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Background. Colorectal cancer (CRC) is one of the commonest cancers worldwide. As conventional biomarkers cannot clearly
define the heterogeneity of CRC, it is essential to establish novel prognostic models. Methods. For the training set, data
pertaining to mutations, gene expression profiles, and clinical parameters were obtained from the Cancer Genome Atlas.
Consensus clustering analysis was used to identify the CRC immune subtypes. CIBERSORT was used to analyze the immune
heterogeneity across different CRC subgroups. Least absolute shrinkage and selection operator regression was used to identify
the genes for constructing the immune feature-based prognostic model and to determine their coefficients. Result. A gene
prognostic model was then constructed to predict patient outcomes; the model was then externally validated using data from
the Gene Expression Omnibus. As a high-frequency somatic mutation, the titin (TTN) mutation has been identified as a risk
factor for CRC. Our results demonstrated that TTN mutations have the potential to modulate the tumor microenvironment,
converting it into the immunosuppressive type. In this study, we identified the immune subtypes of CRC. Based on the
identified subtypes, 25 genes were selected for prognostic model construction; a prediction model was also constructed, and its
prediction accuracy was tested using the validation dataset. The potential of the model in predicting immunotherapy
responsiveness was then explored. Conclusion. TTN-mutant and TTN-wild-type CRC demonstrated different
microenvironment features and prognosis. Our model provides a robust immune-related gene prognostic tool and a series of
gene signatures for evaluating the immune features, cancer stemness, and prognosis of CRC.

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers
worldwide and accounts for 9.4% of morbidity from all can-
cers. More than 1.9 million new CRC cases and 935,000
related deaths were estimated to have occurred in 2020 [1].
The incidence of CRC is related to the level of development
of countries, with incidence rates in transitioning countries
reported to be only one-quarter of that in transitioned coun-
tries [1]. Therefore, CRC may be considered a marker of
socioeconomic development. The incidence rates of CRC
are steadily increasing in many countries [2, 3]. Surgery,
chemotherapy, and radiotherapy are standard conventional

therapies for CRC; these therapies are combined to increase
the efficacy of treatment. Nevertheless, CRC still could not
be completely cured. In this context, relapse occurs in more
than half of these patients even after neoadjuvant therapy
[4]. In addition, these treatments are associated with certain
side effects due to the lack of specificity, unfavorable combi-
nations, and toxicities [5, 6]. Thus, it is essential to find strat-
egies to improve the treatment and prognosis of CRC.

CRC is characterized by mutation accumulation and
immune response dysregulation [7]. Somatic mutations are
widely found in CRC; mutations of certain genes including
KRAS, p53, SMAD4, and BRAF are associated with progres-
sion and metastasis of CRC [8]. Some mutations are found
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to be related to outcomes in patients with CRC; for example,
AXIN2 variations are associated with poor prognosis [9].
KRAS mutations are known to contribute to the initiation
of CRC and are used as a predictive biomarker for survival
in these patients [10].

The immune microenvironment plays an important
role in the progression of CRC [11–13]. As immunother-
apy constitutes standard treatment for the disease [14], it
is essential to improve understanding on the immune sta-
tus of these tumors to improve treatment. Numerous stud-
ies have investigated the relation between the immune
system and CRC; infiltration by immune cells is a prog-
nostic biomarker in this disease [15]. Ge et al. demon-
strated the immune infiltration and related gene
expression profiles in CRC [16]; their findings may aid
the selection of therapeutic targets and provide individual-
ized therapeutic strategies. Notably, genomic alterations,
such as those in BCL9L, RBM10, CTCF, and KLF5, corre-
late with immune cell infiltration in CRC [17].

In the present study, we obtained somatic mutation data
of CRC patients from The Cancer Genome Atlas (TCGA)
database and analyzed immune microenvironment changes
mediated by somatic mutations. We also constructed an
immune-feature based prognostic model for predicting
immune infiltration features, immunotherapy responsive-
ness, cancer stemness, and the outcomes of patients with
CRC.

