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Since the discovery ofmesenchymal stem cells (MSCs) in the 1970s, they have been widely used in the treatment of a variety of diseases
because of their wide sources, strong differentiation potential, rapid expansion in vitro, low immunogenicity, and so on. At present,
most of the related research is on mesoderm-derived MSCs (M-MSCs) such as bone marrow MSCs and adipose-derived MSCs. As
a type of MSC, ectoderm-derived MSCs (E-MSCs) have a stronger potential for self-renewal, multidirectional differentiation, and
immunomodulation and have more advantages than M-MSCs in some specific conditions. This paper analyzes the relevant
research development of E-MSCs compared with that of M-MSCs; summarizes the extraction, discrimination and culture,
biological characteristics, and clinical application of E-MSCs; and discusses the application prospects of E-MSCs. This summary
provides a theoretical basis for the better application of MSCs from both ectoderm and mesoderm in the future.

1. Introduction

As an important member of the stem cell family, mesenchy-
mal stem cells (MSCs) are widely distributed and easy to
extract and culture and have self-replication ability and
strong differentiation potential. MSCs also have the ability
to migrate to damaged tissues and regulate the immune
response according to the microenvironment, which is why
they are being increasingly applied in tissue engineering
and clinical research.

MSCs are derived from the mesoderm and ectoderm in
early development. Leucht et al. [1] proposed that damaged
tissue from different germ layers will recruit MSCs from the
corresponding germ layers for repair. Moreover, the prolif-
eration and differentiation abilities of MSCs from different
tissues are also different [2]. This paper comprehensively
compares the biological characteristics and clinical applica-
tion of mesenchymal stem cells from the mesoderm and
ectoderm, as well as the possible development direction in
the future.

2. Basic Introduction

2.1. Mesoderm-Derived MSCs (M-MSCs). A rich source of
M-MSCs is an important basis for their extensive research
and application. Bone marrow is an important source of
MSCs. In addition to bone marrow, M-MSCs also exist in
various tissues and organs. In 2000, human umbilical cord
blood stem cells were first reported [3]. Subsequently, in
2001, adipose tissue and synovium were also proven to be
rich sources of M-MSCs [4, 5]. The extraction method of
M-MSCs, in short, includes separating various tissues,
digesting the tissues to obtain cells, culturing the cells for 3
to 5 days, discarding nonadherent cells, and continuously
culturing adherent cells to the desired passage [6].

2.2. Ectoderm-Derived MSCs (E-MSCs). E-MSCs are mainly
divided into three types: osteogenic (T.Q. [7]), odontogenic,
and olfactory mucosal. Odontogenic stem cells include
dental pulp stem cells (DPSCs), dental follicle stem cells
(DFSCs), apical dental papilla stem cells (SCAPs), deciduous

Hindawi
Stem Cells International
Volume 2023, Article ID 4547875, 16 pages
https://doi.org/10.1155/2023/4547875

https://orcid.org/0009-0004-2587-9653
https://orcid.org/0000-0001-7466-3227
https://orcid.org/0000-0003-1401-9653
https://orcid.org/0000-0003-1082-1067
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4547875


dental pulp stem cells (SHEDs), and periodontal ligament
stem cells (PDLSCs). Sources and markers of odontogenic
stem cells are listed in Figure 1. DPSCs were first isolated
from adult dental pulp in 2001 [8]. DFSCs were isolated
and identified from the dental sac of human third molars
by Morsczeck et al. [9] in 2005. Sonoyama et al. [10] first
found and identified SCAPs from the apical papilla of
extracted third molars in 2006. SCAPs come from develop-
ing tissues. Therefore, SCAPs may have better regeneration
potential than other mature tissues. Miura et al. (S. Shi) first
discovered SHEDs in 2003. SHEDs can differentiate into a
variety of cell types, including nerve cells, adipocytes, and
odontoblasts. In addition, after injection into the dentate
gyrus of the mouse hippocampus, SHEDs can differentiate
into neural tissue and express neuronal and glial markers,
indicating that SHEDs can be used for dental pulp and nerve
regeneration. PDLSCs were isolated and identified from the
surface of tooth roots by Seo et al. [11] in 2004. In 2009,
Zhang et al. [12] first reported the isolation, characterization,
and immunomodulatory properties of gingival mesenchy-
mal stem cells (GMSCs) and found that GMSCs can inhibit
the proliferation of peripheral blood monocytes induced by
phytohemagglutinin. Olfactory mucosal stem cells (OMSCs)
are MSCs isolated from the olfactory mucosal epithelium.
Studies have shown that MSCs may play a better role in pro-
moting the formation of the myelin sheath in the central
nervous system and in repairing nerve injury than MSCs
from other tissues [13].

