
Research Article
A Novel Molecular Classification Method for Glioblastoma Based
on Tumor Cell Differentiation Trajectories

Guanghao Zhang ,1 Xiaolong Xu,1 Luojiang Zhu ,2 Sisi Li,1 Rundong Chen ,1 Nan Lv,1

Zifu Li ,1 Jing Wang ,1 Qiang Li ,1 Wang Zhou ,1 Pengfei Yang ,1 and Jianmin Liu 1

1Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
2Neurosurgery Department, 922th Hospital of Joint Logistics Support Force, PLA, China

Correspondence should be addressed to Wang Zhou; brilliant212@163.com, Pengfei Yang; chyangpf@163.com,
and Jianmin Liu; chstroke@163.com

Received 30 August 2022; Revised 29 September 2022; Accepted 13 October 2022; Published 22 February 2023

Academic Editor: Fanglin Guan

Copyright © 2023 Guanghao Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating
glioblastoma, IDH-mutant and only retaining the tumor entity of “glioblastoma, IDH-wild type.” Knowing that
subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the
response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although
differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell
heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data
from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of
identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was
examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance
was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq
data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified,
based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential
drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA
and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into
five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group
exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified
by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel
biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and
found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be
able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and
identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential
therapeutic targets for GSCs in GBM.

1. Introduction

Glioblastoma (GBM) is the most common brain primary
malignant tumor derived from the neuroepithelial tissue with
an annual incidence of 23.79 per million worldwide [1]. Since
2005, the combination of temozolomide and radiation therapy

(also known as the “Stupp protocol”) has greatly improved the
life expectancy of GBM patients, but the mean survival time
remains at a low level of less than 2 years, and the 5-year sur-
vival rate is only 5.8% [2–4]. Recently, several targeted drugs
such as erlotinib, perhexiline, and salinomycin have been
found to work in some GBM patients, but toxic effects led to
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dose reduction or treatment interruption in a greater propor-
tion of the patients [5]. Given the understanding that the iso-
citrate dehydrogenase (IDH) mutation status is a hallmark of
molecular alteration to determine prognosis, previous WHO
classification of tumors of the central nervous system (CNS)
divided GBM into “IDH-wild type” and “IDH-mutant” [6].
The former is the most common type of adult glioma,
accounting for more than 90% of all GBM patients [7]. Based
on the unique biological behavior and molecular phenotype,
the latest 2021WHO classification redefines GBM as the hier-
archical reporting standard by eliminating “glioblastoma,
IDH-mutant” and only retaining the tumor entity of “glioblas-
toma, IDH-wild type” and classifies the latter as a category of
“adult-type diffuse glioma” [8]. However, this classification
does not lead to any significant change in the treatment strat-
egy of GBM [9], signifying a great unmet need.

Over the past decade, extensive heterogeneity of GBM has
been exhibited by increasing information derived from high-
throughput sequencing data [10]. For instance, epithelial
growth factor receptor (EGFR), platelet-derived growth factor
receptor (PDGFR), and APO-1 have been used to detect
expression alterations in some GBMs [11–13]. Although tar-
geted agents have achieved success in early clinical studies, they
have not brought significant benefits in phase II/III clinical tri-
als [12, 14, 15].Arduous efforts have beenmade to benefitmore
patients, but some patients with GBM still exhibited resistance
to radiotherapy and chemotherapy [16, 17]. This calls for
improving patient stratification according to tumor molecular
classification and refining possible biomarkers as predictors
of their respective treatment responses for the sake of devel-
oping biomarker-driven personalized treatment programs.

Molecular classification according to high-dimensional
omics characteristics can reduce the complexity of tumors
and help develop personalized treatment strategies [18, 19].
Molecular classification systems of GBM have been reported
in several studies [20]. Philips et al. discovered three molec-
ular subclasses of high-grade astrocytoma with significant
prognostic value and named them proneural (PN), prolifer-
ative (Prolif), and mesenchymal (Mes) by recognizing the
dominant features of the gene list that characterize each sub-
class. Later, Verhaak et al. identified four subtypes based on
gene expression profiles and termed them as proneural, neu-
ral, mesenchymal, and classical [21]. However, these GBM
molecular classification systems do not seem to have
improved the prognosis and chemotherapy sensibility of
patients [22, 23]. The possible reason is that they did not
consider the mutation status of IDH and failed to capture
the heterogeneity of tumor cell components by analysis
based on the bulk GBM tissue. Despite the recent change
in the definition of GBM, no appropriate molecular classifi-
cation model based on the newly defined primary GBM is
available, primarily because it is difficult to accurately define
the differentiation process and tumor cell characteristics of
GBM due to the limitations of the research technologies
available. Therefore, establishing a valuable molecular classi-
fication standard of GBM remains a challenge in current
research.

According to the characteristics of neural stem cells
(NSCs), GBM stem cells (GSCs), also known as GBM initia-

tion cells, have been identified in several studies [24, 25].
This cell population has been shown to be one of the critical
components contributing to divarication in evolutionary tra-
jectory, driving factors, drug sensitivity, and recurrence and
leading to the heterogeneous phenotype of GBM [26]. How-
ever, the precise characteristics of GSCs and the process of
their differentiation into mature GBM tumor cells remain
unclear due to the scarcity of GSCs, sorting difficulty, and
sharing of many characteristic genes and antigens with nor-
mal adult NCSs and progenitor [27, 28], which hinders the
study of the mechanism underlying their escape from con-
ventional therapies and development of targeted drugs for
GSCs.