2. Materials and Methods

2.1. Data Acquisition and Processing. For the training set,
data pertaining to somatic mutations, gene expression pro-
files, and clinical parameters were acquired from the colon
adenocarcinoma (COAD) and rectum adenocarcinoma
(READ) TCGA cohorts. TCGAbiolinks R package [18] was
employed to obtain gene expression and clinical data.
Somatic mutation data were downloaded and visualized
using the maftools R package [19]. Independent cohorts
were employed for externally validating the robustness of
the prognostic model. The raw count data were normalized
by the transcripts per million (TPM) method and then
transformed to log2 (TPM + 1). Data pertaining to the gene
expression profile and clinical parameters of the validation
set were acquired from the Gene Expression Omnibus
(GEO) dataset (https://www.ncbi.nlm.nih.gov/geo/). For
the immunotherapy cohort, data was acquired from the
clinic trail of atezolizumab (anti-PD-L1 agent) via R package
“IMvigor210CoreBiologies.”

2.2. Acquisition of Differentially Expressed Genes and Gene
Enrichment Analysis. The Limma R package was employed
to obtain the differentially expressed genes (DEGs) under
the threshold P value of <0.05 and fold change ðFCÞ > 1:3
or <-1.3. Functional enrichment was performed to further
analyze the underlying biological function of the DEGs.
The Gene Ontology (GO) [20] dataset including molecular
function, biological pathways, and cellular components and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[21] dataset were enrolled for functional enrichment analy-

sis. The clusterProfiler [22] package in R was employed to
analyze the GO function of the DEGs and enrich the KEGG
pathway.

2.3. Comparison of Tumor Microenvironment among
Clusters. The CIBERSORT R package [23] was applied to
calculate the infiltration proportion of the 22 immune cell
subtypes. Normalized TCGA-COAD and TCGA-READ
expression data were included for immune infiltration pro-
portion analysis. The relative expression of 22 tumor micro-
environment infiltrating cells was calculated in each sample.
Cancer stemness was evaluated based on the one-class logis-
tic regression according to [24] research (https://
bioinformaticsfmrp.github.io/PanCanStem_Web/).

2.4. Identification of Immune Subtypes. Univariate Cox
regression was first performed to compare the impact of
the DEGs on patient outcomes between the TTN-mutant
and wild-type groups. The three immune subtypes were then
identified by consensus clustering analysis based on the
selected genes. Consensus clustering analysis was performed
by the ConsensusClusterPlus R package [25].

2.5. Construction of the Immune Feature-Based Prognostic
Model (Immune Suppressive Score). DEGs between the
immune suppressive and immune active CRC subtypes were
selected for prognostic model construction. Univariate Cox
regression was employed to analyze the correlation between
overall survival (OS) and gene expression levels. Genes with
P values of <0.01 were selected for subsequent prognostic
model construction. Features were selected and assessed
for their contribution as independent prognostic factors for
patient survival using least absolute shrinkage and selection
operator (LASSO) regression analysis, which was performed
by the glmnet R package. The prognostic model including 25
genes was constructed by multiplying the regression coeffi-
cients (β) derived from the LASSO regression model with
their messenger ribonucleic acid (mRNA) expression levels.
The ISS based on the model was calculated as follows:

ISS =〠Gene coefficient ∗Gene expression level: ð1Þ

The immune suppressive score (ISS) of each sample was
calculated based on the prognostic model. Samples were
divided into the high-ISS group and low-ISS group based
on the optimal cut-off value which is determined by the R
package “survival.” The receiver operating characteristic
(ROC) curves of the high- and low-ISS groups were analyzed
and visualized using the survivalROC R package.

2.6. Statistical Analysis. Statistical analysis was performed
using R 3.6.3 (https://www.r-project.org/). Continuous vari-
ables were analyzed using the Wilcoxon and Kruskal-Wallis
tests for paired samples and three groups, respectively.
Patient outcomes in the different clusters were compared
using the log-rank test. P < 0:05 was considered statistically
significant, unless specified otherwise.
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Figure 1: Continued.
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3. Results

3.1. TTN Mutations Were the High-Frequency Somatic
Mutation Type That Correlated to Patient Prognosis. As
shown in Figure 1(a), the 10 most common somatic muta-
tions in CRC are found in APC, TP53, KRAS, TTN, SYNE1,
PIK3CA, MUC16, FAT4, OBSCN, and RYR2.

