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Background. Pyroptosis is closely related to the programmed death of cancer cells as well as the tumor immune microenvironment
(TIME) via the host-tumor crosstalk. However, the role of pyroptosis-related genes as prognosis and TIME-related biomarkers in
skin cutaneous melanoma (SKCM) patients remains unknown. Methods. We evaluated the expression profiles, copy number
variations, and somatic mutations (CNVs) of 27 genes obtained from MSigDB database regulating pyroptosis among TCGA-SKCM
patients. Thereafter, we conducted single-sample gene set enrichment analysis (ssGSEA) for evaluating pyroptosis-associated
expression patterns among cases and for exploring the associations with clinicopathological factors and prognostic outcome. In
addition, a prognostic pyroptosis-related signature (PPRS) model was constructed by performing Cox regression, weighted gene
coexpression network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO) analysis to score SKCM
patients. On the other hand, we plotted the ROC and survival curves for model evaluation and verified the robustness of the model
through external test sets (GSE22153, GSE54467, and GSE65904). Meanwhile, we examined the relations of clinical characteristics,
oncogene mutations, biological processes (BPs), tumor stemness, immune infiltration degrees, immune checkpoints (ICs), and
treatment response with PPRS via multiple methods, including immunophenoscore (IPS) analysis, gene set variation analysis
(GSVA), ESTIMATE, and CIBERSORT. Finally, we constructed a nomogram incorporating PPRS and clinical characteristics to
improve risk evaluation of SKCM. Results. Many pyroptosis-regulated genes showed abnormal expression within SKCM. TP53,
TP63, IL1B, IL18, IRF2, CASP5, CHMP4C, CHMP7, CASP1, and GSDME were detected with somatic mutations, among which, a
majority displayed CNVs at high frequencies. Pyroptosis-associated profiles established based on pyroptosis-regulated genes showed
markedly negative relation to low stage and superior prognostic outcome. Blue module was found to be highly positively correlated
with pyroptosis. Later, this study established PPRS based on the expression of 8 PAGs (namely, GBP2, HPDL, FCGR2A, IFITM1,
HAPLN3, CCL8, TRIM34, and GRIPAP1), which was highly associated with OS, oncogene mutations, tumor stemness, immune
infiltration degrees, IC levels, treatment responses, and multiple biological processes (including cell cycle and immunoinflammatory
response) in training and test set samples. Conclusions. Based on our observations, analyzing modification patterns associated with
pyroptosis among diverse cancer samples via PPRS is important, which can provide more insights into TIME infiltration features
and facilitate immunotherapeutic development as well as prognosis prediction.
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1. Introduction

Melanoma represents a deadly skin tumor with high aggres-
siveness, which takes up around 4% of skin cancer cases,
with a high mortality rate of 80% [1]. Melanoma will invade
the melanocyte-containing tissues, in particular the skin [2].
Recently, melanoma is mainly treated with traditional che-
motherapy, radiotherapy, and treatments that target B-raf
proto-oncogene and MAP kinase-ERK kinase [3]. The
5-year survival of primary SKCM is as high as 95%, but that
is <10% in metastatic SKCM patients because of the lacking
effective biomarkers and high relapse rate. Therefore, exam-
ining molecular changes and investigating the carcinogene-
sis- and prognosis-related molecular mechanisms of SKCM
prognosis is of great importance, which contributes to the
development of novel therapy.

Currently, immunotherapy is becoming an effective
approach to improve the survival of some solid tumors [4]. It
is superior to traditional antitumor treatment modalities, as
revealed in diverse experimental and clinical studies, thus con-
tributing to enhancing the disease survival [5]. Immune check-
point inhibitors (ICIs) have prolonged of survival of patients
with metastatic melanoma. Pembrolizumab and nivolumab,
the antibodies against programmed cell death protein (PD-1),
together with ipilimumab, the antibody against cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), have been
extensively adopted in immunotherapy for SKCM [6, 7].
Although great progresses have been achieved in immuno-
therapy, a considerable portion of SKCM cases still can not
respond or develop resistance to PD-1 inhibitors [8]. The fol-
lowing causesmay be responsible for the development of resis-
tance, including lacking PD-1 receptors, lacking CD8+ T-cells
related to endogenously activated WNT-β-catenin pathway
within melanoma cells, genetic mutations, tumor antigen
presentation and mutation, dynamic alterations in tumor
immunemicroenvironment (TIME), and epigenetic alterations
of some critical cancer proteins [9]. Consequently, identifying
the efficient biomarkers for predicting immunotherapeutic
response in melanoma is becoming the novel research direc-
tion. To take an example, it is suggested that immune biomark-
ers including PD-L1 expression, infiltration of CD8+ T-cells,
copy number variations (CNVs), and somatic mutation bur-
dens contribute to the immunotherapy of SKCM [10–12].
However, there are problems to be settled down. At present,
the differences in PD-L1 identification, assessment platforms,
and systems may lead to different positive critical values, mak-
ing it more difficult to form the standard for measuring PD-L1
in tumor cells [13]. Meanwhile, the survival of SKCM has been
greatly prolonged thanks to early diagnosis by corresponding
biomarkers, which thereby certifies the significance and neces-
sity of the present study.