The single-cell RNA sequencing (scRNA-seq) technique
has enabled additional evidence that GBM cells do not exist
as separate populations, but rather as a continuum along the
stemness–differentiation axis [29]. Moreover, at single-cell
resolution, stem-like populations in their native environ-
ments can be identified with less bias and without culture
[30]. Furthermore, recent scRNA-seq research of GBM has
shown that the tumor cell hierarchy produced by tumor
stem cells can partly explain the heterogeneity of tumor cells
[25]. Therefore, molecular classification characterized by dif-
ferentiation trajectory of GBM cells may make classification-
specific therapy possible.

In the present study, we analyzed the scRNA-seq data of
10 adult GBM samples from the clinical patients (2021
WHO grading criteria for glioblastoma, IDH-wild type).
According to the differentiation branches of malignant cells,
we divided malignant cells into six clusters and analyzed
their differences in genes, pathways, functions, and tran-
scription factors (TFs). Based on the characteristics of these
clusters, we proposed a new molecular classification system.
Using the bulk RNA-seq-based samples in TCGA and
CGGA cohorts and our molecular classification system, we
divided the patients into five groups. We hope that this
new classification system and knowledge about GSCs
described herein may serve as a unique reference for the pre-
cision treatment and development of therapeutic targets for
GBM.

2. Methods

2.1. Patient Tissue Samples Collected in Clinical Practice. One
hundred and thirty-seven IDH GBM samples were obtained
from GBM patients who underwent tumor resection surgery
or biopsy in Changhai Hospital (Shanghai, China) from July
2013 to September 2019. The IDH status was confirmed by
immunohistochemistry and/or genetic sequencing. All the
GBM tissues were IDH-wild type. Patient consent was
obtained for the study, and the sample collection was under
ethical approval. This study was approved by the Research
Ethics Committee of the said hospital.

2.2. Single-Cell and Bulk RNA Sequencing Data for
Bioinformatics Analysis. The Gene Expression Omnibus of
10x genomics sequencing data (GEO: GSE131928) was
obtained from Neftel et al., which sorted cells by the panim-
mune marker CD45 and profiled primarily CD45- cells and
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only a more limited extent CD45+ cells to focus on malig-
nant cells. In this series, ten tumor tissue samples from nine
patients pathologically (one patient contains two tumor
samples) diagnosed with GBM were chosen to explore the
cellular composition. Then, malignant and nonmalignant
cell (including microglia, oligodendrocytes, and T cells)
types were annotated. Bulk GBM RNA sequencing data were
screened from The Cancer Genome Atlas (TCGA) program
data portal and Chinese Glioma Genome Atlas (CGGA) data
portal, from which IDH mutation GBM was screened out.
The standardized RNA-sequence FPKM and clinic files were
downloaded from the TCGA and CGGA data portal on Jan-
uary 30, 2021, obtaining 102 and 206 samples with complete
clinical follow-up information.

2.3. Quality Control, Batch Correction, and Clustering. Anal-
ysis of scRNA-seq data was performed in the R statistical
environment (v4.1.3). The raw data of 10 samples were proc-
essed separately with the Seurat method of data cleaning. To
remove low-expressed genes and low-quality cells, we kept
the genes expressed in at least 3 cells and filtered the cells
with more than 20% mitochondrial reads and less than 5%
ribosomal reads. In addition, we deleted cells with less than
200 genes or more than 5000 genes and doublets that were
detected with DoubletFinder (https://github.com/chris-
mcginnis-ucsf/DoubletFinder). Then, we used the Normali-
zeData () function to normalize the count data with the Log-
Normalize method selected and the FindVariableFeatures ()
function to screen out 2000 variable genes for principal
component analysis (PCA). We passed the Seurat object
consisting of the 9 data to RunHarmony () function, which
is supported by Harmony (https://github.com/immuno-
genomics/harmony), and the “plot_convergence” parameter
was set as TRUE to integrate the batch effects. FindNeighbors
() constructed a shared nearest neighbor graph (SNN) with
Harmony reduction and 50 dimension inputs. The same
parameters were also used in the formation of the Uniform
Manifold Approximation and Projection (UMAP). The clas-
sification of all the cells was manually labeled according to
the characteristics of expression. We used the dimensionality
reduction and cell clustering method provided by Monocle3
downstream to reanalyze the tumor cells and the CSC-like
subgroup distinguished from the tumor separately. Simi-
larly, the batch effect from samples was eliminated by run-
ning the align_cds() function.

2.4. Calculation and Display of Differential Genes. We used
the FindAllMarkers () and FindMarkers () functions of the
scran package to perform a Wilcoxon test between pairs
of cell clusters to find the genes specifically expressed in
each cluster. For endovascular cells and Clara cell popula-
tions subdivided by Monocle3, we mapped the grouping
information of these cell subgroups back to the Seurat
object and calculated the differential genes for the Seurat
object that rewrites the grouping information. According
to the results of the calculation, the ggplot2 and heatmap
packages were used to visually display the heat, violin, and
bubble maps.

2.5. Pathway Enrichment. To assess gene expression signatures
and pathway activation, GSVA was performed using gene sets
of C2 and C5 collection obtained from the molecular signature
database to assess the activation level of the relative pathway in
each cell and visualize it through the heatmap.