Here, we analyzed the impact on the patient’s prognosis
of the 10 somatic mutation types (Figure 1(b)). Among the
10 mutations, only TTN mutations demonstrated significant
impact on patient outcomes (log-rank P = 0:0172, hazard
ratio ðHRÞ = 0:615, 95% confidence intervals (CI) 0.412-
0.917). On comparing patient prognosis between TTN-
mutant and wild-type groups, we found the prognosis of
the TTN-mutant group to be significantly poorer
(Figure 1(c), log-rank P = 0:0172). This finding indicated
that TTN mutations may represent a potential therapeutic
target and index for prognosis in patients with CRC.

3.2. Analysis of TTN Mutation-Mediated Immune
Characteristics. Based on our findings, TTN-mutant CRCs
were more likely to be advanced (Figure 2(a)). On further char-
acterization of the immune microenvironment of TTN-mutant
and wild-type cancers (Figure 2(b)), TTN-mutant tumors
showed higher levels of CD8+ T cell infiltration and immune
checkpoint expression, which inferred the immune microenvi-
ronment differences of TTN mutants and TTN wild types
(Figures 2(c) and 2(d)). This implied that TTN mutation-
mediated immune suppression of the microenvironment was

caused by high levels of immune checkpoint activation. In this
context, high levels of CD8+ T cell infiltration indicated poten-
tially greater responsiveness to immunotherapy. Identification
of the immune suppressive CRC subtype could therefore facili-
tate the selection of appropriate therapies for CRC in the clinic.

3.3. Identification of CRC Immune Subtypes. As TTN
mutants demonstrated a potentially immunotherapy-
sensitive immune suppressive microenvironment, we fur-
ther analyzed the biological heterogeneity between TTN-
mutant and wild-type cases. First, we acquired the DEGs
between the TTN-mutant and wild-type cases and per-
formed enrichment analysis to analyze the biological func-
tions mediated by the DEGs (Figure S1); DEGs related to
patient prognosis were then identified. Overall, 22 genes
were selected for subtype identification. Based on the
findings, we performed consensus clustering analysis to
identify the CRC immune subtypes (Figures 3(a) and
3(b)). This led to the identification of the immune active,
immune transition, and immune suppressive CRC
subtypes (Figure 3(c)). On comparing the immune
infiltration level of the three CRC immune subtypes, we
found that the immune suppressive subtype had the
highest CD8+ T cell infiltration level among the three
subtypes; this indicated the potential responsiveness of the
immune suppressive CRC subtype to immunotherapy
(Figure 3(d)). Our results also indicated that the immune
suppressive subtype had the highest level of expression of
the seven immune checkpoints (Figure 3(e)). This implied

p = 0.0172
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Figure 1: Correlation between TTN mutations and patient prognosis: (a) somatic mutation landscape of CRC patients; (b) correlation
between patient prognosis and somatic mutations; (c) TTN mutations correlated with poor prognosis.
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Figure 2: Influence of TTN mutations on the CRC immune microenvironment. (a) Sankey diagram representing the distribution of
clinicopathological features in TTN-mutant and wild-type tumors; (b) immune infiltration status of TTN-mutant and wild-type tumors;
(c) comparison of immune infiltration levels between TTN-mutant and wild-type tumors; (d) comparison of immune checkpoint
expression levels in TTN-mutant and wild-type tumors.

6 Stem Cells International



1

Consensus matrix k =3

2
3

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Consensus CDF

CD
F

2
3
4

5
6

Consensus index
1.00.80.60.40.20.0

(b)

ACSL6
APOE
CFTR
CXCL11
ERFE
FOXD1
GPR143
HENMT1
HOXC6
MMP3
MUC20
NOX1
PCP4
PLCB4
PPP1R14C
PTPRD
REG4
RUBCNL
SELENBP1
SLC13A2
TNNT1
VAV3
B.cell.naive
B.cell.memory
B.cell.plasma
T.cell.CD8.
T.cell.CD4..naive
T.cell.CD4..memory.resting
T.cell.CD4..memory.activated
T.cell.follicular.helper
T.cell.regulatory..Tregs.
T.cell.gamma.delta
NK.cell.resting
NK.cell.activated
Monocyte
Macrophage.M0
Macrophage.M1
Macrophage.M2
Myeloid.dendritic.cell.resting
Myeloid.dendritic.cell.activated
Mast.cell.activated
Mast.cell.resting
Eosinophil
Neutrophil