Pyroptosis, another form of programmed cell death, is
also called inflammatory necrosis of cells and has the fea-
tures of constant cell expansion till the rupture of cell mem-
brane; as a result, cell contents are released and a strong
inflammatory response is induced [14]. Many studies sug-
gest that healthy tissue can be transformed in cancerous
one in the inflammatory environment, and the pyroptosis-
mediated inflammatory response environment helps cancer

development and accelerates cancer cell apoptosis [15].
Caspase-1 protein can be recruited and activated in the body
via the canonical inflammasome pathways; meanwhile, cas-
pase 4/5/11 proteins can also be activated via noncanonical
inflammasome pathways for the direct cleavage and activa-
tion of gasdermin protein D (GSDMD), finally causing
membrane pore formation as well as cell death. Pyroptosis
has an important effect on tumor genesis and development
[16]. Different pyroptosis-associated factors, like genes in
gasdermin family, inflammatory vesicles, and proinflamma-
tory factors, are tightly related to cancer genesis and metas-
tasis [17]. Besides, pyroptosis has a critical anticancer effect
through the activation of immune response. Through the
pores on cell membrane, cells experiencing pyroptosis can
dissociate plenty of intracellular contents, thus inducing
massive lymphocyte infiltration and potent inflammatory
response. Due to the dramatically enhanced lymphocyte
infiltration, the pyroptosis of cancer cells mediated by the
caspase-3-independent and caspase-3-dependent pathways
is aggravated, which leads to the formation of positive feed-
back for enhancing the anticancer activity [18]. Cao et al.
constructed a signature by incorporating the pyroptosis-
associated genes to predict SKCM survival [19]. However,
the associations between pyroptosis characteristics and
TIME features as well as treatment response remain to be
further explored among individual cases, so as to help to
diagnose patients and develop personal treatment.

This study comprehensively evaluated the roles and
prognostic value of pyroptosis-associated genes (PAGs)
within the SKCM TIME. We downloaded mRNA expression
and clinical data of SKCM patients in GEO and TCGA data-
sets. In addition, we conducted ssGSEA for evaluating
pyroptosis-associated profiles in patients and exploring the
relations with clinical characteristics and patient survival.
Further, weighted gene coexpression network analysis
(WGCNA) was performed in identifying the key genes/
modules related to pyroptosis-associated profiles. Thereafter,
we built a risk signature based on PAGs (called PPRS for
short) on the basis of TCGA cohort and verified PPRS using
additional 3 GEO datasets. Further, we also constructed a
nomogram integrating PPRS and clinical features for asses-
sing SKCM survival. Findings in this work also help to illus-
trate the tumor stemness, immune landscape, and treatment
response among SKCM patients by different PPRS. Collec-
tively, we combined genomic data for the thorough assess-
ment of relation of pyroptosis with infiltration features of
tumor immune microenvironment (TIME) within SKCM,
as well as the possible clinical value and molecular roles of
PAGs; besides, this study also provides the putative prognos-
tic biomarkers for melanoma.

2. Materials and Methods

2.1. SKCM Datasets and Pyroptosis-Regulated Genes. We
obtained the RNA-seq profiling data (FPKM values) for
SKCM patients in TCGA database [20] as the training set.
Afterwards, samples with incomplete clinical data were elim-
inated, leaving 363 melanoma patients being enrolled into
the present work. Thereafter, we transformed FPKM values
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into TPM values by TPMi = FPKMi × 1000000/ðFPKM0+
⋯:+FPKMmÞ. In the formula, i stands for gene i, whereas
m is indicative of overall gene number. In addition, we
obtained CNVs and somatic mutations in TCGA database.
Further, we also downloaded expression and clinical infor-
mation in GEO datasets as the test sets, which included
GSE22153 (n = 54) [21], GSE54467 (n = 79) [22], and
GSE65904 (n = 188 [23] after eliminating samples that had
incomplete prognostic information). Moreover, we searched
the MSigDB database [24] (keywords: REACTOME_
PYROPTOSIS) to identify pyroptosis-associated markers,
suppressive, and driver genes. After removing the dupli-
cates, we obtained 27 candidate pyroptosis-regulated genes
in later analyses.

2.2. ssGSEA. For constructing pyroptosis-associated profiles
among SKCM cases, ssGSEA was carried out by “GSVA” in R
package.Gene set variationanalysis (GSVA) [25]hasbeendevel-
oped as the unsupervised, nonparametric approach for deter-
mining gene set enrichment variations based on pyroptosis-
regulated gene expression dataset samples. The ssGSEA enrich-
ment scores stand for the upregulation or downregulation
degrees of genes in the sample. Those critical parameters were
shown as follows: min:sz = 1, kcdf= “Gaussian,” abs.ranking=
TRUE, tau = 0:25, and max.sz= Inf. We acquired gene sets in
MSigDB databases.

2.3. Calculation of the Stemness Index (mRNAsi). Based on
one-class logistic regression (OCLR) algorithm, the stemness
index model trained from the Progenitor Cell Biology Con-
sortium database [26] was used to calculate tumor stemness.
The stemness index can be used to measure how similar
tumor cells are to stem cells, with stemness index being a
value between 0 (lowest) and 1 (highest). The closer the
stemness index is to 1, the stronger the stem cell properties.