2.6. Regulon Activity Analysis. pySCENIC (V1.22) algorithm
combined Arboreto package GRNBoost2 method and cis-
Target human motif database (V9) was used to build the
gene regulatory network (GRN) in all cells. Raw expression
data and labeled clusters were extracted from the Seurat data
and Monocle3 data. Filtration was performed with default
parameters of pySCENIC pipeline, and GRN was computed
by using the grnboost2 method. Enriched motifs were iden-
tified by cisTarget databases containing hg38_refseq-r80__
10kb_up_and_down_tss.mc9nr.feather and hg38_refseq-
r80_10kb_up_and_down_tss.mc9nr.feather and the tran-
scription factor motif annotation database (v9). All cells
were finally scored by AUCell function to show regulon
activities, and the similarity score was calculated for the reg-
ulons in each cluster and transferred to the specific score
based on the Jensen–Shannon divergence.

2.7. Cell Differentiation Trajectory Analysis. Monocle3
(V0.2.3.0) algorithm was used to order cells along the trajec-
tories based on the pseudotime in malignant cells. The
expression matrix of the mesenchymal cells derived from
the Seurat object was passed to Monocle3. The new_cell_
data_set () function was used to create a cds object and per-
form dimensionality reduction, cell clustering, and differen-
tiation trajectory inference.

2.8. Chromosome Copy Number Variation Analysis. The
inferCNV (V1.6.0) method and the recommended parame-
ters for 10x data were used to illustrate the diverse patterns
of chromosome copy number variation in malignant cell
clusters, using nonmalignant cells as the reference.

2.9. Validation in External RNA-seq Data. CIBERSORTx
tool (https://cibersortx.stanford.edu) was used to detect the
relative abundance of cell types defined by our single-cell
data in bulk RNA-seq database. Before being loaded into
CIBERSORTx analysis, the downloaded TCGA and CGGA
data were normalized. The patients were divided into five
groups after calculating the Euclidean distance and cluster-
ing with hclust method. The Kaplan-Meier survival curves
of different groups in the data set were drawn using the sur-
vival package. The OS rate from the diagnosis to death or the
last follow-up was calculated.

2.10. Immunohistochemistry (IHC) and Immunofluorescence.
The sample was fixed with 4% paraformaldehyde, dehydrated
through a graded series of ethanol, paraffin-embedded, and
sliced into 4μm sections. IHC staining for ALDOA
(ab252953, Abcam, USA), MGST1 (ab131059, Abcam),
ANXA1 (ab214486, Abcam), MRC2 (ab224113, Abcam),
RAB34 (ab262930, Abcam), SPRY1 (ab111532, Abcam),
SEMA6D (ab191169, Abcam), TUBB2A (ab170931, Abcam),
TERF2IP (ab14404, Abcam), NFIB (ab186738, Abcam),
PTPRZ1 (ab181131, Abcam), MARCKSL1 (ab184546,
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Abcam), OLIG2 (ab109186, Abcam), FABP5 (ab255276,
Abcam), TIMP1 (ab21926, Abcam), and CRYAB (ab281561,
Abcam) was carried out using the standard histological proce-
dures described in the manual for Histostain-Plus (DAB) kit
(Mingrui Biotech, China). The staining degree of each protein
was calculated by using the ImageJ software. Immunofluores-
cence staining was performed with BRCA1 (ab213929,
Abcam), C16orf59 (ab96760, Abcam), CASC5 (ab70537,
Abcam), CCNE2 (ab40890, Abcam), CHAF1A (ab126625,
Abcam), FBXO5 (PA5-83055, Thermo Fisher), TIMELESS
(ab109512, Abcam), MCM2 (ab108935, Abcam), and
NCAPH (PA5-64393, Thermo Fisher). DAPI was used as a
counterstain to label individual cell nuclei. Sections were
examined under a fluorescent microscope (Olympus BX53).

2.11. Prognostic Model Based on Clinical Features and
Classifications. Univariate Cox proportional hazard regres-
sion analysis was performed using survival package for
clinical features (gender, age, tumor size, radiotherapy,
chemotherapy, surgery type, and classification) with a p
value < 0.05 as cutoff. Based on the selected features, a
multivariate Cox model was built, and a nomogram chart
was drawn using rms package.

3. Result

3.1. Single-Cell Transcriptomic Profiles of All Single Cells. After
quality filtration, a total of 11917 cells available were obtained
for subsequent analysis. Following principal component anal-
ysis (PCA), the top 50 principal components were chosen for
Uniform Manifold Approximation and Projection (UMAP)
analysis for dimension reduction. Nonmalignant cells were
cataloged into three distinct cell lineages annotated with a list
of marker genes published previously. In malignant cells,
GSCs were identified via CD133 and SOX2 using as markers
of glioblastoma stem cells. As a result, 810 GSCs, 6298 glio-
blastoma cells, 4164 microglia, 425 oligodendrocytes, and
220 T cells were identified (Figure 1(a) and Supplementary
Figure 1A-D). The distribution of the cells from each sample
in the UMAP is shown in Figure 1(b). Clustering analysis
was further performed in each cell type. GBM stem cells and
tumor cells were further subdivided into 6 clusters, which
were named glioblastoma stem cell-like (GSCL), Class-G,
Opc-G, Neo-G, Ac-G, and Undiff-G (including Undiff-G1
and Undiff-G2) (Figure 1(c)), while tumor-associated
microglia and macrophages (TAM) fell into five clusters:
MI-monocyte, MI-M1 macrophage, MI-M2 macrophage,
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Figure 1: Single-cell atlas of GBM samples. (a) UMAP plot of GBM transcriptomes, color-coded for 5 phenotypes identified by graph-based
clustering. (b) UMAP plot color-coded for each GBM sample. (c) UMAP plot of GBM tumor cell cluster color-coded for 7 phenotypes. (d)
UMAP plot of microglial cells color-coded for 5 phenotypes. (e) Reproducible cell subset distributions across samples. Fractions of cells in
each cluster derived from all samples are shown. (f) The heatmap of the expression of subset-specific markers across cell subsets.
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MI-Cycling, and MI-dendritic cell (MI-DC) (Figure 1(d)).
Each cluster included cells from multiple samples, showing a
clear difference in distribution between each of these samples
(Figure 1(e)). In addition, the heatmap indicated that each
cluster exhibited a distinct gene expression pattern (Figure 1(f)
and Supplementary Table 1). To confirm the reliability of
the cluster method, correlation analysis was performed,
showing that clusters from the same cell lineage had
higher similarities than those from others (Supplementary
Figure 1E).