Status
Gender
T
N
M
Stage
Groups

Subtypes

Immune active

Immune transition

Immune suppressive

Stage

StageI

StageII

StageIII

StageIV

Not_reported

StageIIIA

StageIIIB

StageIIIC

StageIVA

StageIVB

StageIIA

StageIIB

StageIIC

StageIA

M

M0

M1

MX

M1a

M1b

MX

Not_reported

N

N0

N1

NX

Not_reported

N2

N1a

N1b

N1c

N2a

N2b

T

T1

T2

T3

T4

Tis

Not_reported

T4a

T4b

Gender

FEMALE

MALE

Status

Alive

Dead

Not_reported

−2

0

2

4

Z Score

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎
⁎⁎⁎

⁎⁎

(c)

Figure 3: Continued.

7Stem Cells International



0.0

0.1

0.2

0.3

0.4

In
fil

tr
at

io
n 

le
ve

l

Subtypes

Immune active

Immune transition

Immune suppressive

B.
ce

ll.
m

em
or

y

B.
ce

ll.
na

iv
e

B.
ce

ll.
pl

as
m

a

M
ac

ro
ph

ag
e. 

M
1

M
on

oc
yt

e

N
eu

tr
op

hi
l

N
K.

ce
ll.

ac
tiv

at
ed

T.
ce

ll.
CD

4.
m

em
or

y.
ac

tiv
at

ed

T.
ce

ll.
CD

4.
m

em
or

y.
re

sti
ng

T.
ce

ll.
CD

8

T.
ce

ll.
fo

lli
cu

la
r.h

el
pe

r

T.
ce

ll.
re

gu
la

to
ry

.T
re

gs

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎

(d)

0

2

4

6

CD274 CTLA4 PDCD1 PDCD1LG2 TIGIT

Ex
pr

es
sio

n 
le

ve
l

Subtypes

Immune active

Immune transition

Immune suppressive

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

HAVCR2 LAG3

(e)

Figure 3: Identification of the three immune subtypes of CRC: (a, b) identification of CRC immune subtypes based on consensus clustering
analysis; (c) immune landscape of the three CRC immune subtypes; (d) comparison of immune infiltration levels among the three immune
subtypes; (e) comparison of immune checkpoint expression levels among the three immune subtypes.
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that the immune suppression in this subtype was mediated
by high activity of the immune checkpoints and that the
CD8+ T cells of the microenvironment may have an
exhausted phenotype.

3.4. Construction and Validation of the Immune Feature-
Based Prognostic Model. We initially acquired DEGs
between the immune suppressive and immune active CRC
subtypes (Figure 4(a)). To further analyze the biological het-

erogeneity between the two subtypes, we employed enrich-
ment analysis to explore the biological characteristics
mediated by DEGs. The results of the enrichment analysis
are shown in Figure S2.

To support clinical application, we constructed an
immune feature-based gene prognostic model (providing
an ISS) to predict patient outcomes using a machine
learning-based method. Based on the LASSO regression
results, 25 genes were selected to construct the gene
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Figure 4: Construction of the immune feature-based prognostic model: (a) volcano plot representing the DEGs between the immune
suppressive and immune active CRC subtypes; (b, c) LASSO regression was employed to construct the model; (d) coefficients of the
selected genes; (e) distribution of the high- and low-ISS groups in the training cohort; (f) comparison of patient prognosis between the
high- and low-ISS groups in the training cohort; (g) ROC curve for ISS in the training cohort.
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prognostic model (Figures 4(b) and 4(c)); the regression coef-
ficients of the 25 genes were then calculated (Figure 4(d)). To
validate the efficiency of the ISS, we divided patients into high-
and low-ISS groups (Figure 4(e)). Kaplan-Meier survival anal-
ysis demonstrated that patients with high ISS had significantly
poorer outcome (Figure 4(f), P < 0:0001). The result further
validated the prediction efficiency of the ISS. ROC analysis
indicated that the model had best prediction efficiency for 3-
year patient outcomes (Figure 4(g)).