3. Extraction, Discrimination, and Culture

Theoretically, MSCs can be isolated from all tissues. For
example, M-MSCs mainly come from the bone marrow,
adipose tissue, placenta and human umbilical cord blood,
while E-MSCs mainly come from the dental pulp, the jaw,
the frontal bone, the periodontal ligament, the gingiva, and
the dental papilla. Han et al. [6] summarized the extraction,
identification, and culture methods of several common
M-MSCs. For comparison, in Table 1, the authors summa-
rized the extraction, identification, and culture of several
common E-MSCs. In Figure 2, the extraction process of
DPSCs is described in the form of a schematic.

4. Biological Properties

Regardless of the source of MSCs, they all show some com-
mon characteristics, such as fibroblast-like morphology, cell
surface markers, cell proliferation ability, and multidirec-
tional differentiation potential. However, the biological
properties of MSCs from different tissues or the same kind
of MSCs under different conditions are slightly different.

4.1. Cell Proliferation Ability. According to Miura et al.
(S. Shi), SHEDs have a higher proliferation rate and popula-
tion doubling efficiency than DPSCs and bone marrow
mesenchymal stem cells (BMMSCs). In addition, SHEDs
are separated from deciduous teeth, so they can be easily
obtained without ethical considerations. The transition from
deciduous teeth to permanent teeth is a unique dynamic

process. The dental pulp of deciduous teeth already exists
before birth, indicating that these stem cells are not affected
or are less affected by environmental factors than other stem
cells [14]. Akintoye et al. [35] compared MSCs from maxillo-
facial and lower limb bone marrow, and the results showed
that the proliferation rate of jaw bone marrow MSCs from
maxillofacial-bone marrow was faster than that of iliac bone
marrow MSCs from lower limb bone marrow. Moreover,
compared with long bone marrow MSCs, jaw bone marrow
MSCs showed stronger proliferation and antiapoptotic
potential [7, 20]. In embryology, the iliac bone and long bone
are derived from the mesoderm, while the jaw is derived from
the ectodermal neural crest. Interestingly, studies have shown
that cells expressing neural crest markers have stronger stem
cell properties and stronger proliferation potential than M-
MSCs [2]; thus, they contribute to the survival of MSCs
under hypoxia after transplantation [21, 36].

4.2. Multidirectional Differentiation. Regardless of the kind
of tissue source, MSCs have multidirectional differentiation
potential. Multidirectional differentiation potential is one
of the important characteristics of MSCs. The differentiation
trend of different tissue sources is also different. The jaw
develops from the neural crest cells of ectoderm [37], while
the mesenchymal cells of mesoderm develop into the long
bones of the limbs [38], and the osteogenic processes experi-
enced by the two bone tissues are also different in the devel-
opment process [37]. In some diseases, such as osteoporosis
and hyperthyroidism, the involvement of the long bone is
significantly higher than that of the jaw [39]. Some studies
have shown that compared with bone marrow MSCs of long
bones of limbs, jawbone marrow MSCs have stronger osteo-
genic activity. This may be due to the high expression of
BMP-4, nestin, and other neural crest-related genes in jaw-
bone marrow MSCs at the transcriptional level [2], which
is consistent with the research results of Aghaloo et al. [40].

Central and peripheral nerve injuries are difficult to
treat, because the ability of the nervous system to repair
damaged cells and tissues is limited. In this regard, E-
MSCs have obvious advantages because they can differenti-
ate into neuron-like cells and express neuronal markers,
such as STRO-1, nestin, c-FOS, GFAP, and β III-tubulin
[41–45]. Although these cells can differentiate into neuron-
like cells, they do not further differentiate into functional
neurons [41]. On this basis, Kiraly et al. found that simulta-
neous activation of PKC and cAMP can induce hDPSCs to
differentiate into functional neurons [43].