3.2. The Distinct Transcriptome Program in Malignant Cells.
Monocle3 orders single-cell transcriptomes in a pseudotem-
poral way to reveal the similarity of tumor subclusters with
developmental lineages, which can be employed to identify
differentiation trajectories of cancer stem cells developing
in various directions [31]. By employing Monocle3 algo-
rithm, GBM tumor cell clusters, including a GSCL cluster
and four branches with three clusters in three branches
and three clusters in one branch, were acquired
(Figure 2(a)). In addition to GSCL, we subdivided malignant
cells into five subtypes, which we named classical-like (Class-
G), astrocyte-like (Ac-G), oligodendrocyte progenitor-like
(Opc-G), neuron-like (Neo-G), and undifferentiated-type
(Undiff-G). The pseudotime trajectory analysis demon-
strated that the GSCL cluster was the beginning of each
branch during cell differentiation (Figure 2(b)). Figure 2(c)
shows that tumor cells from different samples were uni-
formly enriched in every branch except the Undiff-G2 sub-
cluster, indicating the intratumor heterogeneity of GBM
samples. Interestingly, comparison of one cluster with the
other showed high enrichment of Undiff-G2 in one sample
(Figure 2(d)). Barplot of cell proportion analysis showed that
the proportion of Undiff-G2 subcluster at the end of the
stemness–differentiation axis was relatively rare when as
compared with the other subclusters (Figure 2(e)). Besides,
the abundance of every cluster was highly discrete in this sys-
tem, indicating that there was extensive intertumor heteroge-
neity in these samples. However, the results about cluster
abundance in GBM need to be interpreted with caution, for
only 10 samples were included in this analysis.

The top five most significant markers of each tumor
cluster are shown in Figure 2(f) and Supplementary
Table 2, demonstrating that the selected markers were well
capable of characterizing each subcluster. As shown in
Figure 2(m), the previously reported markers expressed in
GBM were distributed in CSCL and malignant cells in
varying degrees. In addition, certain specific marker genes
for stem, glial, and neuronal cells were also able to
characterize these clusters (Figures 2(g)–2(l)). For instance,
the stem cell markers were highly expressed in GSCL
cluster and partly expressed in Class-G, Opc-G, Neo-G,
and Ac-G subclusters, suggesting that tumor cells in
branch-Class-G/Opc-G/Neo-G/Ac-G seemed to have
stronger stemness than those in branch-Undiff-G. Other
clusters included Ac-G cluster expressing astrocyte
markers, Opc-G cluster expressing oligodendrocyte
progenitor cell markers, Class-G cluster expressing
canonical genes regulating invasion and proliferation such

as POSTN and PDGFD, Neo-G cluster expressing neuron
markers, and Undiff-G cluster expressing embryonic
development markers. The results of difference analysis of
the transcriptional profiles between GSCL and other
clusters are shown in Figures 2(n)–2(s) and Supplementary
Tables 3-7, indicating that the overexpression of these
genes was involved in cell cycle, stemness, and proliferation
in GSCL cells, such as MKI67, CCNA2, CDKN3, and
TOP2A. Based on these findings, we suppose that that
GSCL might be a precursor cell of other clusters, given the
ability of GBM stem cells to confer phenotypic and
functional diversity to malignant cells.

3.3. Identification and Characterization of GBM Stem Cells.
Knowing that identification of endogenous GSCs is crucial
for the targeting and prognosis of GBM, GSCs should be
well correlated with progression and relapse of the disease
[32]. In addition, CSCs have not been effectively character-
ized because of their plasticity [33]. We therefore further
explored biomarkers of the GSCL cluster and found that
they could be characterized by several distinct gene expres-
sion patterns with the known markers (Figures 3(a) and
3(b)). High expression of these biomarkers and their coloca-
lization with the GSC marker, CD133, were further con-
firmed by immunofluorescence experiments (Figure 3(c)).
By focusing on the specific pathway activation among GSCL
cluster, we found that GSCL exhibited stronger pluripotenti-
ality than the other clusters (Figure 4(d)). Transcriptional
factor (TF) analysis highlighted the relative activation of
EZH2 and CTCF in GSCL cells (Figure 4(g)), and their acti-
vation was found to be correlated with tumor cell stemness,
proliferation, and drug resistance [34, 35]. These results sug-
gested that GSCL has distinct transcriptional profiles from
other malignant cell clusters, which may help the identifica-
tion of GSCs.

