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Aging is an inevitable process that biological changes accumulate with time and results in increased susceptibility to different
tumors. But currently, aging-related genes (ARGs) in osteosarcoma were not clear. We investigated the potential prognostic
role of ARGs and established an ARG-based prognostic signature for osteosarcoma. The transcriptome data and corresponding
clinicopathological information of patients with osteosarcoma were obtained from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases. Molecular subtypes were generated based on prognosis-related ARGs obtained
from univariate Cox analysis. With ARGs, a risk signature was built by univariate, least absolute shrinkage and selection
operator (LASSO), and multivariate Cox regression analyses. Differences in clinicopathological features, immune infiltration,
immune checkpoints, responsiveness to immunotherapy and chemotherapy, and biological pathways were assessed according
to molecular subtypes and the risk signature. Based on risk signature and clinicopathological variables, a nomogram was
established and validated. Three molecular subtypes with distinct clinical outcomes were classified based on 36 prognostic
ARGs for osteosarcoma. A nine-ARG-based signature in the TCGA cohort, including BMP8A, CORT, SLC17A9, VEGFA, GAL,
SSX1, RASGRP2, SDC3, and EVI2B, has been created and developed and could well perform patient stratification into the
high- and low-risk groups. There were significant differences in clinicopathological features, immune checkpoints and
infiltration, responsiveness to immunotherapy and chemotherapy, cancer stem cell, and biological pathways among the
molecular subtypes. The risk signature and metastatic status were identified as independent prognostic factors for
osteosarcoma. A nomogram combining ARG-based risk signature and metastatic status was established, showing great
prediction accuracy and clinical benefit for osteosarcoma OS. We characterized three ARG-based molecular subtypes with
distinct characteristics and built an ARG-based risk signature for osteosarcoma prognosis, which could facilitate prognosis
prediction and making personalized treatment in osteosarcoma.

1. Introduction

Osteosarcoma is the most common sarcoma mainly occur-
ring in teenagers and young adults around the whole world
[1]. It is highly aggressive, and the annual incidence of oste-
osarcoma is approximately 4.4 per million [2]. Though effec-
tive advancement in the treatment and prevention of

osteosarcoma has been made over the past decades, overall
survival (OS) of osteosarcoma patients is far from satisfac-
tory [3]. Osteosarcoma patients are prone to metastases,
and patients with metastatic osteosarcoma have a lower sur-
vival rate [4]. More than half of osteosarcoma patients die
from metastasis [5]. Meanwhile, osteosarcoma patients with
a poor response to chemotherapy usually have an unfavor-
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able prognosis [6]. The application of a risk-adapted strategy
to evaluate the therapy response and prognosis ahead of
therapy could improve personalized treatment. Therefore,
identifying novel prognostic markers for improving the OS
of osteosarcoma patients is particularly important.

Aging is characterized by gradual functional deterioration
over time and results in increasing susceptibility to a variety of
diseases, including cancers and cardiovascular, neurodegener-
ative, metabolic, and neoplastic diseases [7–10]. Cellular
senescence is closely associated with aging [11, 12], and accu-
mulating evidence suggested that senescence cells have a
highly complex effect on tumors and can be both beneficial
and detrimental. It can not only irreversibly arrest cell growth
and inhibit cancer development [13–15] but also have the
opposite effect and promote tumor malignancy via the secre-
tion of senescence-associated secretory phenotype factors by
the paracrine pathway [16, 17]. In the generation and regula-
tion of cell aging, aging-related genes (ARGs) play a crucial
role. It was confirmed that ARGs can not only inhibit tumors
by regulating the cellular senescence of tumor cells but also
potentially stimulate the initiation, metastasis, and develop-
ment of tumors [13, 14, 18–20]. It has attracted great attention
to identify key ARG characteristics and induce senescence of
tumor cells [13]. The diagnostic or prognostic value of the
ARG-based signature as biomarkers in malignancy has been
widely studied [21, 22]. But the underlying mechanism and
prognostic value of ARGs in osteosarcoma remain unclear,
and a satisfactory ARG-based prognostic signature for osteo-
sarcoma patients has not been reported.

In this study, by taking advantage of the TCGA database,
we established molecular subtypes for osteosarcoma on the
basis of prognosis-related ARGs and constructed an ARG-
based risk signature for OS prediction of osteosarcoma
patients. We compared the difference in clinicopathological
features, immune infiltration, immune checkpoints, immu-
notherapy and chemotherapy response, and biological path-
ways based on molecular subtypes and the risk signature.
The prognostic significance of the ARG-based prognostic
signature was validated in GEO cohorts, and a nomogram
composed of some clinicopathological factors and the risk
signature was generated for providing an accurate prediction
of osteosarcoma prognosis.

2. Materials and Methods

2.1. Data Collection and Preparation. Gene expression files
and matched clinicopathological data of osteosarcoma
patients were retrieved from TCGA and GEO. We removed
cases without complete clinical information, follow-up of
shorter than 30 days, or cases without status information.
85 patients from the TCGA cohort were retained as a train-
ing set, and 86 samples from the GSE21257 (53 cases) and
GSE16091 (33 cases) cohorts were utilized for validation.
The median value was taken as the gene expression value
when a gene ID corresponded to multiple probes in the
GEO cohorts or when multiple gene symbols existed in the
TCGA cohort. From the Human Aging Genomic Resources
(https://genomics.senescence.info/), a total of 307 human
ARGs were obtained (Supplementary Table 1).