At present, research in the field of nerve regeneration
mainly focuses on DPSCs and SHEDs [19, 46, 47]. This
may be due to the relationship between their tissue origins.
In the process of tooth development, the tooth germ is com-
posed of an enamel organ, dental papilla, and dental sac.
DPSCs, SHEDs, and SCAPs are derived from dental papilla;
DFSCs and PDLSCs are derived from dental sac; and dental
pulp is derived from dental papilla. This shows that DPSCs,
SHEDs, and SCAPs are highly homologous with dental pulp
at the histological level. At the same time, the extraction dif-
ficulty and conditions of SCAPs are more stringent than
those of DPSCs and SHEDs. Therefore, DPSCs and SHEDs
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may be a possible direction for pulp regeneration and even
central nerve repair in the future.

Compared with bone marrow MSCs, odontogenic MSCs
are more convenient to obtain and easy to expand and pre-
serve, have high activity, and have low immunogenicity and
tumorigenicity, and these characteristics make them more
conducive to clinical application [7, 48]. The multiple differ-
entiation potential and the derivation of MSCs derived from
ectodermal cells are summarized in Table 2. The difference
in germ layer origin makes the phenotype of odontogenic
MSCs different from that of MSCs, such as BMMSCs.

4.3. Age-Related Changes. As the application potential of E-
MSCs has been gradually explored, the preparation of suffi-
cient E-MSCs has become a research hotspot, but it is also
one of the obstacles that hinders the clinical application of
E-MSCs. The age of the MSC donor has a great impact on
cell proliferation activity, differentiation potential, and para-
crine effect, but the specific effect is still not clear; particu-
larly, whether elderly patients can undergo autologous
stem cell therapy is currently controversial [79].

At present, research on the age-related changes in E-
MSCs mainly focuses on DPSCs, and there are relatively
few studies on other stem cells. In the dental pulp of aged
individuals, the proportion of cells decreases, and the
proportion of fiber and collagen components gradually
increases with age [80]. Mitsiadis et al. [81] showed that pulp
volume gradually decreases with age due to continuous pro-
duction of dentin matrix by odontoblasts, which may
explain, at least in part, why DPSC extraction from perma-
nent teeth from old donors is less efficient.

Current studies on age-related changes in the biological
activity of DPSCs have shown conflicting results, with some

studies showing that the proliferation and differentiation
potential of MSCs are independent of age [82]. However,
other studies have shown that the proliferation ability, differ-
entiation potential, and cell surface marker expression of
DPSCs are affected by age [83, 84]. Therefore, young DPSCs
should be collected and preserved as soon as possible, as this
may be a potential treatment for elderly patients with dental
diseases in the future.

4.4. Immunomodulation

4.4.1. Immune Regulation Mechanism of MSCs. MSCs can
interact with a variety of immune cells, including T cells,
dendritic cells (DCs), B cells, macrophages, neutrophils,
and natural killer (NK) cells [85]. Studies have shown that
the immunosuppressive effect of MSCs is mainly the result
of the joint action of intercellular contact and soluble
immune factors [86, 87]. Soluble immune factors, including
a variety of immune regulatory factors, cytokines, and
growth factors, such as prostaglandin E2 (PGE-2), indolea-
mine 2,3-dioxygenase (IDO), and nitric oxide (NO), can
respond to immune cells and activate the immune regulation
of MSCs [88, 89]. In addition, indirect or direct cell contact
can also cause the immunosuppressive effects of MSCs,
which are mainly mediated by programmed cell death ligand
1, programmed cell death ligand 2, and membrane-bound
human leukocyte antigen [90].

MSCs can also induce chemotaxis to inflammatory sites to
exert immune regulation and repair damaged cells and tissues
[91, 92]. Interestingly, the immunomodulatory effect of MSCs
can not only inhibit the immune response but also enhance it,
and which effect they have mainly depends on the function of
immunosuppressants, the types of inflammatory factors, and

