGF) [74, 76, 77]. Some studies found that DPSCs
expressed these neuroprotective growth factors in vitromore
highly than other MSC types [73, 74, 78, 79]. Secretion of
these growth factors can reduce neural apoptosis and neuro-
degeneration in the early stages of sensory neuron survival
[70, 80–82].

MSCs can work as immunosuppressive agents by regulat-
ing immune responses such as inflammatory or autoimmune
diseases [83]. Among MSCs, DPSCs are also known to secrete
powerful immunomodulatory and anti-inflammatory cyto-
kines such as transforming growth factor-beta (TGF-β),
interleukin-8 (IL-8), interleukin-6 (IL-6), hepatocyte growth
factor (HGF), and indoleamine 2,3-dioxygenase (IDO) [84,
85]. In fact, DPSCs have been shown to significantly inhibit
the activation of osteoarthritis macrophages in vitro and to
reduce cell morphology, immune phenotype, and expression
of inflammatory factors [86]. DPSC suppressed the activation
of osteoarthritic macrophage in osteoarthritis [86]. Also, the
monocytic mobilizing protein-1 (MCP-1) and the secretory
external domain of sialic acid-binding Ig-like lectin-9 (ED-
Siglec-9) secreted from DPSCs promoted recovery after rat
SCI [87]. Yan et al. showed that DPSCs and BMMSCs could
depress the function of NK cells by hydrolysing ATP to
ADO using CD39 and CD73 enzymatic activity [88]. There-
fore, it can be suggested that DPSCs have strong immunosup-
pressive properties that help control inflammation at each site
and promote nerve regeneration.

Neurogenic factors such as growth factors or small mol-
ecules are necessary to induce DPSCs into neuron-like cells.
Many methods for the neurogenic induction of DPSCs
depend on growth factors such as basic fibroblast growth
factor (bFGF), epidermal growth factor (EGF), NGF [89],
BDNF, GDNF, and sonic hedgehog; various small molecules
such as NT-3, retinoic acid (RA) [90], forskolin, and hepa-
rin; and culture supplements such as B27, insulin-
transferrin-sodium selenite (ITS), nonessential amino acids,
and N2 [91, 92]. bFGF and NGF exerted a synergistic regu-
latory effect on the neural differentiation of DPSCs [89].
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Additionally, Sugiyama et al. showed that FGF-2-pretreated
DPSCs improved recovery in a rat model of spinal cord injury
(SCI) [93]. The simultaneous activation of PKC and cAMP
induces the differentiation of DPSCs into functionally active
neurons [72]. Also, IGF-1 (insulin-like growth factor-1) can
enhance the neural differentiation of DPSCs via the activation
of the mTOR signaling pathway [94]. The addition of bone
morphogenetic protein type 4 (BMP4) to DPSCs cultured as
neurospheres improved the NSC characteristics and neural
differentiation [95]. Recently, Heng et al. showed that small
molecules (valproic acid, CHIR99021, RepSox, forskolin,
SP600125, GO6983, Y-27632, and dorsomorphin) can
enhance the neurogenic differentiation of iPSCs (induced plu-
ripotent stem cells), SCAPs (stem cells from apical papilla),
and GMSCs (gingival mesenchymal stem cells) [96].

The neural differentiation mechanisms of DPSCs were
clarified previously. Heng et al. indicated that stimulation of
the forward ephrinB2-EphB4 signal markedly inhibited the
neurogenesis in DPSCs, whereas suppression of this forward
signal pathway with a peptide inhibitor specific to EphB4
accelerated neurogenesis [97]. Moreover, the Nell-1 gene,
which is known to promote osteoblast differentiation and den-
tin formation, promoted the neural-like differentiation of den-
tal pulp cells [98]. Also, exogenous expression of the OLIG2
(oligodendrocyte lineage transcription factor 2) gene could
be used as an efficient way to induce the differentiation of
DPSCs into functional oligodendrocytes [99]. Recently, Kogo
et al. indicated that epigenetic reprogramming along with cell
cycle regulation by stimulation with high K+ accelerated the
differentiation of IPSCs into neuron-like cells [100]. As noted
above, a highly efficient DPSC neural differentiation method
has been getting attention.

3.2. Scaffold and Cell Culture. Application of the appropri-
ate scaffold may improve the proliferation, differentiation,
adhesion, and migration of DPSCs. It may repair damaged

tissue and promote the ability to regenerate functional
organs. Most of the in vitro studies were performed using
polymers of natural origin such as polysaccharide-based
materials, including cellulose and chitosan, and protein-
based materials, including collagen, gelatin, silk, fibronec-
tin, and fibrin [101, 102]. For example, granular 3D chito-
san scaffolds provide a preferable microenvironment for
the proliferation, attachment, and neural differentiation
of DPSCs [103]. A decellularized extracellular matrix
(ECM) scaffold was shown to affect the differentiation of
DPSCs into a neuron-like of a neuron-like organization,
including a neurite outgrowth promotion [104]. Luo
et al. showed that filling a cellulose/soy protein isolate
composite membrane (CSM) hollow conduit with a 10%
GFD formula (GelMA-bFGF) hydrogel loaded with DPSCs
was effective for nerve regeneration [101]. However, these
polymers of natural origin need to be improved because
they are of varying quality, have limited mechanical prop-
erties, and entail the risk of provoking immune reac-
tions [105].