2.2. Consensus Clustering. The univariate Cox regression
analysis filtered prognosis-correlated ARGs, and a heatmap
was used to display the correlation among these prognosis-
related ARGs. Consensus clustering analysis was conducted
to generate ARG-related molecular subtypes using the “Con-
sensusClusterPlus” R package [23]. To compare the progno-
sis among the clusters, Kaplan-Meier (K-M) analysis was
conducted.

2.3. Developing and Validating the Prognostic ARG
Signature. The differentially expressed ARGs (deARGs)
among the molecular subtypes were acquired by “limma”
package under the screening conditions as the false
discovery rate ðFDRÞ < 0:05 and jlog 2 ½ fold change ðFCÞ�j >
log 2ð2Þ [24]. Then, prognosis-related ARGs were identified
from the deARGs by univariate Cox regression analysis in
the TCGA cohort. LASSO Cox regression analysis was
applied to shrink the ARG number. Finally, to establish the
prognostic signature, multivariate Cox regression analysis
was then implemented. The formula for a risk signature
was as follows:

Risk Score = 〠
n

k=0
βi × Expi, ð1Þ

where βi represents the coefficient and Expi represents
the normalized expression level of a gene. Osteosarcoma
cases in the TCGA cohort and GEO cohort were divided
into the high- and low-risk groups, according to the optimal
cut-off point value of the risk score determined by maxi-
mally selected rank statistics using the “maxstat” R package
(https://cran.r-project.org/web/packages/maxstat/index
.html); here, a significant difference in prognosis between the
two groups was detected. OS differences between the risk
groups were compared by K-M analysis. The accuracy of
the risk signature prediction was estimated by time-
dependent ROC analysis in two sets (the validation and
training sets).

2.4. Immune Infiltration, Chemotherapeutic Sensitivity, and
Immunotherapy Response Predictions. The number of
immune cells in the TCGA cohort was calculated using the
xCell algorithm (https://xcell.ucsf.edu/) [25] that conducted
cell type enrichment analysis for 64 immune cells based on
gene expression data. The “estimate” R package was applied
to estimate and extrapolate immune and stromal cell frac-
tion in tumor samples [26]. In different groups, immune
checkpoint expressions were compared. According to clus-
ters and risks, to predict the clinical response to immune
checkpoint inhibitors, the Tumor Immune Dysfunction
and Exclusion (TIDE) (http://tide.dfci.harvard.edu/) algo-
rithm was applied [27]. For predicting the chemosensitivity
of osteosarcoma to several common anticancer drugs (meth-
otrexate, paclitaxel, cisplatin, and doxorubicin), the “pRRo-
phetic” R package was employed for determining half-
maximal inhibitory concentration (IC50) values from osteo-
sarcoma gene expression levels [28].
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2.5. Gene Set Enrichment Analysis (GSEA). To analyze the
potential differences of pathways on the basis of molecular
subtypes and ARG-related risk groups, GSEA was per-
formed using hallmark gene sets as reference. The “GSVA”
R package was used to carry out GSEA and pathways with
the FDR < 0:05 being significantly enriched [29].

2.6. Establishment of a Predictive Nomogram. The decision
tree model was applied to classify subgroups based on age,
gender, metastatic status, and risk score by using the “rpart”
R package (https://cran.r-project.org/web/packages/rpart/
index.html). The independent prognostic factors of OS for
osteosarcoma were identified by multivariate Cox regression
analysis. By the “rms” R package (https://cran.r-project.org/
web/packages/rms/index.html), we developed a nomogram
integrating independent prognostic clinicopathological fac-
tors and the risk signature in the TCGA cohort. To evaluate
the prediction accuracy between the actual observations and
the predicted 1-, 3-, and 5-year OS probabilities, calibration
curves were utilized. Time-dependent ROC curves assessed
the nomogram discriminate ability. Decision curve analysis
(DCA) tested the clinical applicability of the nomogram
using “rmda” R package [30].

2.7. mRNA Expression-Based Stemness Indices (mRNAsi).
Based on the one-class logistic regression (OCLR) algorithm,
the stemness index model trained from the Progenitor Cell
Biology Consortium database was used to calculate tumor
stemness. The stemness index can be used to measure how
similar tumor cells are to stem cells, with the stemness index
being a value between 0 (lowest) and 1 (highest). The closer
the stemness index is to 1, the stronger the stem cell proper-
ties. We calculated transcriptome feature scores for the
cohorts using the same Spearman correlation.

2.8. Statistical Analysis. The R software (v3.6.3) performed
all of the statistical studies. The correlation matrices were
conducted using the Pearson or Spearman correlation. The
Wilcoxon test was conducted for two-group comparisons.
Survival differences were compared using K-M curves with
a log-rank test. A P value < 0.05 was considered statistically
significant.