DPSCs
CD14
CD19
CD34
CD45
Stro-1
HLA- DR

CD29
CD44
CD73
CD90
CD105
CD146

SHEDs
CD3
CD8
CD11b (or CD14)
CD15
CD19 (or CD79𝛼)
CD33
CD34
CD45
CD71
CD117
HLA-DR

STRO-1
STRO-3
CD13
CD29
CD44
CD73
CD90
CD105
CD106
CD166
CD271

CD146
ALP
MEPE
bFGF
endostatin

PDLSCs
CD105
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CD73

CD45
CD19
HLA-DR
CD14
CD34

CD105
CD106
CD146
CD166
ALP

CD34
CD45
CD18
CD150

GMSCs
CD44
CD73
CD90
CD105
SSEA-4
STRO-1
CD146
CD166
CD271

CD14
CD45
CD34
CD19

JMMSCs
CD73, CD90, CD105

CD34, CD11b, CD19, CD45, HLA-DR

SCAPs
STRO-1
CD24
CD29
CD73
CD90

Figure 1: Sources and markers of some representative E-MSCs (DPSC-dental pulp stem cells, SCAP-apical dental papilla stem cells, SHED-
deciduous dental pulp stem cells, PDLSC-periodontal ligament stem cells, GMSC-gingival mesenchymal stem cells, and JMMSC-jaw
marrow-derived mesenchymal stem cells. Red indicates positively expressed while blue indicates negatively expressed surface markers).
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the state of the immune system [93]. MSCs not only respond
to inflammatory cytokines but also secrete immunoregulatory
molecules and participate in the regulation of the inflamma-
tory process. For example, IDO, NO, and chemokines
secreted by MSCs play key roles in MSC-mediated immune
regulation [94].

4.4.2. Immunomodulatory Effect of E-MSCs. E-MSCs are
similar to MSCs from other tissues and can regulate the
activities of different immune cells [26, 95]. The immuno-
modulatory activity of E-MSCs is usually activated by
inflammatory cytokines produced by immune cells, which
indicates that there is an interaction between E-MSCs and
activated immune cells. The interactions between E-MSCs
and immune cells are listed in Table 3. MSCs can have a sig-
nificant impact on immune cells.

(1) Peripheral Blood Mononuclear Cells (PBMCs). Peripheral
blood mononuclear cells (PBMCs) are mononuclear cells in
peripheral blood, including lymphocytes and monocytes. E-
MSCs can inhibit the proliferation of peripheral blood
monocytes through paracrine signaling [12, 17, 28, 95–97],
and γ-interferon treatment can enhance this ability [95].

(2) Myeloid Dendritic Cells (DCs). Myeloid dendritic cells
(DCs) maintain and regulate the immune response by
accelerating the process of antigen-specific T cells and the
activation of cells in the innate immune response after DC
maturation [98, 99]. Studies have shown that E-MSCs have
an immunosuppressive function on DCs, which can inhibit
DC maturation and differentiation through a prostaglandin
E2-dependent mechanism [100, 101].

(3) Mast Cells. Mast cells are widely distributed around
microvessels under the skin and visceral mucosa and can
secrete a variety of cytokines. It has been reported that E-
MSCs can inhibit the release of inflammatory cytokines by

mast cell 1 (HMC-1) through a prostaglandin E2-dependent
mechanism but have no effect on the proliferation of HMC-1
cells [101].

(4) Macrophages. Macrophages are cells with significant
plasticity in the immune system [102], and they can polarize
into M1 or M2 macrophages [103]. Generally, M1 macro-
phages have significant antibacterial properties enacted by
the release of a variety of chemokines and inflammatory
cytokines, while M2 macrophages can reduce inflammation
and accelerate tissue repair by secreting IL-10 and nutri-
tional factors [104]. In addition, macrophages can be cocul-
tured with MSCs to induce M2 macrophages [27, 105].
Transplantation of DPSCs into unilateral hind limb skeletal
muscle can inhibit the occurrence of sciatic nerve inflamma-
tion [106]. In specific cases, for example, lipopolysaccharide-
treated PDLSCs can promote the polarization of macrophages
to the inflammatory M1 phenotype [107].

(5) T Cells. T cells are widely distributed in animal and
human tissues. Once activated, they can differentiate into
helper T cell (Th) 1 and the regulatory T cell (Treg) subsets
Th2, Th9, and Th17 according to the stimulation intensity
and microenvironment [108, 109]. It has been proven that
MSCs have a close relationship with T cells [87, 110].