2.4. Immune PathwayActivities, Immune Infiltration Levels, and
Immunotherapeutic Response. This work utilized ESTIMATE
algorithm in calculating tumor purity and ESTIMATE/stro-
mal/immune scores for every melanoma sample. Besides, this
study adopted CIBERSORT [27] in estimating infiltration
degrees of diverse immune cells within TIME. Additionally, we
assessed immunotherapeutic response by analyzing immuno-
phenoscore (IPS) [28]. According to prior description, the IPS
of one case may be obtained with no bias by machine learning
after considering 4 main immunogenicity-determining gene
classes, including immunosuppressive cells, effector cells, immu-
nomodulators, and MHC molecules. It can be completed
through gene expression profile analysis within cell types of
those 4 classes. IPS can be determined by the scale ranging from
0 to 10 according to gene expression Z-scores in typical cell
types, and a high score stands for the higher immunogenicity.
We obtained IPSs of SKCM cases in The Cancer Immunome
Atlas (TCIA, https://tcia.at/).

2.5. Weighted Gene Coexpression Network Analysis (WGCNA).
This work adoptedWGCNA [29] for identifying key coexpres-
sion modules related to pyroptosis-associated profiles and
analyzing gene transcription profiles. Meanwhile, we extracted
gene expression profiles from TCGA, and the cluster threshold,

β-value, and median absolute deviation were 5, 7, and >50%,
separately. Thereafter, we converted the expression matrix into
topology matrix and obtained modules by mean linkages using
parameters as follows: height = 0:3, deep split = 2, and min
module size = 30.

2.6. Establishment and Estimation of PPRS for Prognosis
Prediction of SKCM. Firstly, PAGs markedly linked with
eigengenes in coexpression modules related to pyroptosis-
associated profiles were screened by P < 0:01 threshold. Subse-
quently, univariate Cox regression was performed to search
prognostic PAGs. Additionally, LASSO Cox regression was
conducted to establish the PPRS with the least risk of overfit-
ting. LASSO algorithm was utilized to select variables using
glmnet in R package. Moreover, PPRS of each case was deter-
mined according to gene levels and related regression coeffi-
cients. Z-score was used to normalize the values of PPRS,
and SKCM patients from training and test sets were classified
into high-risk (Z‐score ≥ 0) and low-risk (Z‐score < 0) groups.
Afterwards, survival and survminer in R package were utilized
for plotting survival curves, while log-rank test was conducted
for comparing 2 groups. Later, values of area under the time-
dependent receiver operating characteristic (t-ROC) curves
(AUC) were determined for predicting OS at 1, 3, and 5 years.
We also adopted Wilcoxon’s rank sum test for analyzing the
associations between clinical characteristics, oncogenic muta-
tions, ICI contents, immune infiltration degrees, biological
processes (BPs), and treatment response with PPRS.

2.7. Construction and Confirmation of the Prediction Model.
This study constructed the nomogram based on the previ-
ously discovered eligible factors via rms, survival, and for-
eign in R package. Moreover, ROC curves together with
calibration curves were plotted to evaluate the discriminat-
ing ability and calibration of the as-constructed nomogram.

2.8. Statistical Analysis.We applied Fisher’s exact test and chi-
square test for analyzing the associations of clinical variables
with diverse SKCM types, and the two-tailed P < 0:05was con-
sidered as statistically significant. TheWilcoxon tests were used
to compare variables with normal distribution between 2
groups, whereas those with abnormal distribution were com-
pared through unpaired Student’s t-tests. One-way ANOVA
was the parametric approach, whereas the Kruskal-Wallis test
was the nonparametric approach, and they were adopted for
comparing differences among several groups. The Pearson
and distance correlation analyses were utilized to determine
correlation coefficients. We also applied the two-sided Fisher’s
exact test to analyze contingency tables. Meanwhile, the
Kaplan-Meier (KM) approach was utilized to draw cluster sur-
vival curves, while log-rank test was applied in statistical differ-
ence analysis. Furthermore, we also performed FDR correction
with multiple testing for reducing false-positive rate (FPR). All
statistical analyses were completed with R software (version
3.5.3, http://www.R-project.org).

3. Results

3.1. Landscape Showing the Genetic Variations for 27
Pyroptosis-Regulated Genes within SKCM. We obtained 27
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pyroptosis-regulated genes from MSigDB database. Of all the
363 SKCM-TCGA samples, we found mutations in 134 sam-
ples, and the mutation frequency was 36.9% (Figure 1(a)). A
majority of samples harbored the nonsense mutations. Typi-
cally, TP63 and TP53 had comparatively higher mutation
frequency (more than 40%), while no mutation in CHMP2A
was detected in TCGA-SKCM samples.

Subsequently, after excluding samples without survival
data, we compared the difference in prognosis between patients
with the mutations and wild type (WT) of the above-
mentioned genes. The results suggested that the overall survival
(OS) between two groups was not significant (Figure 1(b)).

The subsequent GSVA results revealed that MUT samples
were mainly enriched into the cell cycle-related pathways, such
as Myc and E2F, while the immune-related pathways were
enriched in WT samples (Figure 1(c)). This revealed that the
pyroptosis-regulated genes might affect SKCM progression
through affecting the cell cycle of tumor cells and immune
response in TIME. By analyzing CNV frequency, 27
pyroptosis-regulated genes showed infrequent CNVs, with a
majority of them being copy number amplification, whereas
CHMP6, GSDMD, and BAK1 exhibited the general CNV-
gain frequency, while IL-18 and CASP1,4,5 displayed the wide
CNV-loss frequency (Figure 1(d)). Further, pyroptosis-
regulated genes harboring CNV amplification displayed high
expression within SKCM (Figure 1(e)). Finally, we compared
the differential expression in pyroptosis-regulated genes
between metastatic and primary tumor patients. The results
suggested that most genes were significantly different between
two groups, among which, CASP3, CASP5, CHMP2B,
CHMP7, GZMB, IRF1, and IRF2 were highly expressed in
metastatic patients, whereas BAX, CHMP2A, CHMP4A,
CHMP4B, CHMP4C, IL1A, and TP63 were highly expressed
in primary tumors (Figure 1(f)). These analyses suggested the
highly heterogenous pyroptosis-regulated gene expression and
genetic profiles within SKCM, which indicated the probable
function of pyroptosis during cancer genesis and progression.