3.4. Specific Molecular Features of the Four Differentiation
Branches of Malignant Cells. ssGSEA method was performed
to further analyze the signature of the clusters in the stem-
ness–differentiation axis. Analysis of the mean value of GO
enrichment signature and RNA expression level revealed
that GSCL and Class-G had high average pathway expres-
sion and gene expression, suggesting that these two clusters
were rich in functional abundance; Opc-G, Neo-G, and
Ac-G underwent a gradual decrease; and the expression of
Undiff-G was the lowest (Figures 4(a) and 4(b)). We further
investigated the distribution of cell cycle stages within each
cluster and found that the number of cells in GSCL and
Undiff-G was relatively more enriched in the G2/M stage,
compared with the remaining clusters (Figure 4(c)). These
results demonstrated that GSCL had enriched functional
activities and extensive proliferative phenotypes, then differ-
entiated in different directions with various enrichment
functions. Noticeably, Undiff-G cluster displayed extremely
low functional enrichment. This may suggest a specific
dedifferentiation phenomenon related to the drug resistance
of GBM [36]. We further visualized the specific pathway
activation among GSCL and malignant cell clusters and
observed that DNA synthesis and metabolism-related
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Figure 2: Differences in cell composition and gene expression in GBM samples. (a) UMAP plots of tumor cells by Monocle3 method. (b)
Pseudotime trajectory of tumor cells. (c) UMAP plot of tumor cells color-coded for each sample. (d) Tumor cell subset distributions across
samples. (e) Differences in cell proportion of GBM samples in each tumor cluster. (f) Dot-plot heatmap of the most significant genes of each
cluster in tumor cells. (g–l) Violin plots showing different expressions of GSCL, Undiff-G, Ac-G, Opc-G, Class-G, and Neo-G markers in
each tumor cluster. (m) Violin plots showing previously reported markers expressed in GBM are distributed in GSCL and malignant
cells. (n–s) Differences in gene expressions between GSCL and malignant cells clusters. ∗ means p < 0:05.
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pathways were enriched in GSCL, classic pathways of glioma
were enriched in Class-G, inflammatory chemotaxis-related
pathways were enriched in Opc-G, dopamine transmitter
synthesis-related pathways were enriched in Neo-G, embry-
onic development-related pathways were enriched in Uni-
diff-G, and energy metabolism-related pathways were
enriched in Ac-G (Figure 4(d) and Supplementary
Table 8). Moreover, we integrated the targeting pathway of
current clinical chemotherapeutic agents with our
clustering system. As shown in Figure 4(e), for Class-G, a
variety of agents had potential therapeutic effects, and for
OPC-G and Neo-G, few drugs were able to target these
clusters accurately, except for some tyrosine kinase
receptor inhibitors. It was found in our study that Ac-G
classification had the strongest resistance to chemotherapy
drugs. Mifamurtide is one of the chemotherapeutic drugs
currently used in osteosarcoma, mainly via activation of
monocytes and macrophages to play an antitumor effect
[37]. We speculate that Ac-G is sensitive to mifamurtide,
while the activity of Wnt pathway, hedgehog pathway, and
Hippo pathway in Undiff-G is increased. Therefore, drugs
targeting these three pathways may have better effects on
Undiff-G cluster.

Chromosome copy number variation (CNV) is one of
the main reasons for the diversity of gene expression profiles

in cancer cells [38]. According to the calculation results of
CNV based on scRNA-data, we noticed that clusters within
the same differentiation branch possessed similar CNVs,
while clusters within different differentiation branches had
diverse CNVs (Figure 4(f)). The CNV changes of Class-G
were mainly focused on the gains of Chr20. OPC-G mainly
showed the gains of Chr2 and Chr8. Neo-G presented with
the gains of Chr7 and the losses of Chr15. Ac-G showed
the losses of Chr22 and the gains of Chr1 and Chr16.
Undiff-G presented with the gains of Chr11 and Chr12.
These results revealed the heterogeneity among the differen-
tiation branches of GBM samples.

Subsequently, we used pySCENIC algorithm to investi-
gate the differences in activity of transcriptional regulatory
modules in an individual cell and screened out top eight
potential TFs with the highest AUC score (Figure 4(g)).
The activity of transcription modules in each cluster is con-
sistent with our annotation of GBM cell cluster differentia-
tion direction and function, which further verifies the
accuracy of our classification system. This result under-
scored the relative activation of EZH2, CTCF, and HOXB7
in GSCL cluster, knowing that their activation was associ-
ated with DNA damage repair [39], cell cycle regulation
[40], chromatin looping mediation [41], and stemness main-
tenance [42]. In addition, we also found activation and
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Figure 3: The molecular features of GBM stem cell. (a) Violin plots showing selected marker of GSCL. (b) IHC staining of BRCA1,
C16orf59, CASC5, CCNF2, CHAF1A, FBXO5, TIMELESS, MCM2, and NCAPH in GBM samples. (c) Immunofluorescence
colocalization of selected markers (red) and CD133 (green).
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expression of SOX9, E2F4, and KLF10 in Ac-G cluster,
which was associated with GBM tumorigenesis, prolifera-
tion, and invasion; activation of transcriptive modules
(including PRRX2 and HXC9) in Class-G cluster, which
was related to immune response regulation [43] and radio-
therapy resistance [44]; and activation of CD59 and FOXC2
in Neo-G cluster, which was associated with immunosup-
pression [45], pathological angiogenesis, and neovasculari-
zation [46]. Importantly, chemotherapy resistance-related
transcriptional programs, such as MAFK and MEIS1, were
activated in Undiff-G cluster [47, 48]. Whether this result
is related to Undiff-G’s dedifferentiation phenotype needs
further investigation.