MSCs secrete a large number of immunosuppressive
factors, chemokines, and adhesion molecules that can effec-
tively inhibit the proliferation, apoptosis, and differentiation
of T cells [92, 111]. It has been reported that E-MSCs can
inhibit T cell proliferation [24, 29, 112, 113], induce T cell
apoptosis, and stimulate regulatory T cell differentiation
[114]. E-MSCs induce the immunomodulatory effect of T
cell apoptosis, which has an anti-inflammatory effect
in vivo [115]. Interestingly, although there are few relevant
studies comparing the immunomodulatory ability of MSCs
from different germ layers, there is evidence that human

Filtered (70 𝜇m) to
DMEMIncubation

Centrifuge at 300 g,
5 min and then

resuspended

Collagenase and
dispase for 1 h,

37°C

Mince dental pulp
tissue

Separate dental
pulp tissue

Figure 2: Typical extraction process of DPSCs of human.
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Table 2: The multiple differentiation potential and the derivation of ectodermal MSCs.

Cell type PD Multipotentiality Source Reference

DPSCs 60-70

Osteogenic
Human impacted third molar (age 18–22 years old) [49]

Rat [50]

Angiogenic Human impacted third molar (age 18-25 years) [51]

Adipogenic Supernumerary tooth (female, 8 years, and male, 12 years) [52]

Neurogenic

Human impacted third molars (age 20-30 years) [53]

Human impacted third molars [54]

Human impacted third molars (age 18–22 years) [55]

Human impacted third molars [56]

Dentin/pulp-like
Human impacted third molars (age 15-25 years) [57]

Human impacted third molar (11 years old) [58]

DFSCs —

Chondrogenesis
Rat [59]

Healthy children (age 6-12 years) [60]

Osteogenic
Rat [61]

Healthy children (age 6-12 years) [60]

Adipogenic
Healthy children (age 6-12 years) [60]

Human impacted third molar (female, 22 years) [52]

Neurogenic Impacted third molar (age 18–22 years) [55]

SCAPs 70

Angiogenesis Human impacted third molars (age 12-15 years) [62]

Neurogenic Human impacted third molars (age 18-22 years) [55]

Osteo/dentinogenic Human impacted third molars (age 12-15 years) [63]

SHEDs <140

Neurogenic Healthy children (age 7-8 years) [64]

Adipogenic Healthy children (age 7-8 years) [64]

Osteo/dentinogenic Healthy children (age 7-8 years) [64]

Chondrogenesis Healthy children (age 7-8 years) [64]

Angiogenesis Healthy children (age 7-8 years) [65]

PDLSCs —

Adipogenic Supernumerary tooth (male, 12 years) [52]

Osteogenesis Human periodontal ligament

[66]

[67]

[68]

Angiogenesis Human impacted third molars [69]

Adipogenic Human periodontal ligament [70]

Chondrogenesis Human periodontal ligament [70]

GMSCs —

Adipogenic Human gingiva [12]

Chondrogenesis Human gingiva [12]

Osteogenesis

Human gingiva [12]

Human gingiva [71]

Human gingiva (16 to 22 years old) [72]

Angiogenesis Human gingiva [73]

Neurogenic Human gingiva (20 to 40 years old) [74]

OMSCs —

Neurogenic
Rat [75]

Human olfactory mucosa [76]

Osteogenesis Human olfactory mucosa
[76]

[77]

JMSCs 50-60

Osteogenesis Mouse jaw bone
[78]

[35]

Adipogenic Mouse jaw bone [35]

Chondrogenesis Mouse jaw bone [35]

Abbreviation: PD: population doubling.

9Stem Cells International



gingival MSCs have a stronger inhibitory effect on the prolif-
eration and Th1/Th2/Th17 differentiation of mouse CD4+ T
cells than BMSCs [26]. Comparison of the immunomodula-
tory ability of MSCs from different germ layers may be a
future research focus of E-MSCs.

(6) B Cells. B cells mainly resist and hunt down foreign path-
ogens by producing specific antibodies [116, 117]. At pres-
ent, there are relatively few studies on the effect of E-MSCs
on B cells. Kwack et al. [17] found that DPSCs can inhibit
the production of immunoglobulin by B cells. However, it
has also been reported that MSCs inhibit the production of
antibodies by B cells depending on the intensity of
inflammatory stimulation and the ratio of BMSCs to B
cells [118, 119].

The immunomodulatory properties of MSCs depend on
the surrounding microenvironment. Activation of E-MSCs
by inflammatory factors, such as γ-interferon, tumor necro-
sis factor α, and interleukin-1 β, can significantly enhance
their immunomodulatory ability [120]. Activated immune
cells can upregulate the expression of MSC-related proteins
[121]. Activated immune cells play a key role in inducing
the immunomodulatory potential of MSCs, and there is a
close relationship between these cells.