3.5. External Validation of the Gene Prognostic Model. Three
external datasets, namely, GSE17536, GSE38832, and
GSE39582, were used to validate the gene prognostic model.
Patients were divided into high- and low-ISS groups to verify
the efficiency of the model (Figures 5(a), 5(d), and 5(g)).
Kaplan- Meier survival curves of the three datasets revealed
significant differences in OS between the groups. High-ISS
groups had markedly shorter duration of OS than the low-
ISS groups (Figures 5(b), 5(e), and 5(h)). On ROC analysis
in GSE17536, the areas under the curve (AUCs) for 1-, 3-,
and 5-year OS were 0.618, 0.587, and 0.591, respectively
(Figure 5(c)). In GSE38832, the AUCs for 1-, 3-, and 5-
year OS were 0.621, 0.655, and 0.599, respectively
(Figure 5(f)). In GSE39582, the corresponding AUCs were
0.552, 0.603, and 0.582, respectively (Figure 5(i)). These
results confirmed the validity of our model. External vali-
dation indicated that the model performed well in predict-
ing outcomes in CRC patients.

3.6. ISS Had Considerable Potential in Predicting the
Immune Features and Immunotherapy Responsiveness of
CRC. We subsequently analyzed the correlation between
cancer stemness, immune checkpoint expression, immune
infiltration levels, and ISS and ISS component genes
(Figure 6(a)). We found that the expression level of the
MID2 gene correlated positively with that of all immune
checkpoints and cancer stemness (Figure 6(a)). In
addition, the ISS predicted the immune cell subgroup
and immune microenvironment subtype in the immuno-
therapy cohort (Figures 6(b) and 6(c)). Our results also
demonstrated that high ISS was predictive of better immu-
notherapy responsiveness and outcomes during immuno-
therapy (Figures 6(d) and 6(e)).

4. Discussion

CRC remains a global health problem. As conventional
markers and/or staging methods do not appropriately
address the heterogeneity of CRC, novel prognostic models
are urgently needed for improving patient outcomes.

Somatic mutations play an important role in CRC [26,
27]. The ten most common genes with high mutation fre-
quency in CRC were screened in this study; these included
APC, TP53, TTN, KRAS, SYNE1, MUC16, PIK3CA,
FAT4, RYR2, and OBSCN. We then evaluated the associa-
tion between clinical outcomes and these genes. Our find-
ings suggested that only TTN mutations were found to be
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Figure 5: ISS as a predictor of patient prognosis in the validation cohorts: (a) distribution of high- and low-ISS groups in the GSE17536
cohort; (b) comparison of patient prognosis between the high- and low-ISS groups of the GSE17536 cohort; (c) ROC curve for ISS in the
GSE17536 cohort; (d) distribution of the high- and low-ISS groups in the GSE38832 cohort; (e) comparison of patient prognosis in the
high- and low-ISS groups of the GSE38832 cohort; (f) ROC curve for ISS in the GSE38832 cohort; (g) distribution of the high- and low-
ISS groups in the GSE39582 cohort; (h) comparison of patient prognosis between the high- and low-ISS groups of the GSE39582 cohort;
(i) ROC curve for ISS in the GSE39582 cohort.
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negatively associated with outcomes in CRC patients; this
indicated that TTN may play an important role in CRC
(Figure 1). TTN transcribes a mRNA that encodes titin.
TTN mutations have been found to be associated with vari-
ous diseases including dilated cardiomyopathy, centronuc-
lear myopathy, and squamous cell carcinoma of the lung,
among others [28–30].

We identified DEGs between TTN-mutated and wild-type
CRC and compared these groups; 88 and 115 genes in the
TTN-mutant group were upregulated and downregulated,
respectively. Enrichment analysis was performed using these
genes. The upregulated genes were enriched in various path-
ways including the viral protein interaction with cytokine and
cytokine receptor, T helper 17 cell differentiation, and tumor
necrosis factor signaling pathways, among others. The down-
regulated genes were enriched in the Wnt signaling and PPAR
signaling pathways, among others. As some of the enriched
pathways were related to the immune system [18, 31, 32], we
evaluated the expression of immune checkpoints in the TTN-
mutant and wild-type groups. The expression of CD274,
CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, and TIGIT
was higher in the TTN-mutant group than in the wild-type
group. In addition, high CD8+ infiltration levels were observed
in the TTN-mutant group. This finding suggested that TTN
mutation-mediated tumor microenvironments are associated
with immune inflamed tumor subtypes and may show high
responsiveness to immunotherapy.