3.2. Establishment of Pyroptosis-Associated Profiles among
SKCM Cases as well as the Relation with Additional Clinical
Variables and Prognostic Outcome. Based on the 27
pyroptosis-regulated genes, we adopted ssGSEA to quantify
the scores of pyroptosis-associated profiles of each sample in
the TCGA-SKCM training set. After Z-score normalization,
the samples were divided into pyroptosis-low (Z‐score < 0)
and pyroptosis-high (Z‐score ≥ 0) groups. Then, we conducted
correlation analysis between the scores of pyroptosis-associated
profiles and clinicopathological features of melanoma patients,
which suggested that the scores of pyroptosis-associated pro-
files were significantly correlated with T stage (negative) and
patient survival (positive) (Figure 2(a)). Further, we performed
univariate andmultivariate COX analyses, which indicated that
scores of pyroptosis-associated profiles were the protective
factor that affected the OS of SKCM patients, whereas T stage
and N stage were the major risk factors that affecting OS
(Figures 2(b) and 2(c)). Next, based on the scores of
pyroptosis-associated profiles, we divided melanoma samples
from TCGA-SKCM dataset into high- and low-score groups.
Survival analysis suggested that the OS rate in the high-score

group was higher (Figure 2(d)). Moreover, we also compared
the difference in scores of pyroptosis-associated profiles between
different clinicopathological feature groups (Figure 2(e)). As a
result, the scores of pyroptosis-associated profiles decreased with
the increase in clinical stage. On the whole, patients with high
scores of pyroptosis-associated profiles had high OS rate, and
pyroptosis was the main protective factor for the prognosis of
melanoma patients.

3.3. Key Gene Modules Linked with Pyroptosis-Associated
Profiles Detected by WGCNA. Firstly, we classified SKCM cases
based on distributed-cluster analysis according to the gene
expression profiles (Figure 3(a)). To guarantee the scale-free
network, this study sets the soft thresholding at β = 7
(Figures 3(b) and 3(c)). Afterwards, the representation matrix
was converted into the adjacency one and subsequently into
the topological one. Thereafter, we classified genes by average-
linkage hierarchy clustering. According to the hybrid dynamic
shear tree standard, there were at least 30 genes in each gene
network module. Dynamic shearing was then conducted to
determine gene modules, followed by the calculation of eigen-
gene values. Later, we carried out clustering analysis in each
module and combined neighbour modules into the combined
one using the following parameters: deep split = 2, height =
0:3, and min module size = 30. This study obtained 34 modules
in total (Figures 3(d) and 3(e)). Additionally, we analyzed the
relations of eigenvectors for the 34 modules with pyroptosis-
associated profile scores. Specifically, blue module was appar-
ently positively related to pyroptosis-associated profiles among
SKCM cases (Figure 3(f), r = 0:84, P < 1e−5). Likewise, in blue
module, gene significance (GS) was positively related to module
membership (MM) (Figure 3(g), r = 0:98, P < 1e−5). Finally, we
verified that the blue module was the key gene module of
pyroptosis in SKCM.

3.4. PPRS Construction and Validation. First of all, we identi-
fied genes significantly positively related to eigenvectors in the
blue module (P < 0:01), which were the hub PAGs. Later, to
explore whether the selected genes were significant, univariate
Cox regression was carried out on the basis of clinical prog-
nostic data. Results of P < 0:01 were recorded, and altogether,
984 prognostic genes were obtained (Figure 4(a), 900 progno-
sis protective and 84 risk genes). Then, results obtained from
univariate Cox regression (P < 0:01) were integrated into
LASSO regression. The dimension was reduced, and lambda
as well as proportional hazards model curves revealed that
when there were 8 genes in the model, the smallest deviance
was achieved (Figures 4(b)–4(d), lambda = 0:1092, GBP2,
HPDL, FCGR2A, IFITM1, HAPLN3, CCL8, TRIM34, and
GRIPAP1). PPRS was calculated by the following formula:

PPRS RiskScoreð Þ = −0:166 × CCL8 − 0:156 × FCGR2A
+ 0:047 × GBP2 − 0:327 × GRIPAP1
− 0:207 × HAPLN3 + 0:145 × HPDL
− 0:022 × IFITM1 − 1:01 × TRIM34:

ð1Þ
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Altered in 134 (36.9%) of 363 samples.
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Figure 5(a)exhibits expression profiles for 8 prognostic
PAGs, survival status, and PPRS distribution of training set
samples. According to our results, samples that had increased
RiskScore were associated with the markedly decreased OS
relative to samples having low RiskScore. Further, the upregu-
lation of GBP2 and HPDL predicted an increased risk, which
were the risk factors. However, for another 6 PAGs, their
upregulation predicted the decreased risk, which were identi-
fied as protective factors. In this study, TimeROC in R soft-
ware was adopted to classify the prognosis by using PPRS
(Figure 5(b)). As a result, the constructed PPRS had great
AUC values for 1-, 3-, and 5-year OS (0.74, 0.72, and 0.74,
separately). Eventually, this study analyzed PPRS based on
Z-score, so as to classify cases as the high-score (scores > 0,

n = 179) and low-score (scores < 0, n = 179) groups. Accord-
ing to KM curve analysis (Figure 5(c)), there was significant
difference in survival between 2 groups (P < 0:0001, HR =
1:9, 95% CI: 1.64-2.21).