5. Clinical Application

Studies have proven that E-MSCs are ideal seed cells for tis-
sue engineering. DPSCs have been used to treat severe limb
ischemia, tissue defects, and bone necrosis, to regenerate
skin damage caused by burns, and to generate liver, nerve,
skeletal muscle, blood vessels, and skin [122, 123] and have
been shown to have good application prospects [124].
Odontogenic MSCs from third molars, orthodontic teeth,
and deciduous teeth have been applied to dentin, periodon-
tal tissue, dental pulp tissue, jaw defect repair, and other
in vivo and in vitro studies and have been shown to have
good regeneration ability [125].

Due to the same source of dental pulp tissue, E-MSCs
have incomparable advantages in the field of dental pulp
regeneration compared with M-MSCs, which is also a
research hotspot of clinical application of E-MSCs. The
majority of tooth loss is due to dental caries and root frac-
tures. At present, root canal therapy is still the main treat-
ment for pulpitis. However, the risk of root fracture is

greatly increased due to the lack of nutrition from the pulp
of the tooth after endodontic treatment. Therefore, the
regenerative restoration of dental pulp has become the goal
of functional tooth restoration. Gronthos et al. [8] first dem-
onstrated the ability of DPSCs to differentiate into odonto-
blasts in 2000. SHEDs can be injected into the dental pulp
cavity using injectable scaffold materials, which can not only
maintain the nerve activity of dental pulp but also recon-
struct the vascularized dental pulp tissue and have the ability
to differentiate into odontoblasts [126].

Pulp regeneration of pulpless teeth has always been a
dream of dentists and researchers. However, there are still
many problems, including the longtime pulp regeneration
and the use of scaffold materials that increase the risk of
inflammation and infection. The dental pulp regeneration
therapy technology established by scaffold-free 3D DPSC
constructs avoids the potential problems caused by scaffold
materials in transplanted pulp-like tissues [126]. Histological
analysis showed that the transplanted DPSC constructs were
differentiated into odontoblast-like cells at the site of contact
with dentin and were able to form a vascular pulp-like tissue
without the need for scaffolds or growth factors. The estab-
lishment and development of this technique suggest that
the transplantation of DPSCs holds promise for the regener-
ation of pulp tissue in pulpless teeth.

Odontogenic MSCs also have a strong immunomodula-
tory effect. They can induce immune tolerance and reduce
tissue damage caused by inflammatory reactions, which is
conducive to the recovery and prognosis of damaged tissues.
They have been applied to the immunomodulatory treat-
ment of a variety of immune system diseases, such as sys-
temic lupus erythematosus, colitis, and multiple sclerosis.
After receiving stem cells or their secretions, symptoms
related to these diseases can be alleviated. DPSCs are also
expected to be able to treat type 2 diabetes and rheumatoid
arthritis [127].

ByMay 2023, more than 12,000 clinical trials of MSCs had
been retrieved from the ClinicalTrials.gov website. Interna-
tionally, approved MSC drugs have been listed in the United
States, South Korea, Japan, and the European Union, and stem
cell therapy has become a reality. Although E-MSCs have good
biological properties and immunomodulatory ability, it is
worth considering that their clinical application is far from
that of M-MSCs. According to incomplete statistics, there
are 11 MSC drugs approved for marketing worldwide
(Table 4), including the United States (1), the European Union

Table 3: The function of E-MSCs in mediating immune cells.

Immune cell type E-MSC functions

PBMCs Inhibiting PBMC proliferation

DCs Inhibiting DC differentiation and maturation

Macrophage
Activating M2 macrophage polarization in general; activating M1 macrophage polarization in specific

microenvironment

Mast cells Inhibiting mast cell exocytosis

T cell Inhibiting T cell proliferation, differentiation, and apoptosis

B cell Inhibiting B cell exocytosis

Abbreviation: PBMCs: peripheral blood mononuclear cells; DCs: dendritic cells.
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(2), Japan (3), South Korea (4), India (1), Australia (1), and
Canada (1). From a review of the clinical trials obtained from
the ClinicalTrials.gov website, we discovered that all the seed
cells of stem cell drugs approved for clinical application are
from themesoderm, and no stem cell drugs from the ectoderm
have been listed anywhere in the world.