3. Results

3.1. Molecular Subtypes of ARG in Osteosarcoma. We firstly
identified 36 ARGs which were associated with osteosar-
coma prognosis (Figure 1(a)). According to the expression
profiles of the 36 ARGs, TCGA osteosarcoma patients were
classified into C1, C2, and C3 with distinct outcomes
(Figures 1(b)–1(d)). Those in the C3 subtype showed a lon-
ger survival than C1 and C2 subtypes (P < 0:0001,
Figure 1(e)). Additionally, the expression level of the 36
prognosis-related ARGs is illustrated in Figure 1(f). Twelve
genes belong to the “risk” group and are overall highly
expressed in the C1 subtype, while the rest 24 genes were
commonly upregulated in the C3 subtype and regarded as
the “protective” genes. Moreover, as shown in Figure 1(g),
osteosarcoma patients in the C1 subtype had higher tumor
metastasis and mortality rate, followed by C2 and C3. Those

data showed that 3 subtypes had clinical significance and
may provide value for clinical diagnosis.

3.2. Differences in Immune Infiltration, Immunotherapy and
Chemotherapy Response, and Biological Pathways among
Molecular Subtypes. The relative abundance of 64 immune
cells in the TCGA cohort was assessed. Our data demon-
strated that the estimated proportion of 40.625% (26/64)
of immune cells were significantly different among the
three subtypes (Figure 2(a)). The C3 subtype showed a sig-
nificantly higher immune score than the C1 and C2 sub-
types, indicating the highest immune infiltration of the
C3 subtype (Figure 2(b)). Meanwhile, there were signifi-
cant differences of the expression in the immune
checkpoint-related gene among different subtypes, as
shown in Figure 2(c). Subsequently, the TIDE algorithm
was applied to assess the potential response to immuno-
therapy in the three molecular subtypes. As shown in
Figure 2(d), we found that the C2 subtype has a higher
TIDE score than C2 and C3 subtypes, indicating that oste-
osarcoma patients in the C1 and C3 clusters would be
more reactive to immunotherapy compared with those in
the C2 cluster. The C2 subtype was characterized by a sig-
nificantly higher T cell exclusion and cancer-associated
fibroblast (CAF) score than C1 and C3 subtypes, while
the C3 subtype presented significantly higher myeloid-
derived suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs), as well as a lower T cell dysfunc-
tion score. In addition, osteosarcoma patients in the C1
subtype showed a significantly lower IC50 to cisplatin than
those in the C2 and C3 subtypes, whereas the C2 subtype
showed a significantly lower IC50 to doxorubicin and pac-
litaxel than C1 and C3 subtypes, indicating that osteosar-
coma patients in C1 were more sensitive to cisplatin,
while patients in the C2 subtype were more sensitive to
doxorubicin and paclitaxel (Figure 2(e)). Moreover, C1
had high mRNAsi (Supplementary Figure 1A).

3.3. Biological Pathways among Different Molecular Clusters.
GSEA was performed to reveal the potential biological
functions of the genes in the three molecular clusters. The
results showed that the enriched pathways in these three
subtypes are closely related to immunity. As shown in
Figure 3(a), there are 31, 24, and 24 pathways enriched in
the C1, C2, and C3 subtypes, respectively. In the C1
subtype, the enriched terms mainly consisted of suppressed
immune-related pathways and activated cell cycle-related
pathways. The immune-related pathways enriched in the
C2 subtype were commonly suppressed, while the
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI-
TION, HALLMARK_GLYCOLYSIS, HALLMARK_HYP-
OXIA, and HALLMARK_UV_RESPONSE_DN were
activated. Most of the enriched immune-related pathways
in the C3 subtype were activated. Additionally, the expres-
sion of HIPPO, MYC, and RAS was also significantly differ-
ent among the three clusters (Figure 3(b)), which
manifested as a higher expression level in the C2 subtype
than the C1 and C3 subtypes.
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Gene p.value Hazard ratio (95% CI)
MYC 0.000538 2.04 (1.36-3.06)
MXI1 0.000183 1.87 (1.35-2.6)
SUN1 0.0052 1.74 (1.18-2.56)
NUDT1 0.0179 1.66 (1.09-2.51)
TERT 7.87e-05 1.63 (1.28-2.08)
INSR 0.0155 1.57 (1.09-2.25)
IGF1R 0.00846 1.55 (1.12-2.15)
VEGFA 0.00893 1.55 (1.12-2.15)
PYCR1 0.0383 1.5 (1.02-2.19)
NOG 0.0199 1.49 (1.07-2.09)
BUB3 0.0416 1.45 (1.01-2.07)
LRP2 0.034 1.34 (1.02-1.75)
IGF2 0.0497 0.692 (0.479-1)
BAK1 0.0348 0.68 (0.475-0.973)
C1QA 0.042 0.667 (0.452-0.985)
UBE2I 0.0355 0.662 (0.45-0.972)
FAS 0.0452 0.656 (0.435-0.991)
MLH1 0.0272 0.656 (0.451-0.954)
ERCC2 0.0299 0.642 (0.43-0.958)
PTPN1 0.0312 0.636 (0.421-0.96)
EGFR 0.0185 0.618 (0.414-0.922)
IL2RG 0.0377 0.616 (0.39-0.973)
GRN 0.0102 0.612 (0.421-0.89)
STAT5A 0.00561 0.588 (0.404-0.856)
CEBPA 0.00822 0.569 (0.375-0.864)
AGTR1 0.0213 0.558(0.34-0.917)
CAT 0.00176 0.554 (0.383-0.802)
ARNTL 0.00429 0.54 (0.354-0.824)
STAT5B 0.00135 0.537(0.367-0.785)
MAP3K5 0.0043 0.519 (0.331-0.814)
EPS8 0.00132 0.509 (0.337-0.768)
ARHGAP1 0.00129 0.503 (0.331-0.765)
PML 0.00371 0.491 (0.304-0.794)
ERCC4 0.000664 0.49 (0.325-0.739)
PPARG 0.000849 0.483 (0.315-0.741)
GTF2H2 0.00703 0.477 (0.278-0.817)
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Figure 1: Continued.
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3.4. Establishment and Evaluation of a Prognostic ARG-
Based Risk Signature. 495 differentially expressed ARGs were
obtained by intersecting C1 vs. C2, C1 vs. C3, and C2 vs. C3,
using the “limma” package. A total of 104 ARGs (P < 0:01)
which contribute to osteosarcoma prognosis were screened
from the 495 ARGs using univariate Cox regression analysis
(Figure 4(a)). According to the results of the LASSO analy-
sis, nineteen prognostic ARGs were further screened out
based on the optimal lambda value (0.0594) (Figures 4(b)
and 4(c)). Ultimately, we identified 9 ARGs in the risk score
by multivariate Cox regression analysis (Figure 4(d)). Risk
score = +0:506∗CORT − 0:714∗RASGRP2 − 0:822∗SDC3 +
0:728∗BMP8A + 0:271∗GAL + 0:408∗SLC17A9 − 1:04∗EVI2
B + 0:37∗VEGFA − 0:365∗SSX1. Based on the risk score,
osteosarcoma patients were successfully separated into the
high- and low-risk groups (Figure 5(a)). Our results showed
that patients with high risk exhibited shorter OS (P < 0:0001;
Figure 5(c)) than those with low risk. The predictive efficacy
of the risk signature was verified by the ROC curve
(Figure 5(b)), with the AUC value for 1-, 3-, and 5-year OS
being 0.87, 0.92, and 0.9, respectively. This was further vali-
dated in the GSE21257 and GSE16091 cohorts, as shown in
Figures 5(d)–5(g). In addition, we determine the mRNAsi
between the high group and the low group and found that
there was no significance between the high group and the
low group in the TCGA, GSE21257, and GSE16091 cohorts
(Supplementary Figure 1B-D).