We further analyzed the immune status of the identified
3 subtypes. The immune suppressive subtype demonstrated

the highest levels of CD274, CTLA4, HAVCR2, LAG3,
PDCD1, PDCD1LG2, and TIGIT expression. In addition,
the immune suppressive subtype had a higher level of CD8
+ T cell and immune suppressive cell (such as Treg cells)
infiltration compared to the immune active subtype. In this
tumor microenvironment, CD8+ T cell will perform the dys-
function phenotype under the microenvironment immune-
suppressive factors (immune checkpoints, immune suppres-
sive cell). This phenotype has the high potential to be
reversed by the immune checkpoint blockades. These results
indicated that the immune suppressive subtype may poten-
tially be sensitive to immunotherapy.

We subsequently acquired the DEGs between the immune
suppressive and immune active subtypes and constructed an
immune feature-based prognostic model to predict the out-
comes and immune status of these patients. Some of the ISS
component genes showed prognostic potential in CRC. For
example, elevated Rab11-family interacting protein 4
(encoded by RAB11FIP4) expression in CRC tissues was asso-
ciated with poor prognosis [33]. A reduction in SPINK4
expression in CRC tissues was also associated with poor prog-
nosis [34]. We further validated the prognostic efficiency of
ISS in external datasets to test model robustness; the findings
showed that our prognostic model successfully predicted the
prognosis of patients in both training and validation sets.

In this context, the characteristics of the immune micro-
environment decide responsiveness to immunotherapy [13,
35–37]. During analysis, we found that the ISS and its com-
ponent genes demonstrated correlation with features
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Figure 6: ISS as a predictor of tumor immune status and immunotherapy responsiveness: (a) correlation between the ISS and ISS
component genes and tumor mutation burden and immune features; (b) comparison of ISS between different immune cell groups; (c)
comparison of ISS between different immune subtypes; (d) comparison of immunotherapy responsiveness between the high- and low-ISS
groups; (e) comparison of patient prognosis between the high- and low-ISS groups.
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including cancer stemness, immune infiltration, and
immune checkpoint expression. In the immunotherapy
cohort, ISS could effectively predict patient outcomes and
responsiveness to immunotherapy. These results indicated
that the ISS has considerable potential for clinical applica-
tion to identify candidates suitable for immunotherapy.

Meanwhile, MID2 was the ISS component gene with the
second highest coefficient and significantly positively corre-
lated with the immune checkpoint expression. Recent research
has demonstrated that MID2 plays an essential role in breast
and ovarian cancer progression and can be a potential cancer
biomarker [38–40]. Our findings suggest that MID2 has the
great potential to be explored as the maker of immune check-
point blockade response and cancer stemness.

5. Conclusion

In this study, we constructed a TTN mutation-related and
immune feature-based novel prognostic model for CRC
patients. This prognostic model was related to the microen-
vironment status of CRC and may be used as an indicator
for individualized therapy; the model may also be used in
predicting the clinic benefit obtained from immunotherapy.
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Supplementary 1. Figure S1: enrichment analysis for DEGs
between TTN-mutant and wild-type tumors. a: enrichment
analysis for upregulated genes based on the KEGG database.
b: enrichment analysis for upregulated genes based on the
GO database. c: enrichment analysis for downregulated
genes based on the KEGG database. d: enrichment analysis
for downregulated genes based on the GO database.

Supplementary 2. Figure S2: enrichment analysis for DEGs
between immune suppressive and immune active CRC sub-
types. a: enrichment analysis for upregulated genes based on
the KEGG database. b: enrichment analysis for upregulated
genes based on the GO database. c: enrichment analysis for
downregulated genes based on the KEGG database. d:
enrichment analysis for downregulated genes based on the
GO database.
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