For evaluating whether our constructed PPRS was effec-
tive on prognosis prediction, we utilized 3 external test sets
for validating (Figures 5(d)–5(f)). We obtained AUC values
of 0.66-0.95 in the prediction of 1-, 3-, and 5-year OS in
those 3 test sets. This study also divided, respectively, 94
and 94 samples from GSE65904 cohort (Figure 5(d)), 39
and 40 from GSE54467 cohort (Figure 5(e)), and 27 and
27 samples from GSE22153 (Figure 5(f)) into low- and
high-score groups, with the survival difference being signifi-
cant between 2 groups (GSE65904: P = 0:00023, HR = 1:72,
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Figure 1: Landscape showing the genetic variations for 27 pyroptosis-regulated genes within SKCM. (a) Mutation frequency of pyroptosis-
regulated genes in TCGA-SKCM samples. (b) Difference in prognosis between patients with the pyroptosis-regulated gene mutations and
wild-type (WT) patients. (c) Enriched pathways in pyroptosis-regulated gene mutations and WT patients. (d) CNV frequency of
pyroptosis-regulated genes in TCGA-SKCM samples. (e) Pyroptosis-regulated genes harboring CNV amplification displayed high
expression within SKCM. (f) The differential expression in pyroptosis-regulated genes between metastatic and primary tumor patients.
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Figure 2: Continued.
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95% CI: 1.38-2.13; GSE54467: P = 0:0079, HR = 1:96, 95%
CI: 1.41-2.72; GSE22153: P = 0:0022, HR = 2:93, 95% CI:
1.95-4.4).

In order to further verify the efficiency of PPRS in pre-
dicting the prognosis of melanoma, we selected three
reported prognosis prediction models, including 4-gene sig-
nature [30], 12-gene signature [31], and 5-gene signature
[32], to compare with our constructed PPRS. The gene
expression data of TCGA-SKCM samples were utilized to
calculate the RiskScore of each sample in each prognosis
prediction model. Subsequently, the RiskScore was trans-
formed into Z-score, and samples with the value of ≥0 were
classified into high-risk group, while those of <0 were classi-
fied to low-risk group. Then, the difference in OS between
two groups of samples was calculated. The ROC and KM
curves of three models are shown in Figure S1 A-C. It was
seen that all of the three models had lower ROC values to
PPRS, and the difference in OS between high- and low-risk
groups was statistically significant. In addition, we used the
C-index (concordance index) to evaluate the predictive
ability of the 4 models. As shown in Figure S1 D, the C-
index of PPRS was higher than that of the other three risk
models. To sum up, our model was a relatively reasonable,
effective, and clinically convenient prognosis prediction
model for SKCM with relative fewer genes.

3.5. Relations of Clinical Characteristics and Pathways with
PPRS. First, this study compared PPRS distribution among
diverse clinicopathological characteristics groups. As shown
in Figures 6(a)–6(d), PPRS markedly raised as death status
and T stage elevated, both for training and test set samples.
At the same time, the difference in PPRS was not significant
among diverse ages.

Then, ssGSEAwas performed among pathways enriched by
TCGA-SKCMsamples throughGSVA, so as to analyze the asso-
ciation of pathways with PPRS. As a result (Figure 7(a)), most
pathways showed negative relation to the PPRS of samples (with
the correlation coefficients > 0:6). Meanwhile, we analyzed the
differences in pathway activation/suppression in samples show-
ing diverse PPRS values. As a result (Figure 7(b)), relative to low
PPRS samples from TCGA-SKCM cohort, 1 pathway was acti-
vated among the high PPRS samples, whereas 19were inhibited.
In addition, there were 3, 9, and 11 pathways being activated
among high PPRS samples from GSE65904, GSE54467, and
GSE22153 cohorts. Overall, cell cycle activation along with
immunoinflammatory response pathway suppression was the
possible risk factor for samples with higher PPRS scores.

3.6. Relations of Tumor Stemness with PPRS. Based on the
critical role of cancer stem cell-like cells (CSCs) on deregula-
tion of cell cycle resulting in the abnormal proliferation and
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Figure 2: Establishment of pyroptosis-associated profiles among SKCM cases as well as the relation with additional clinical variables and
prognostic outcome. (a) Correlation analysis between the scores of pyroptosis-associated profiles and clinicopathological features of
melanoma patients in TCGA-SKCM cohort. (b, c) Univariate (b) and multivariate (c) Cox regressions were used to analyze the
independent prognostic factors for melanoma. (d) KM analysis between samples with high and low scores of pyroptosis-associated
profiles. (e) The difference in scores of pyroptosis-associated profiles between different clinicopathological feature groups.
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Figure 3: WGCNA on genes related to the pyroptosis-associated profiles among melanoma cases in TCGA-SKCM cohorts. (a) Clustering
tree of each sample. (b) Analysis of the scale-free fit index for various soft-thresholding powers (β). (c) Analysis of the mean connectivity for
various soft-thresholding powers. (d) Dendrogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM).
(e) Gene numbers within those 34 coexpression gene modules. (f) Heat map presenting the relations of modules with scores of pyroptosis-
associated profiles. (g) Scatter diagram for module membership vs. gene significance in the blue module.
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differentiation of tumor, we explored the association between
tumor stemness and our constructed PPRS. We scored the
stemness index for each sample in the TCGA-SKCM cohort
and examined differences in the levels of mRNAsi between
samples with different PPRS or pyroptosis statuses (scores of
pyroptosis-associated profiles). As shown in Figures 8(a) and
8(b), samples in the high-risk or pyroptosis-low group with
poor prognosis had higher stem cell properties. The pyroptosis
status of the samples showed a significant negative correlation
with mRNAsi (Figure 8(c)). At last, the key PAG that consti-
tute the risk model, HPDL, was found to be significantly pos-
itively correlated with tumor stemness (Figure 8(d)). The
above results partially confirmed that tumor stemness is
closely related to the pyroptosis Statuses and prognosis of