3.5. Correlation of Clinicopathological Characteristics with
Risk Signature. We analyzed the relationship between clin-
icopathological features and the ARG-based risk model.
The results showed that the risk score was significantly
different in groups classified by age, metastasis, status,
and molecular clusters (Figure 6(a)). Meanwhile, the
high-risk group was characterized by a significantly higher
metastasis, mortality rate, and proportion of C1 subtype
than the low-risk group (Figure 6(b)). There was no signif-

icant difference between the high- and low-risk groups
with regard to age and gender. Stratification analysis was
conducted according to age, gender, and metastasis, and
K-M survival analyses revealed that high-risk patients
had significantly unfavorable survival outcomes compared
with low-risk patients (Figure 6(c)). It suggested that the
prognostic value of risk signature was applicable to other
clinical features.

3.6. Immune Infiltration and Biological Pathways between
Low- and High-Risk Groups. As shown in Figure 7(a),
eleven of the 64 tumor immune cell types showed signifi-
cantly different abundance between the high- and low-risk
groups. In the low-risk group, the multinucleated variant
endothelial cells, macrophages M1, macrophages, lym-
phatic endothelial cells, lentivirus-induced dendritic cells
(iDC), hematopoietic stem cells (HSC), fibroblasts, endo-
thelial cells, and chondrocytes had higher infiltration levels
than the high-risk group, while plasma cells and melano-
cytes in the high-risk group were significantly higher com-
pared with the low-risk group in the TCGA cohort. The
correlations between risk score and immune cell infiltra-
tion were heatmapped in Figure 7(b). It showed that the
risk score was significantly negatively correlated with the
infiltration level of M1 macrophages, lymphatic endothelial
cells, and HSC. Additionally, compared with the high-risk
group, patients in the low-risk group showed a higher
stromal score and immune score, as well as a higher ESTI-
MATE score (Figure 7(c)). Biological pathways with a cor-
relation greater than 0.3 are illustrated in Figure 7(d), and
the majority of biological pathways were negatively corre-
lated with the risk score. These findings indicated that the
low group had higher immune infiltration.