On the other hand, synthetic biomaterials, such as
polymer-based biomaterials (for example, poly-L-lactic acid,
polylactic acid-coglycolic acid copolymer, poly(L-lactide-co-
6-caprolactone), polyglycolide, and poly-ethylene glycol)
and ceramic-based biomaterials (for example, hydroxyapa-
tite, bioactive glass, and calcium phosphate), display better
mechanical properties, reproducibility, and electrical con-
ductivity compared to polymers of natural origin [102].
PLGA artificial nerve conduits with DPSCs promoted facial
nerve regeneration [106]. Also, reduced graphene oxide-
(RGO-) polycaprolactone (PCL) hybrid electrospun NFs
enhanced the neurogenesis of DPSCs [107]. Furthermore,
the use of bioactive molecules such as growth and angio-
genic factors in appropriate scaffolds has been suggested as
a promising strategy for improving DPSC transplantation.
Luo et al. suggested that transplanted thermosensitive
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Figure 2: Graphical abstract. A therapeutic strategy for bone and neural regeneration with DPSCs.
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heparin-poloxamer (HP) hydrogel that contained DPSCs
and bFGF had a significant impact on spinal cord injury
repair and regeneration in rats [108].

In 1992, Reynolds and Weiss announced that the addi-
tion of EGF to cells taken from the striatum of adult mice
can separate cell clusters that produce nerve cells and glial
cells while dividing and proliferating [109], and they called
these cell clusters “neurospheres” for the first time. Subse-
quent research showed that the neurosphere culture method
increased the ability of NSCs to maintain the undifferenti-
ated state, and neurons, astrocytes, and oligodendrocytes
were produced from the neurospheres by changing the cul-
ture conditions [110]. Similar to NSCs, DPSCs under neuro-
sphere conditions tend to form floating or poorly adherent
spheroids. These spheroids, also called pulp “dentospheres,”
present some shared characteristics with neurospheres [111].

It is necessary to refrain from adding an animal serum to
the culture medium for the clinical application of nerve
regeneration therapy. Even the temporary presence of xeno-
geneic serum components in culture conditions can cause
unwanted immune responses and even rejection of trans-
planted cells [112, 113]. Although serum-free culture proto-
cols without FBS have been demonstrated, the growth rate of
DPSCs in serum-free medium is usually lower than when
animal serum is used [68]. In this situation, we successfully
isolated and cultured DPSCs in xeno-/serum-free culture
conditions, and we also generated suspended neurospheres
from these xeno-/serum-free DPSCs and differentiated them
into neurons [113]. More highly efficient neuronal differen-
tiation of DPSCs under xeno-/serum-free conditions will
lead to innovation in neurodegenerative cell therapy.

DPSCs have already been investigated for the treatment
of neurodegenerative diseases such as neuropathic poly-
neuropathy, Parkinson’s disease, and Alzheimer’s disease
using the above neurological and immunosuppressive prop-
erties [114–116].

These studies indicated that DPSCs may differentiate
toward neuronal-like cells that function in the central nerve
system (CNS). Besides, some studies suggested that DPSCs
improved nerve dysfunction. DPSCs counterbalanced oxida-
tive stress induced by sciatic nerve injury and supraspinal
neuroinflammation in rat brain [117]. Tsuruta et al. showed
that SHED-CM (SHED-conditioned medium) injected
intravenously improved superior laryngeal nerve injury with
dysphagia in a rat model [118].

4. Conclusion

In this article, we reviewed osteogenic and neural differenti-
ation and regeneration using DPSCs, and we added 16 vivo
studies, 9 of which were articles on bone regeneration [20,
21, 24, 29, 37, 39, 47] and 7 of which were articles on neuror-
egeneration [93, 101, 106, 108, 114, 116–118]. Several lines
of evidence strongly suggest that DPSCs, which are derived
from the neural crest, are among the most suitable cell
sources for bone or neural regeneration therapy in the oral
and maxillofacial region (Figure 2 and Table 1), because cra-
niofacial skeletal tissues mainly have the same origin as
DPSCs. Meanwhile, an in-depth understanding of the char-

acteristics and the differentiation mechanism of DPSCs is
required for cell-based therapies. In addition, the appropri-
ate use of growth factors, small molecules, gene engineering,
or scaffolds in culture conditions or transplantation is indis-
pensable for tissue regeneration using DPSCs. At the same
time, we need to consider the safety and stability of these
methods for clinical application. Therefore, the establish-
ment of bone and neural regeneration therapies using
DPSCs in the oral and maxillofacial region requires both
more basic studies and more preclinical and clinical studies.
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