3.5. GBM Classification Based on the Differentiation
Branches of Malignant Cells. Given the differences in tran-
scriptional profiles, CNV, and transcriptional regulation
modules of the malignant cells, we classified GBM samples
into five categories based on the relative abundance of the
differentiation branches of malignant cells. By calculating
and overlapping the specific genes characterizing these clus-
ters, we found that there were limited intersections between
these genes (Figure 5(a)). Then, we selected 64 most specific
markers to characterize CSCL/Ac-G/Class-G/Neo-G/Opc-
G/Undiff-G clusters, including 11 markers in CSCL, 12 in
Ac-G, 10 in Class-G, 17 in Neo-G, 7 in Opc-G, and 7 in
Undiff-G (Figure 5(b)), suggesting that the markers of
CSCL/Ac-G/Class-G/Neo-G/Opc-G/Undiff-G could be used
to identify the differentiation branch in the GBM samples.
Next, we used the CIBERSORTx deconvolution algorithm
to calculate the relative abundance of the five clusters of
malignant cells in 216 GBM samples in CGGA and 102 sam-
ples in TCGA dataset. By calculating the Euclidean distance
between the samples and clustering with hclust method, we
divided the patients from TCGA and CGGA cohorts into
C1, C2, C3, C4, and C5 groups. It was found that five groups
had good clustering results (Figures 5(c) and 5(d)). Samples
in the C1, C2, C3, C4, and C5 groups mainly expressed Ac-G

character-related genes, Class-G character-related genes,
Neo-G character-related genes, Opc-G character-related
genes, and Undiff-G character-related genes, respectively.
The 102 samples in TCGA cohort included 14 Ac-G, 37
Class-G, 1 Neo-G, and 41 Undiff-G. The 216 samples in
CGGA cohort included 26 Ac-G, 88 Class-G, 8 Neo-G, 70
Opc-G, and 24 Undiff-G. The survival curve showed that
the prognosis of patients in the Undiff-G and Ac-G groups
was the worst, which was confirmed in both cohorts. In
addition, the prognosis was relatively good in the Neo-G
group of CGGA cohort (Figures 5(e) and 5(f)). As there
was only one case in the Neo-G group in TCGA cohort, it
was excluded from analysis.

3.6. Verification of the Classification System in Clinical GBM
Samples. To further examine the clinical significance of the
classification system in GBM samples, we performed IHC
staining of sixteen gene makers selected from Ac-G/Class-
G/Neo-G/Opc-G/Undiff-G clusters in 137 GBM samples
(Ac-G: ALDOA, MGST1, and ANXA1; Class-G: MRC2,
RAB34, SPRY1, and SEMA6D; Neo-G: TUBB2A, TERF2IP,
and NFIB; Opc-G: PTPRZ1, MARCKSL1, and OLIG2; and
Undiff-G: FABP5, TIMP1, and CRYAB) (Figure 6(a)).
According to the most highly expressed marker of each sam-
ple, GBM patients were divided into five groups. It was
found that group A/B/C/D/E highly expressed the markers
of Ac-G/Class-G/Neo/G/Opc-G/Undiff-G clusters, respec-
tively, parallels to group Ac-G/Class-G/Neo/G/Opc-G/
Undiff-G in TCGA and CGGA cohorts (Figure 6(b)). In
addition, K-M curves showed that the GBM patients in
group E (Undiff-G) exhibited significantly worse OS than
those in the other four groups (Figure 6(c)), similar with
the result of survival analysis in TCGA and CGGA cohorts.
These results suggested that the classification of GBM sam-
ples could be performed through the IHC staining of the
samples, which may help the prognostic evaluation of
GBM patients. We integrated IHC staining result and clini-
cal data and divided the clinical samples based on

(g)

Figure 4: Transcriptional distinguishment between the four differentiation trajectories of tumor cells. (a) Differences in total GO pathway
enrichment between the seven tumor clusters. (b) Differences in total transcripts between the seven tumor clusters. (c) Differences in the
proportion of cell cycle phases in GSCL and malignant cell clusters. (d) Heatmap showing differences in activation of pathways between
the seven tumor clusters. (e) Heatmap showing differences in activation of pathways related to targeted therapies in Class-G/Opc-G/Neo-
G/Ac-G/Undiff-G clusters calculated by GSVA method. (f) Heatmaps of differences in single-cell copy number between the tumor
clusters and other cell clusters. (g) TF activity in the GSCL/Undiff-G/Ac-G/Opc-G/Class-G/Neo-G clusters. The top 7 activated TFs were
marked in each cluster.
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Figure 5: Continued.
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pathological information. The statistical information is
shown in Supplementary Table 9. It was found that the
correlation between the five groups of classification made
by pathological data and various clinical indicators was not
statistically significant, but it was closely related to the survival
status of patients. Through univariate Cox regression analysis
of the clinical data of the patients, including age, postoperative
radiotherapy, postoperative chemotherapy, surgery type, and
IHC classification (Supplementary Table 10), we screened out
four statistically significant variables according to the p < 0:05
standard. Subsequent multivariate analysis indicated that
the four factors were significantly correlated with OS
(Supplementary Table 10). These results indicated that the
classification characterized by the ten markers was an

independent prognostic factor. To establish a clinically
applicable method for predicting the prognosis of GBM
patients, we established a prognostic nomogram to predict
the survival probability at 1, 3, and 5 years based on
clinical samples (Figure 6(d)).