3.7. Risk Signature Predicts Chemotherapy and
Immunotherapy Response. We assessed the practicability of
the risk signature in guiding systemic therapies in TCGA

Cluster Age Gender Metastatic Status

C1
(n = 19)

C2
(n = 28)

C3
(n = 38)

p = 0.4198 p = 0.3132 p = 0.008321 p = 1.117e−07

<=14

>14
Female

Male

No

Yes
Alive

Dead

(g)

Figure 1: Construction of ARG-based patterns in osteosarcoma from the TCGA cohort. (a) The forest map showed multivariable Cox
analysis of prognostic signatures. (b) Consensus cumulative distribution function (CDF) diagram with different k values. (c) Delta area
plot for relative change in the area under CDF curve for k compared to k − 1. (d) Consensus matrix when number of groups ðkÞ = 3. In
the consensus matrix, white meant that samples were impossibly clustered together, and dark blue meant that samples were always
clustered together. Both rows and columns of the matrix represented samples. (e) Kaplan-Meier curves for OS of three molecular
subtypes. The survival probabilities were compared with log-rank test. (f) Clustering analysis of the expression of the 36 prognostic
ARGs. (g) Comparison of clinicopathological characteristics among the C1, C2, and C3 clusters in the TCGA cohort.
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cohort. The expression of 11 immune checkpoints was sig-
nificantly different between the high- and low-risk groups,
including CD200R1, CD274, CD48, HAVCR2, HHLA2,
LAG3, LAIR1, LGALS9, TMIGD2, TNFSF14, and TNFSF9
(Figure 8(a)). As shown in Figure 8(b), patients in the
high-risk group had a higher MDSC score than those in

the low-risk group. Nonetheless, there was no significant dif-
ference between the two risk groups with regard to the CAF
score, TAM.M2 score, T cell exclusion score, T cell dysfunc-
tion score, and TIDE score. The risk score showed signifi-
cant positive correlations with the MDSC score
(r = 0:45, P = 1:6e − 5), TAM.M2 score (r = 0:24, P = 0:025),

aD
C

A
di

po
cy

te
s

A
str

oc
yt

es
B.

ce
lls

Ba
so

ph
ils

CD
4.

_m
em

or
y_

T.
ce

lls
CD

4.
_n

ai
ve

_T
.ce

lls
CD

4.
_T

.ce
lls

CD
4.

_T
cm

CD
4.

_T
em

CD
8.

_n
ai

ve
_T

.ce
lls

CD
8.

_T
.ce

lls
CD

8.
_T

cm
CD

8.
_T

em cD
C

Ch
on

dr
oc

yt
es

Cl
as

s.s
w

itc
he

d_
m

em
or

y_
B.

ce
lls

CL
P

CM
P

D
C

En
do

th
el

ia
l_

ce
lls

Eo
sin

op
hi

ls
Ep

ith
el

ia
l_

ce
lls

Er
yt

hr
oc

yt
es

Fi
br

ob
la

sts
G

M
P

H
ep

at
oc

yt
es

H
SC iD

C
Ke

ra
tin

oc
yt

es
ly

_E
nd

ot
he

lia
l_

ce
lls

M
ac

ro
ph

ag
es

M
ac

ro
ph

ag
es

_M
1

M
ac

ro
ph

ag
es

_M
2

M
as

t_
ce

lls
M

eg
ak

ar
yo

cy
te

s
M

el
an

oc
yt

es
M

em
or

y_
B.

ce
lls

M
EP

M
es

an
gi

al
_c

el
ls

M
on

oc
yt

es
M

PP
M

SC
m

v_
En

do
th

el
ia

l_
ce

lls
M

yo
cy

te
s

na
iv

e_
B.

ce
lls

N
eu

ro
ns

N
eu

tr
op

hi
ls

N
K_

ce
lls

N
KT

O
ste

ob
la

st
pD

C
Pe

ric
yt

es
Pl

as
m

a_
ce

lls
Pl

at
el

et
s

Pr
ea

di
po

cy
te

s
pr

o_
B.

ce
lls

Se
bo

cy
te

s
Sk

el
et

al
_m

us
cl

e
Sm

oo
th

_m
us

cl
e

Tg
d_

ce
lls

T
1_

ce
lls

T
2_

ce
lls

Tr
eg

s
Im

m
un

eS
co

re
St

ro
m

aS
co

re
M

ic
ro

en
vi

ro
nm

en
tS

co
re

0.0

0.2

0.4

0.6

Es
tim

at
ed

 p
ro

po
rt

io
n ⁎⁎⁎ ns ns ⁎⁎ ns ⁎ ⁎⁎ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎⁎ ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns⁎ ⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎ ⁎⁎

(a)

St
ro

m
al

Sc
or

e

Im
m

un
eS

co
re

ES
TI

M
A

TE
Sc

or
e

Category

C1

C2

C3

−2000

0

2000

4000

Es
tim

at
ed

 p
ro

po
rt

io
n

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎

(b)

0

2

4

6

A
D

O
RA

2A

BT
LA

BT
N

L2

CD
16

0

CD
20

0

CD
20

0R
1

CD
24

4

CD
27

CD
27

4

CD
27

6

CD
28

CD
40

CD
40

LG

CD
44

CD
48

CD
70

CD
80

CD
86

CT
LA

4

H
A

V
CR

2

H
H

LA
2

IC
O

S

IC
O

SL
G

ID
O

1

ID
O

2

LA
G

3

LA
IR

1

LG
A

LS
9

N
RP

1

PD
CD

1

PD
CD

1L
G

2

TI
G

IT

TM
IG

D
2

TN
FR

SF
14

TN
FR

SF
18

TN
FR

SF
25

TN
FR

SF
4

TN
FR

SF
8

TN
FR

SF
9

TN
FS

F1
4

TN
FS

F1
5

TN
FS

F1
8

TN
FS

F4

TN
FS

F9

V
SI

R

V
TC

N
1

N
or

m
al

iz
ed

 g
en

e e
xp

re
ss

io
n 

ns ns ns ns ns ns ns ns ns ns ns⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎ ⁎ ⁎ ⁎⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎ ⁎