SKCM patients, while the regulatory roles of the HPDL in
stem cell properties need to be further explored.

3.7. Relation between Immune Infiltration, Immunotherapeutic
and Chemotherapeutic Responses, and PPRS. This article exam-
ined the association of PPRS level with TIME. Firstly, we exam-
ined the relation between immune infiltrates and PPRS. As a
result (Figures 9(a) and 9(b)), PPRS exhibited obvious positive
and negative relations to M2 and M1 macrophages, respec-
tively. Moreover, differences in T lymphocytes were of statistical
significance between 2 groups (P < 0:001). Secondly, to deter-
mine the relation between stromal/immune cell percentages
and PPRS, this work also determined ESTIMATE/immune/
stromal scores for patients with high and low PPRS scores using
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Figure 4: Construction of the PPRS for melanoma patients. (a) 984 prognostic genes were obtained by univariate Cox regression analyses.
(b) The changing trajectory of each independent variable. The horizontal axis represents the log value of the independent variable lambda,
and the vertical axis represents the coefficient of the independent variable. (c) Confidence intervals for each lambda. (d) Distribution of
LASSO coefficients of PPRS.
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ESTIMATE in R package. As shown in Figures 9(c) and 9(d),
there were significant differences in immune, stromal, and
ESTIMATE scores between samples with diverse PPRS scores
from both TCGA and GSE65904 cohorts. Taken together
(Figure 9(e)), our immune infiltration analysis demonstrated
the distinct differences in TIME features between low and high
PPRS patients, and it facilitates to develop immunotherapy
against SKCM.

Further, ICIs may be utilized in immunotherapy. There-
fore, the present work analyzed immune checkpoint expres-
sion in samples from both training and test sets. We found
that levels of these genes were significantly different between
low and high PPRS groups, among which, most were highly
expressed in patients with high PPRS (Figures 10(a)–10(e)).
Such results suggested the significant differences in treatment
response between 2 groups, in particular for immunotherapy.

For verifying this hypothesis, IPS analysis was conducted
for comparing the different immunotherapeutic responses in
diverse PPRS samples. The present work determined IPS
scores for predicting whether ICIs might be adopted among
cases. As the result, these scores dramatically elevated
among patients with low PPRS (Figure 10(f)). Based on the
above results, patients with low PPRS scores were associated
with the increased IPS and a higher probability of immuno-
genic phenotype, making them the candidates for ICIs.

Furthermore, 2 datasets that contained complete gene
expression profiles, treatment response to PD-1 monoclonal
antibody, and clinical data for melanoma were obtained
from GSE78220 [33] and GSE91061 [34] datasets. PPRS
levels for treatment-resistant or responsive patients were
determined. As a result (Figures 10(g) and 10(h)), PPRS of
responsive patients markedly declined relative to resistant
(SD and PD) patients. At last, samples from GSE78220 and
GSE91061 datasets were classified as the low or high PPRS
score group to compare the prognosis. Based on our results
(Figures 10(g) and 10(h)), PPRS was able to predict prognos-
tic outcome and classify patient survivals at 6 months, 1
year, and 2 years. Great AUC values were obtained, and
the difference in survival was significant between high and
low PPRS groups.

At last, this study examined responses to traditional che-
motherapeutics among samples from TCGA cohort of diverse
PPRS groups. According to our results (Figure 10(i)), patients
with low PPRS showed higher sensitivity to temozolomide and
paclitaxel, but those with high PPRS exhibited higher sensitiv-
ity to cisplatin.

3.8. Clinical Model Construction to Precisely Stratify Risk in
SKCM Patients. In total, 358 cases from TCGA cohort that
had sufficient clinical information such as gender, age,
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Figure 5: Association of patients’ survival with PPRS from both training and test cohorts. (a) 8 PAG expression levels, PPRS score, status,
and survival time in each case from TCGA-SKCM dataset. (b) Performance of PPRS in predicting prognosis analyzed by 1-, 3-, and 5-year
ROC curves in TCGA-SKCM dataset. (c) KM analysis between high and low PPRS score patients from TCGA-SKCM dataset. (d)
Performance of PPRS in predicting prognosis in GSE65904 dataset. (e) Performance of PPRS in predicting prognosis in GSE54467
dataset. (f) Performance of PPRS in predicting prognosis in GSE22153 dataset.
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Figure 6: Continued.
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histology, TNM stage, PPRS, and grade were selected for
recursive partitioning analysis to construct the adjustable
model. Age, PPRS, M stage, and N stage were selected to
construct the eventual decision tree model; according to
their distribution levels, 6 risk subgroups were obtained
(Figure 11(a)). The difference in patient survival was signifi-
cant across those 6 risk subgroups (Figure 11(b)). Typically,
cluster_1 samples showed the most favorable prognostic out-
come, while cluster_6 samples exhibited the worst survival,
had high PPRS, and were distributed in higher N stage. Mean-

while, survival status and PPRS distributions were compared
across those 6 risk subgroups. As a result, compared with clus-
ter_1 samples, cluster_6 samples had an increased rate of
“dead” survival status (Figures 11(c) and 11(d)).