3.7. Distribution Change and Molecular Features of Tumor-
Associated Microglia and Macrophages in GBM. TAM
account for about 30% of the total GBM tissue, playing cru-
cial roles in tumor immunity and tumor interactions of
GBM [49]. Five clusters (monocyte, M1Φ, M2Φ, cycling,
and DC) were identified in this cell lineage (Supplementary
Figure 2A). The distribution of the cells from each sample
in the UMAP is shown in Supplementary Figure 2B. Each
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Figure 5: Classification of GBM samples from TCGA and CGGA datasets based on the expression profiles of the five clusters of malignant
cells. (a) Venn diagram showing the similarities and differences of the calculated markers of Ac-G/Class-G/Neo-G/Opc-G/Undiff-G clusters.
(b) Heatmap showing the expressions of the selected 64 marker genes of Ac-G/Class-G/Neo-G/Opc-G/Undiff-G in all 13 clusters. (c, d)
Heatmap showing the abundance of the 5 clusters in the five clustered groups of TCGA and CGGA samples. (e, f) The Kaplan-Meier
curves of OS for the five clustered groups of TCGA and CGGA patients.
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cluster was composed of cells from multiple samples
(Supplementary Figure 2C). The top 10 significant markers
of each TAM cluster are shown in Supplementary
Figure 2D and Supplementary Table 2. Further analysis
showed each TAM cluster could be characterized by a
distinct gene expression pattern with the known markers
(Supplementary Figure 2F), such as CD14 and CD6A in
monocytes, TNF and IL1B in M1Φ, CD163 and MRC1 in
M2Φ, and CCL17, CD1C, and FCGRA in DC. Despite the
fact that microglial activation can also be classified as M1
or M2 polarization, microglia exhibit more heterogeneous
phenotypes than peripheral macrophages due to brain-
specific regional variation and pathological conditions [50].
Notably, we identified a group of cells with active self-
renewal and proliferation named MI-cycling with eight
percent in total TAM cells (Supplementary Figure 2E),
outside the conventional M1, M2, and DC classifications,
which expressed high levels of Ki67 and CDK1, suggesting
that the TAM system in the GBM brain was highly
activated, though its effect on tumors needs further study.
GSVA analysis was performed to detect the function of
microglia (Supplementary Figure 2G). Consistent with the
known roles of each cluster, the tumor-resistant pathways
were activated in M1Φ, and pathways with tumor-
promoting capabilities involving immunosuppression,
angiogenesis, and neovascularization were activated in
M2Φ. In addition, pathways related to the regulation of
DNA replication, chromatin remodeling at centromere,
and DNA strand elongation were activated in MI-cycling,
suggesting that MI-cycling may play a role in promoting
proliferation and tumor progression in GBM.

3.8. Ligand-Receptor-Mediated Intercellular Interactions in
the GBM Microenvironment. CellPhoneDB analysis was per-
formed to detect interactions between the clusters. The
intercellular interactions in the GBM microenvironment
are displayed in Figure 7(a). It was found that except for a
small amount of interaction between Undiff-G and MI-M2,
the other four clusters of malignant cells had relatively abun-
dant interaction with microglia, T cells, and oligodendro-
cytes and that the GSCL/malignant cell clusters displayed a
strong capability of proliferation (Figure 7(b)). For instance,
oligodendrocyte secreted COPA that bound to EGFR on
GSCL/malignant cells, and there was a PTN-PTPRZ1/
PTPRS/PLXNB2 interaction between myeloid and GSCL/
malignant cells. In addition, the communications between
GSCL/malignant cell clusters and other subsets were obvi-
ously different, such as FGF1/NCAM1/FGFR2-FGFR1 inter-
actions between oligodendrocyte and GSCL cell, PDGFA-
PDGFRA interaction between Class-G and GSCL cell, self-
interaction of PDGFC-PDGFRA interaction in GSCL, and
PDGFC-PDGFRA interaction between GSCL and Opc-G
cells. Moreover, CSCL expressed high levels of Notch recep-
tors that interacted with ligands secreted by autocrine and
Class-G and Opc-G clusters, which may play a positive role
in proliferation and stemness maintenance. Furthermore,
LGALS9 secreted from TAM facilitated tumor migration
and maintenance of extracellular matrix homeostasis by
binding to DAG1 on GSCL and Class-G cells. Interestingly,
in addition to the interaction shared with other malignant
cells, Undiff-G exhibited a relatively lower expression level
of IGSF4 (CADM1) which enabled cytotoxic T cells to rec-
ognize tumor cells [51], suggesting the existence of an
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Figure 6: Group classification of GBM samples based on IHC staining. (a) IHC staining of sixteen gene makers selected from Ac-G/Class-
G/Neo-G/Opc-G/Undiff-G clusters. (b) Heatmap showing the expressions of the selected ten gene markers in each GBM sample. (c) The
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immunosuppressive phenotype in this cluster that was asso-
ciated with poor prognosis in our cohort. Otherwise, Neo-G
lacked growth factor receptor and low expression of CD99
related to GBM invasion [52], suggesting that the malig-
nancy of Neo-G may be lower than that of other clusters.
This may be the reason why the Neo-G group has a relatively
good prognosis in our cohort. These results indicated that
the tumor microenvironment was various in GBM issues,
which might provide cues for individualized targeted ther-
apy of the five classifications.