(c)

Group

C1

C2

C3

Kruskal-Wallis test p = 9.1e−06 Kruskal−Wallis test p = 6.5e−07 Kruskal−Wallis test p = 0.018 Kruskal−Wallis test p = t1.6e−07 Kruskal−Wallis test p = 0.00044 Kruskal−Wallis test p = 3.7e−06

0

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

M
D

SC

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

−0.2

0.0

0.2

CA
F

−0.1

0.0

0.1

TA
M

.M
2

−2

−1

0

1

2

Ex
cl

us
io

n

−1

0

1

2

D
ys

fu
nc

tio
n

−2

−1

0

2

3

TI
D

E

ns

*

ns

ns ⁎⁎

ns

ns⁎⁎

⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎

⁎ ⁎

⁎⁎⁎⁎

⁎⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎

(d)

Group

C1

C2

C3

−1.0

–0.5

0.0

0.5

1.0

C1 C2 C3
Methotrexate

Es
tim

at
ed

 IC
50

C1 C2 C3
Doxorubicin

C1 C2 C3
Cisplatin

C1 C2 C3
Paclitaxel

Kruskal-Wallis test p = 0.87 Kruskal-Wallis test p = 0.0013 Kruskal-Wallis test p = 0.0086 Kruskal-Wallis test p = 0.0029

−2.5

−2.0

−1.5

Es
tim

at
ed

 IC
50

2.0

2.5

3.0

3.5

Es
tim

at
ed

 IC
50

−4.0

−3.5

Es
tim

at
ed

 IC
50

ns

ns
ns

ns
ns

ns

⁎

⁎⁎⁎

⁎

⁎⁎ ⁎⁎

⁎⁎

(e)

Figure 2: Association of tumor immune infiltration and response to immunotherapy and chemotherapy with the molecular subtypes in the
TCGA cohort. (a) Differential expression analysis of immune cells. (b) Comparison of stromal score, immune scores, and ESTIMATE scores
in patients with different molecular patterns. (c) Comparison of immune checkpoint-related genes in patients with different molecular
patterns. (d) Comparison of MSDC score, CAF score, TAM.M2 score, T cell exclusion score, T cell dysfunction score, and TIDE score
among C1, C2, and C3 subtypes. (e) The sensitivity of patients in different molecular patterns to methotrexate, cisplatin, cyclopamine,
and paclitaxel. ns: no significance. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,and∗∗∗∗P < 0:0001.
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and T cell dysfunction score (r = 0:44, P = 2:3e − 5), as
shown in Figure 8(c). We also found that the estimated
IC50 values of doxorubicin were significantly higher in the
high-risk group compared with that in the low-risk group
(P = 0:0072). However, there was no significant difference
between the risk score and the IC50 of methotrexate, pacli-
taxel, and cisplatin (Figure 8(d)). These findings indicated
that a high risk score was related to elevated doxorubicin
sensitivity.

3.8. Construction and Validation of a Nomogram. We con-
structed a decision tree based on age, gender, metastasis,
and risk score of osteosarcoma patients in the TCGA cohort
(Figure 9(a)), and the results showed that the patients can be
stratified into four distinct groups (lowest, low, mediate, and
high) using a decision tree on only risk score, gender, and
metastatic status. K-M survival analysis showed that there
was a significant difference in OS among the four groups
(Figure 9(b)). Patients in the “lowest” and “low” subgroups
belong to the ARG-based low-risk group (Figure 9(c)). In
addition, C1 and C2 subtypes occupy more than the C3 sub-
type in the “highest” group (Figure 9(d)). Multivariate Cox
regression analysis demonstrated that the risk score was

the most significant independent prognostic factor of osteo-
sarcoma (HR = 9:68, 95% CI: 4.73-19.80, P = 5:41e − 10),
followed by metastatic status (HR = 2:88, 95% CI: 1.29-
6.47, P = 0:0102) (Figures 9(e) and 9(f)). Therefore, a nomo-
gram is then generated using the risk score and metastatic
status to predict the OS of osteosarcoma patients
(Figure 9(g)). The calibration plot demonstrated that the
nomogram can effectively forecast the actual survival out-
comes (Figure 9(h)). Moreover, the DCA curve and time-
ROC analysis demonstrated that the nomogram and risk sig-
nature had better prognostic capacity than other clinico-
pathological features, as shown in Figures 9(i) and 9(j).

4. Discussion

Osteosarcoma is the most common bone sarcoma with high
heterogeneity and has various subtypes based on morpho-
logical and molecular characteristics [31]. Herein, we estab-
lished three ARG-based patterns with distinct diversity for
osteosarcoma patients. The cellular constitutions of stromal
and immune cells in the tumor microenvironment (TME)
are involved in osteosarcoma progression, chemotherapy
resistance, and immunosuppressive activities [32]. In this
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Figure 3: Gene Set Enrichment Analysis for osteosarcoma in the TCGA cohort. (a) Comparison of enriched pathways among the three
molecular subtypes. (b) The estimated proportion of 10 oncogenic pathways among three molecular subtypes.
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study, the C3 subtype had a distinctly higher stromal and
immune score than C1 and C2, implying the potential differ-
ences among the clusters with regard to the progression and
response to chemotherapy and immunotherapy. Previous
evidence suggested that patients with higher stromal or
immune scores had a favorable OS of osteosarcoma [33].