What is the reason for this? We hypothesized that
although the biological properties of E-MSCs are more suit-
able for tissue engineering, researchers have spent a rela-
tively short amount of time researching them. BMSCs were
first discovered 50 years ago, but the earliest E-MSCs were
discovered approximately 20 years ago. Compared with
MSCs from other sources, such as BMSCs and ADSCs, the
foundation of E-MSC research is not strong enough, and
relevant supporting research is not sufficient. It will take
more time to study the biological properties and immune
regulation characteristics of E-MSCs. Second, due to the
short research time and imperfect supporting conditions,
different researchers have different methods to isolate and
culture E-MSCs. Different culture conditions, such as serum,
cell inoculation density, and oxygen partial pressure, may
affect cell proliferation and differentiation potential [128,
129]. Therefore, it is necessary to formulate an international
unified standard process for the isolation, extraction, identi-
fication, and culture of E-MSCs. The age of donors also
affects the proliferation and differentiation potential of
MSCs. Studies have shown that MSCs from young donors
show less damage and better proliferation [130].

In the field of tissue engineering, scaffold material is an
indispensable factor. It can provide an environment for
MSCs to perform their functions and is conducive to the
further development of the therapeutic role of MSCs. The
scaffold material for E-MSCs can improve the therapeutic
effect of stem cells, and there is relatively little research in
this field, which may also be one of the factors that hinders
the further application of E-MSCs in regenerative medicine.

6. Summary

Both E-MSCs and M-MSCs have good self-renewal and
multidirectional differentiation potential; are convenient
and safe to extract, expand, and preserve; and have fewer
ethical concerns. They are potential seed cells for tissue
regeneration, repair, and clinical treatment in the future.
However, the clinical application of E-MSCs is still limited.
Research on the biological role, mechanism, and regulation
after entering the host and differentiation into other tissues
is still in the initial stage.

E-MSCs are valuable resources for regenerative medi-
cine. The excellent differentiation potential of E-MSCs pro-
vides a new opportunity for the development of different
research fields such as metabolic diseases, tumors, and injury
repair. DPSC culture technology based on tissue engineering
3D scaffolds has great potential in dental pulp tissue regen-
eration. It is worth mentioning that the advantages of E-
MSCs in neuronal differentiation are helpful for the research

Table 4: 11 stem cell therapeutic drugs approved for marketing worldwide.

Country Trade name Cell type Indication
Approved

time

The United States Prochymal Bone marrow mesenchymal stem cells
Graft versus host disease (GVHD), Crohn’s

disease
2010.05

The European Union
Stempeucel Bone marrow mesenchymal stem cells Thromboangiitis obliterans 2015.06

Alofisel
Adipose-derived mesenchymal stem

cells
Crohn’s disease with complex perianal

fistula
2018.03

South Korea

Cell gram Bone marrow mesenchymal stem cells Acute myocardial infarction 2011.07

Cartistem
Umbilical cord blood mesenchymal

stem cells
Degenerative arthritis and knee cartilage

injury
2012.01

Cuepistem
Adipose-derived mesenchymal stem

cells
Complex Crohn’s disease complicated with

anal fistula
2012.01

NeuroNATA-R Bone marrow mesenchymal stem cells
Amyotrophic lateral sclerosis, motor

neuron disease
2014.07

Canada Prochymal Bone marrow mesenchymal stem cells
Graft versus host disease (GVHD) in

children
2012.05

Australia MPC
Autologous mesenchymal precursor

cells
Repair of damaged bone tissue 2010.07

Japan

Temcell Bone marrow mesenchymal stem cells Graft versus host disease (GVHD) 2016.02

RNL-
Astrostem

Adipose-derived mesenchymal stem
cells

Alzheimer’s disease 2018.04

Stemirac Bone marrow mesenchymal stem cells Spinal cord injury 2018.12

India Stempeucel Bone marrow mesenchymal stem cells
Severe lower limb ischemia caused by

Burger’s disease
2017
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of many neurodegenerative diseases, such as Alzheimer’s
disease, Parkinson’s disease, TBI, and peripheral nerve
injury. E-MSC transplantation may become an effective
treatment for restoring neurological function.

Further development of materials, science, molecular
biology, and tissue engineering technology combined with
increased understanding of the biological properties of MSCs
from different germ layers will promote the clinical applica-
tion of E-MSCs. And E-MSCs are expected to become a
mature clinical technology and have a bright application
prospect in the field of regenerative medicine, creating new
alternative treatment options for a variety of diseases.
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