4. Discussion

With the molecular background of GBM becoming clearer
and clearer, the latest GBM diagnostic criteria not only break
the conventional histological characterization of GBM but

also introduce more molecular diagnostic information. Due
to the extensive heterogeneity of GBM, various molecular
features of GBM have different biological behaviors and clin-
ical outcomes [53]. Molecular classification and diagnosis
are helpful to judge the prognosis of patients more accu-
rately and give precise individualized treatment [54, 55]. In
2010, TCGA project proposed a new classification of GBM
into proneural, neural, classical, and mesenchyma [21].
Based on CGGA project, another study identified three sub-
types in this classification system except the “classical” sub-
type [56]. Furthermore, a transcriptome-based alternative
classification of GBM with three distinct molecular subtypes
labeled invasive, mitotic, and intermediate was proposed
[57]. However, sequencing based on the bulk tumor tissue
may cause artifacts given the presence of nontumor cells.
Due to the limitations of earlier sequencing techniques, it
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was a formidable challenge to characterize different GBM
subtypes accurately and establish a reliable molecular classi-
fication system21(p1). Meanwhile, since the definition of
GBM has undergone several changes, it is not appropriate
to use previous molecular classification to annotate the
new version of GBM. In addition, given the effect of age
on GBM molecular classification, adult GBM and pediatric
GBM have been listed separately in many studies [58, 59].
In this study, we created a novel molecular classification sys-
tem based on the transcriptional characteristics of GBM
defined by 2021 WHO classification (fifth edition) in adults,
which should be helpful to provide more clinical options for
diagnosis and targeted therapy. There is an obvious trend to
use scRNA-seq technique to classify tumors [60, 61]. Studies
have shown that malignant cells from different samples have
various differentiation trajectories with diverse molecular
features [19, 55], which indicates that GBM can be classified
according to the differentiation trajectories of malignant
cells. Pseudotime estimation from single-cell expression level
allows for recovering differentiation information from the
static profile of an individual cell [62]. In our present study,
we characterized tumor cells from GBM samples based on
the features of the differentiation branches in stem and
malignant cells and divided GBM samples into five sub-
groups based on the differentiation branches. Then, we ana-
lyzed the potential drug sensitivity of each subtype and
revealed the phenomena and causes of inter- and intratumor
heterogeneity.

Transcriptional regulation is an important manner of gene
expression [63]. The five GBM clusters exhibited distinct tran-
scriptional statuses, suggesting that the transcriptional regula-
tory modules in the GBM clusters were different. Consistent
with the known roles of each cluster, our results identified
SOX9as the characteristic transcriptionalmoduleofAc-Gclus-
ter. It was reported that SOX9 induces generation of astrocytes
in human inducible pluripotent stemcell-derived neuralmodel
[64]. In addition, we found that the TF related to regulation of
oligodendrocyte development were activated in Opc-G cluster
[65].Meanwhile, TFs, such as TCF7L2 andMEF2A,which reg-
ulated thedifferentiationofneural stemcells intoneurons,were
activated in Neo-G [66, 67]. In addition, TF related to GBM
malignant behavior were activated in Class-G and stemness
maintenance in Undiff-G cluster. These findings may provide
a fresh perspective on the GBM transcriptional program.

GSCs are considered to be a group of cells with the char-
acteristics of hierarchical arrangement and dynamic regula-
tion, which are at the top of the lineage development,
showing stem cell-like regeneration ability, and can repro-
duce the functional phenotype of primary GBM cells and
even differentiate into more heterogeneous GBM cell clusters
[68]. The roles and mechanisms of some molecular markers
have been reported in GSCs [69]. However, since GSCs share
common molecular markers with normal adult neural stem
cells and progenitor cells, the current controversy over GSCs
lies in the ambiguity of their definition and identification
[70]. In our study, we identified GSC clusters based on pseu-
dotime analysis, known markers, and functional analysis of
individual cells and demonstrated the role of GSCs in main-
taining GBM heterogeneity. The results obtained may pro-

vide a theoretical basis for further prospective identification
and reclustering of GSCs.

Based on the relative abundance of the five clusters, we
classified the GBM samples into five groups in TCGA and
CGGA cohorts and performed survival analysis. Samples in
groups 1, 3, and 5 in TCGA and CGGA cohorts were charac-
terized by the features of Neo-G, OpcG, and Class-G, respec-
tively. We observed that although the survival analysis of the
five groups of patients in the two cohorts was not statistically
significant, it showed a consistent trend. In addition, patients
in the Neo-G group exhibited better prognoses, while the
prognosis of the Undiff-G and Ac-G groups was poor. Com-
bined with drug sensitivity analysis, we found that although
Neo-G had a relatively good prognosis, it was difficult to ben-
efit from drug treatment, and Class-Gwas sensitive to a variety
of drugs, suggesting that the combination of drugs may offer
greater benefits, and Undiff-G and AC-g had poor prognosis
and presented strong resistance to temozolomide and other
chemotherapy drugs, suggesting a low benefit to the com-
monly used treatment.

There are some limitations in our study. First, the
scRNA-seq data were obtained from only nine GBM sam-
ples. More results of scRNA-seq from GBM samples are
required to further verify and improve the classification
of GBM samples. In addition, although we applied three
independent cohorts to analyze and verify the molecular
classification system, larger cohort studies are required to
provide more accurate classification results. Finally, well-
designed clinical trials are needed to verify the efficacy of
the potential drugs in each subtype and confirm our
hypothesis.

In conclusion, we constructed a novel classification system
of GBM samples based on stem cell and tumor cell differenti-
ation branches and verified it by bulk RNA-seq data and IHC.
We identified five subtypes of GBM and found that they
exhibited distinct drug sensitivities and different prognoses,
suggesting that the new grouping system may be able to pro-
vide important prognostic information and have certain guid-
ing significance for the treatment of GBM. Furthermore, we
identified the GSC cluster in GBM tissues and described its
transcriptional program, which may help develop new poten-
tial therapeutic targets for GSCs in GBM.
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