Consistently, the C3 subtype exhibited prolonged survival
time and lower mortality and metastasis rates. Although
advances in chemotherapy improved the prognosis of osteo-
sarcoma patients [34], drug resistance would result in worse
clinical outcomes [35]. Here, patients in the C2 cluster
showed more responsiveness to paclitaxel and doxorubicin,
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Figure 5: Continued.
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while osteosarcoma patients in the C1 subtype were higher
reactive to cisplatin. These data suggested that these patients
were more likely to benefit from these chemotherapy drugs.

T cell immune checkpoint molecules serve as promising
immunotherapeutic targets for tumor, and their inhibitors
have dramatically changed the therapeutic landscape of oste-
osarcoma patients with metastasis or recurrence [36]. Never-
theless, few parts of osteosarcoma patients could benefit

from immunotherapies [37]. C1 and C3 subtypes presented
increased infiltration levels of many immune cells and
higher TIDE scores. Meanwhile, our GSEA results revealed
that immune-related pathways were significantly inhibited
in the C1 subtype and activated in the C3 subtype. These
findings suggested that patients in C1 and C2 subtypes were
more likely to respond to immunotherapies. Furthermore,
our data found significant differences among the molecular
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Figure 5: The ARG-based risk signature’s prognostic importance in osteosarcoma. (a) The distribution of patient longevity status and risk
score, and the expression profiles of nine aging genes in high- and low-risk groups in the TGGA cohort. (b, d, and f) The receiver operating
characteristic curves for forecasting OS in TCGA, GSE21257, and GSE16091 cohorts, respectively. (c, e, and g) The survival curves for
patients with high risk score and low risk score in the TCGA cohort.
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subtypes with regard to M2-TAMs, MDSCs, CAFs, and
cytotoxic T lymphocytes (CTLs), which contribute to tumor
growth, invasion, and metastasis and mediate the communi-
cation between malignant cells, immune cells, and stromal
cells [38].

With the development of omic technology and public
databases, a variety of risk signatures for prognosis predic-
tion in osteosarcoma has been established on the basis of
clinicopathological factors and omic characteristics. Accu-
mulating evidence has elucidated the potential capability of
radiomics [39], DNA methylation [40], and immune-
related genes [41] for predicting the prognosis of osteosar-
coma. Recently, ARG-based prognostic models for various
cancers have been established and displayed satisfactory per-
formance for prognosis prediction [42, 43]. At present, the
prognostic role of the ARGs in osteosarcoma is still unclear,

and an ARG-based risk model has not been developed. Here,
we constructed and verified an ARG-based risk signature,
which possessed a good performance in the prediction of
clinical outcomes of osteosarcoma patients. ARGs can not
only inhibit tumor growth but also promote tumor invasion
and metastasis [13]. In our ARG-based risk model, osteosar-
coma patients with a high risk score were characterized by
higher metastasis and poorer prognosis, indicating that
ARGs in osteosarcoma were closely associated with cancer
progression. Further, we constructed a predictive nomogram
integrating the risk score and metastatic status for osteosar-
coma, which presented good calibration and discrimination
and had adequate ability to predict survival outcomes in
patients with osteosarcoma.

Accumulating studies have reported the associations
between the ARGs in our risk signature and osteosarcoma.
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Figure 6: The correlations between the risk score and clinicopathological characteristics of osteosarcoma in the TCGA cohort. (a) The
distribution of risk score in different groups separated by age, gender, metastasis, and status. (b) Comparison of age, gender, metastasis,
status, and molecular subtypes between the high- and low-risk groups. (c) Kaplan-Meier survival subgroup analysis of all patients with
osteosarcoma according to the risk signature stratified by clinical characteristics, including age, gender, and metastasis. The survival
probabilities were compared with log-rank test. ns: no significance. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,and∗∗∗∗P < 0:0001.
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Figure 7: Continued.
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Bone morphogenetic protein 8a (BMP8A), a number of the
bone morphogenetic protein ligand, encodes a secreted
ligand of the TGF-β superfamily of proteins. It has been
proved to promote survival and drug resistance in clear cell
renal cell carcinoma (ccRCC) [44], but studies about its
effect on osteosarcoma are rare. Cortistatin (CORT) encodes
a neuropeptide that is structurally similar to somatostatin. A
recent report showed that CORT could inhibit the prolifera-
tion of the human thyroid carcinoma cell line, indicating a
possible inhibitory role of CORT in cancer development