Besides, we selected those significant variables in construct-
ing a nomogram (Figure 11(e)). As revealed by calibration
analysis, the survival curves at 1, 3, and 5 years approached
the optimal 45-degree calibration line, indicating that the as-
constructed nomogram was accurate (Figure 11(f)). Based on
decision curve analysis (DCA), nomogram and PPRS
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Figure 6: The distribution of PPRS levels in samples with different clinicopathological features from TCGA-SKCM (a), GSE65904 (b),
GSE54467 (c), and GSE22153 (d) cohorts.
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Figure 7: The relation between pathways and PPRS. (a) Correlation analysis between PPRS and KEGG pathways through ssGSEA. (b) A heat
map demonstrating normalized enrichment scores (NESs) of pathways in MSigDB calculated by comparing PPRS-high with PPRS-low groups
(with a false discovery rate (FDR) of <0.05).
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Figure 8: Relation between ability of tumor stemness and PPRS. (a) Differences in levels of mRNAsi between samples with diver risk scores.
(b) Differences in levels of mRNAsi between samples in different pyroptosis statuses. (c) Correlation between mRNAsi and pyroptosis
statuses. (d) Correlation between the levels of risk scores, GBP2, HPDL, FCGR2A, IFITM1, HAPLN3, CCL8, TRIM34, GRIPAP1, and
tumor stemness.
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achieved greater survival net benefits than additional factors
(Figure 11(g)). Additionally, 5-year ROC curve revealed that
nomogram and PPRS attained the highest accuracy in pre-
dicting survival compared with the remaining clinical vari-
ables (Figure 10(h)).

4. Discussion

TNM classification system [35] has been widely adopted for
assessing SKCM survival. However, it can not accurately
predict prognosis due to the related practical limitations.
In this regard, it is of great importance to discover the
appropriate biomarkers to judge tumor grade, evaluate
patient prognosis, select appropriate treatment modality,
evaluate disease recurrence, classify molecular subtypes,
and treat cases.

As we all know, different pyroptosis-associated factors,
like genes in gasdermin family, inflammatory vesicles, and
proinflammatory factors, are tightly related to cancer genesis
and metastasis. In this work, we firstly established the
pyroptosis-associated profiles and found that pyroptosis
was the main protective factor for the prognosis of
melanoma patients. Then, after WGCNA, some key genes
(n = 984) associated with pyroptosis-associated profiles were
identified. Then, LASSO and stepwise regression analyses
were performed to construct PPRS by incorporating 8 prog-
nostic genes, among which, 7 (except GRIPAP1) were
associated with cancer. HPDL (4-hydroxyphenylpyruvate
dioxygenase-like protein) and FITM1 (interferon-induced
transmembrane protein 1) are aberrantly expressed within
different cancers (including pancreatic ductal adenocarci-
noma (PDAC), non-small-cell lung cancer (NSCLC), and

.
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Figure 9: Immune profiles of melanoma samples with distinct PPRS score. (a, b) Immune infiltration degrees within TIME for melanoma
samples from TCGA-SKCM (a) and GSE65904 (b) datasets with high and low PPRS scores by CIBERSORT approach. (c, d) ESTIMATE/
immune/stromal scores for melanoma samples from TCGA-SKCM (c) and GSE65904 (d) datasets with high and low PPRS scores. (e) The
relation between immune infiltrations and PPRS.
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breast cancer), and they are related to cancer cell growth,
migration, metabolism, and redox balance [36, 37]. Guanyl-
ate binding protein 2 (GBP2), a member of the GTPase fam-
ily, is crucial to host immunity against pathogens and has
been demonstrated as a potential immunotherapeutic target
for multiple “cold” tumor, such as proficient-mismatch-
repair or microsatellite stability (pMMR/MSS) colorectal
cancer [38]. Besides, polymorphisms in FCGR2A have been
validated with high degree association of trastuzumab and
cetuximab benefit in the adjuvant treatment of breast cancer
[39] and colorectal cancer [40]. Meanwhile, overmodulated
expression of HAPLN3 was suggested to relate with the ini-
tiation of breast cancer [41]. TRIM34 expression in goblet
cells plays an essential role in generating the inner mucus

layer and preventing excessive colon inflammation and
tumorigenesis [42]. However, four genes, i.e., HPDL, GRI-
PAP1, GBP2, and TRIM34, have been reported to exhibit
prognostic significance with respect to melanoma for the
first time, while HAPLN3, CCL8, FCGR2A, and IFITM1
[43–46] have been reported to relate with the initiation
and immune microenvironment of cutaneous melanoma.
Thus, it is necessary to conduct further in vitro and in vivo
investigations to examine the role of those 4 pivotal genes
in melanoma and their precise mechanisms of action.