[45]. Solute carrier family 17 member 9 (SLC17A9) was
involved in the progression of colorectal cancer (CRC) and
breast cancer and was recognized as a potential biomarker
for outcome prediction of CRC and BC patients [46, 47].
Vascular endothelial growth factor A (VEGFA) is a potent
angiogenic factor for blood vessel formation, and research
has proved that VEGFA participates in the angiogenesis
and progression of osteosarcoma [48]. Galectin-1 (GAL-1)
functions in tissue development, cell proliferation, and
immunoregulation. The expression of galectin-1 was capable
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Figure 7: The characteristics of immune and pathway landscape between the high- and low-risk groups in the TCGA cohort. (a)
Comparison of infiltration level of 64 immune cells in the high- and low-risk groups. (b) Correlation matrix of the risk score and
infiltration level of immune cells. (c) Comparison of the stromal score, immune score, and ESTIMATE score between the high- and low-
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Figure 8: Comparison of response to immunotherapy and chemotherapy between the high- and low-risk groups in the TCGA cohort. (a)
Comparison of gene expression of immune checkpoints. (b) Comparison of MSDC score, CAF score, TAM.M2 score, T cell exclusion score,
T cell dysfunction score, and TIDE score. (c) Regression analysis of the TIDE results and the risk score. (d) The box plots of the estimated
IC50 for cisplatin, doxorubicin, methotrexate, and paclitaxel. ns: no significance. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,and∗∗∗∗P < 0:0001.
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Figure 9: Continued.
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to be used to differentiate small-cell osteosarcoma from
Ewing sarcoma [49]. SSX family member 1 (SSX1) has been
associated with stem cell migration, suggesting a potential
biologically important role in the metastatic phenotype
[50]. RAS guanyl releasing protein 2 (RASGRP2) encodes a
brain-enriched nucleotide exchanged factor, and research
demonstrated that abnormal expression of RASGRP2 in
lung adenocarcinoma correlated with the infiltration level
of immune cells [51]. Syndecan 3 (SDC3) encodes a protein
that belongs to the syndecan proteoglycan family. Upregula-
tion of SDC3 contributes to perineural invasion and poor
outcomes in pancreatic cancer [52]. A recent study has con-
firmed that the ecotropic viral integration site 2B (EVI2B)
could be used as a new prognostic biomarker for metastatic
melanoma [53]. However, the functions and underlying
mechanisms of these ARGs have not been exhaustively
investigated in osteosarcoma.

Cellular senescence and immune infiltration in the TME
were proved to contribute to the response of immunother-
apy [54], but the correlations between immune infiltration
and senescence in osteosarcoma remain poorly understood.
Our data revealed that osteosarcoma patients with low risk
scores showed an apparent increase in immune cell infiltra-
tion, which manifests as a significantly elevated infiltration
of multinucleated variant endothelial cells, macrophages
M1, macrophages, lymphatic endothelial cells, iDC, HSC,
fibroblasts, endothelial cells, and chondrocytes. Moreover,
we found that the risk score was negatively correlated with
the immune-related pathways. A higher expression level of
ten immune checkpoints was observed in the low-risk group,
indicating that the patients with lower risk scores had a
higher potential to benefit from immunotherapy. However,
osteosarcoma patients in the low-risk group had a lower
TNFSF9 expression, which was associated with immune
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Figure 9: Construction and validation of a nomogram combining the risk signature and clinicopathological features. (a) Patients with full-
scale annotations including risk score, metastatic, gender, and age were used to build a survival decision tree to optimize risk stratification.
(b) Comparison of OS of the four subgroups obtained from the decision tree analysis in the TCGA cohort. (c) Correlations between the four
subgroups and the risk signature. (d) Correlations between the four subgroups and molecular subtypes. (e) Univariate and (f) multivariate
Cox analyses of risk score and clinicopathological characteristics in the TCGA cohort. (g) A nomogram combining risk signature and
metastasis was generated in the TCGA cohort. (h) Comparison of the calibration curve for 1-, 3-, and 5-year OS of nomogram. (i)
Decision curves for the clinical net benefit of each model in comparison to all or none strategies. The x-axis indicated the threshold
probability, and the y-axis indicated the net clinical benefit. (j) Time-dependent ROC curves comparing the prognostic accuracy of
nomogram, age, gender, metastasis, and risk score in the TCGA cohort.
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response and cell growth in osteosarcoma [55]. Further-
more, evidence suggested that chemosensitivity was regu-
lated by ARGs in osteosarcoma patients [56]. Our data
revealed that osteosarcoma patients in the high-risk group
were more reactive to doxorubicin. A recent study showed
that BMP8A can diminish chemotherapy sensitivity in
ccRCC by promoting Nrf2 phosphorylation and activating
TRIM24 [44], implying its potential role in drug resistance
in osteosarcoma.

Nevertheless, several limitations in our study should be
acknowledged. First, the molecular subtypes and ARG-
based risk signature were generated using retrospective data
from public databases. Therefore, it should be validated in
more prospective and multicenter osteosarcoma cohorts in
the future. Second, we only investigated the potential prog-
nostic value of the ARG risk signature, so further studies
are required to explore the underlying mechanisms of the
signature in the development of osteosarcoma.

5. Conclusions

In summary, this study identified molecular subtypes based
on ARGs and developed an ARG-based survival prognostic
model for osteosarcoma. The difference in immune land-
scape, biological functions, drug sensitivity, and immuno-
therapy response according to molecular subtypes and risk
groups were analyzed. A nomogram combining the novel
ARGs-based risk model and metastatic status was con-
structed. It may serve as a clinical tool for making personal-
ized therapeutic treatments and forecasting prognoses for
osteosarcoma patients.
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