According to GSEA, cell cycle activation along with
immunoinflammatory response pathway suppression was
the possible risk factor for PPRS-high samples. Based on
the critical role of cancer stem cell-like cells (CSCs) on
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Figure 10: Diverse immunotherapeutic responses among melanoma samples from PPRS-high and PPRS-low groups. (a–d) IC levels within
melanoma samples from TCGA-SKCM (a), GSE65904 (b), GSE54467 (c), and GSE22153 (d) cohorts with high and low PPRS scores. (e) A
bar plot demonstrating frequencies of immune checkpoints upregulated in PPRS-low cancer patients across the four cohorts. The y-axis
indicates the names of immune checkpoints, and the x-axis represents the number of cohort. (f) The boxplots indicate the average
immunophenoscore values IPS across the two PPRS subgroups in SKCM tumors. Overall, PPRS-low tumors that could be treated with
combined anti-PD-1 and anti-CTLA-4 checkpoint blockade or with anti-PD-1 alone had significantly higher IPS, which is indicative of a
better response to these immunotherapies. (g, h) The distribution of PPRS levels in samples responsive and resistant to treatment from
GSE78220 (g) and GSE91061 (h) datasets and its performance in predicting samples prognosis. (i) Box plots exhibiting the estimated
IC50 values of temozolomide, paclitaxel, and cisplatin within melanoma samples from TCGA-SKCM dataset with high and low PPRS scores.
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Figure 11: The nomogram and survival decision tree were produced for improving risk stratification and predicting the survival probability.
(a) Cases who had complete annotations such as T stage, N stage, PPRS, and age were applied in constructing the survival decision tree for
optimizing risk stratification. (b–d) Differences in OS (b), PPRS scores (c), and living states (d) were significant across the 6 risk groups. (e)
Detailed information of the nomogram. (f) Our constructed PPRS and nomogram were highly accurate based on calibration analysis. (g)
Decision-making curve of the nomogram. (h) Relative to additional clinicopathological factors, our as-constructed PPRS and nomogram
performed well in predicting survival.
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deregulation of cell cycle resulting in the abnormal prolifer-
ation and therapeutic (including both chemotherapy and
immunotherapy) resistance [47], we explored the associa-
tion between tumor stemness and our constructed PPRS.
Our study showed that the HPDL and PPRS were associated
positively with tumor stemness. These findings confirmed that
our PPRS is a risk characteristic and that theHPDLmight pro-
mote the proliferation of tumor cells and inhibit the differen-
tiation of tumor stem cells through different pathways.
However, the regulatory effect and mechanism of HPDL on
the biological behavior of cancer stem cells have not been
reported so far, which can be further studied and explored.

Besides, due to the important impact of pyroptosis on
tumor immunity, we examined the different immune infil-
tration levels between low and high PPRS groups. According
to recent reports, resting memory CD4 T-cells are mainly
enriched into SKCM tissues. Further, among different cancer
types, γδ T-cells are discovered in tertiary lymphoid struc-
tures, indicating that they are related to generating the con-
stantly effective antitumor immunity [48]. M1 macrophages
are related to antitumor immunity, whereas M2 macro-
phages are related to melanoma occurrence and invasion
[49]. The present work suggested that high PPRS cases had
decreased percentages of M1 macrophages and T-cells.
Based on IPS analysis, high PPRS cases were associated with
remarkably lower IPS scores, which suggested the low prob-
ability of applying ICIs among such patients.

PPRS displayed some advantages. (1) First of all, the
prognosis model was accurate in prognosis prediction. As
revealed by DCA, our pyroptosis-associated nomogram
was accurate in the prognosis prediction relative to addi-
tional pathological features. (2) According to the risk score
obtained by the model, SKCM cases were divided as 2
groups. In line with TIME and immune infiltration analyses,
differences in several factors were significant between 2
groups, especially for checkpoint gene levels, which were
consistent with differences obtained in enrichment analyses.
Therefore, immunotherapies targeting the above 8 compo-
nents in the PPRS can be utilized for cancer treatment. (3)
Prior works constructing pyroptosis-related prognostic sig-
natures just take into consideration those 27 known genes
from the database for the direct regulation of pyroptosis;
however, no attention is paid to the cascade reaction and
interaction of such genes with others within cancer (the
complex pathological process), resulting in the limitation
of the constructed gene signatures. We adopted ssGSEA to
quantify the characteristic scores of pyroptosis-associated
profiles of each sample and acquired the coexpression genes
related to the scores for constructing the PPRS. It considers
the mutual regulation of the whole biological network; as a
result, it can be used in different cancers.

Some limitations should be noted in our study. First, we
obtained 679 cases from microarray and RNA-seq plat-
forms, which indicated that our results were highly reliable,
robustness, and without any platform bias. However, more
prospective studies are warranted for verifying the effect of
PPRS on evaluating the survival and immunotherapeutic
response of SKCM. Second, our study was carried out
among cancer patients from public databases according to

bioinformatic analysis, and further research is necessary to
verify those identified hallmarks among clinical samples.
Third, the pyroptosis-related mechanism and immunoregu-
lation of those 8 genes should be further investigated in
SKCM cases. Finally, it is of great importance to analyze
the alterations of pyroptosis features within cancer across
the treated SKCM cases, as well as the impact on immuno-
therapeutic responses of cases.

5. Conclusions

We built an 8-PAG-based signature for predicting the survival
of SKCM. The as-constructed signature was accurate in
predicting prognosis of cutaneous melanoma. Besides, it
accurately indicated tumor microenvironment and immune
infiltration in patients and provided theoretical basis for clin-
ical treatment. Therefore, our constructed signature is promis-
ing as a new diagnostic biomarker and therapeutic target.
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