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The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are
multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative
medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells.
Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting
noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving
cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of
exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic
efficacy of exosomes in MI.

1. Introduction

Myocardial infarction (MI) involves the irreversible death of
cardiomyocytes due to prolonged oxygen deprivation by an
obstructed blood supply (ischemia), which results in contrac-
tile dysfunction and cardiac remodeling. Although signifi-
cant progress has been made in medical treatments, such
as thrombolytic therapy, percutaneous coronary interven-
tion, and coronary artery bypass grafting surgery, MI is still
the leading cause of cardiovascular disease (CVD)-associated
death [1]. The high prevalence and mortality of MI suggest
that it is essential to continue the search for suitable treat-
ments. Stem cells have powerful regenerative potential and
are expected to be some of the best candidates for MI treat-
ment [2, 3]. Mesenchymal stem cells (MSCs) are multipotent
stem cells that can self-renew and differentiate. They have

received much attention due to their strong proliferative
capacity, multidirectional differentiation potential, immuno-
modulatory properties, low immunogenicity, and ease of iso-
lation and expansion. MSCs may protect the myocardium by
reducing inflammation, promoting angiogenesis around
infarcted areas, increasing resistance to apoptosis, and inhi-
biting fibrosis [4]. In recent years, some pretreatment meth-
ods, such as hypoxia pretreatment, drug pretreatment,
cytokine pretreatment, and gene modification, have been
used to enhance the functional benefits of transplanted
stem cells to promote cardiac regeneration and angiogenesis
and inhibit fibrosis progression. However, poor engraftment
and survival rates of MSCs in the myocardium inhibit their
therapeutic efficacy. Exosomes, which are products of MSCs,
have been prioritized in acellular therapy for cardiac rehabil-
itation after MI and other infections, and they may yield
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significant economic and social benefits [5]. Numerous stud-
ies have indicated that MSC-derived exosomes (MSC-Exos)
can promote cardiomyocyte survival and angiogenesis,
inhibit fibrosis, and regulate the cardiac microenvironment,
which are indispensable therapeutic strategies for alleviating
ischemic heart disease [6–8]. Exosome targeting has also
been used to enhance the capability of exosomes to target
homologous receptors in specific tissues and organs [7].
MSC-Exos are attractive alternatives for acellular therapy
after MI [9]. This review aims to discuss the biological roles
and mechanisms of exosomes, as well as the best strategies to
improve the efficacy of exosome-based treatment, and reveal
the remarkable potential of exosomes in the treatment of MI.

2. Biological Properties of MSCs

Currently, the stem cells used for MI therapy include
MSCs, embryonic stem cells (ESCs), placental-derived stem
cells, and cord blood-derived stem cells. MSCs are multipo-
tent and nonhematopoietic adult stem cells with self-renewal
and differentiation abilities [10, 11]. MSCs can be isolated
from a very diverse range of tissues or organs, including
adipose tissue, bone marrow, the placenta, the umbilical
cord blood and umbilical cord, skin, skeletal muscle, ten-
dons, synovial membranes, the endometrium, amniotic fluid,
the amniotic membrane, peripheral blood, menstrual blood,
salivary glands, pulp, and periodontal ligaments [12–15].
Clinically, MSCs are derived mainly from bone marrow,
umbilical cord blood, and adipose tissue [3, 16, 17]. In
2006, the International Society for Cell Therapy proposed
the following minimal criteria for defining MSCs: adherent
growth in stable culture; CD105, CD73, and CD90 expres-
sion but no expression of CD45, CD34, CD14 or CD11b,
CD79α or CD19, and HLA-DR; and an in vitro ability to
differentiate into osteoblasts, adipocytes, and chondrocytes
[18]. MSCs are capable of secreting a range of cytokines, such
as vascular endothelial growth factor (VEGF) and pigment
epithelial-derived factor [19, 20]. Preclinical findings in rat
and porcine MI models have indicated that MSCs can signif-
icantly reduce MI size, restore myocardial contractility, and
improve the structure and function of infarcted hearts
through the synergistic effects of myogenesis and angiogen-
esis [21, 22]. Hare et al. [23] conducted the first clinical trial
of MSCs for MI in 2005 and demonstrated the safety of
allogeneic human bone marrow-derived MSCs (hBMMSCs)
for treating MI. In addition, studies have shown that intra-
venous, intracoronary, or myocardial injection of autologous
or allogeneic MSCs is safe, and beneficial effects have been
observed over 12 months of long-term follow-up [24, 25].
While some clinical trials have demonstrated the effective-
ness of MSC treatment, some studies have not observed a
benefit from MSC treatment [26, 27]. The differential thera-
peutic effects of MSCs may be related to the method of cell
acquisition, the transplantation step, the survival of cells after
transplantation, poor homing, and the high dose needed to
maintain the therapeutic effect [28–31]. Moreover, numer-
ous studies in recent years have demonstrated that MSCs
help restore cardiac function mainly through their paracrine

effects, especially those involving exosomes [32, 33]. Exo-
somes derived from MSCs (MSC-Exos) have the potential
to promote cardiomyocyte survival, proliferation, and angio-
genesis and limit the inflammatory response, which can be
used as a practicable strategy for cell-free heart repair
[34, 35]. These biological activities of MSCs provide new
ideas for treating CVDs.

3. Biological Properties of Paracrine Exosomes
from MSCs

Extracellular vesicles (EVs) mediate the communication of
cell-to-cell, which are membrane vesicles (MVs) released by
cells [36]. EVs contain a range of bioactive substances,
including DNA, RNA, lipids, metabolites, and cytosolic
and cell-surface proteins [37, 38]. The International Extra-
cellular Vesicle Society classifies EVs into the following cate-
gories: exosomes, apoptotic bodies, and MVs [36, 39, 40].
Exosomes are extracellular membranous nanovesicles with
sizes ranging from 30 to 150 nm [29, 41]. Exosomes are
formed by inward germination of the multivesicular body
membrane and subsequent fusion with the plasma mem-
brane to release intraluminal vesicles into the extracellular
space [38, 40, 42]. In addition, there is evidence that exo-
somes germinate directly from plasma membranes [43]. To
date, we have found that ultracentrifugation, precipitation,
density gradient centrifugation, immune affinity capture,
microfluidic technologies, and size-exclusion chromatogra-
phy can all be used to isolate exosomes [44–47]. The biomar-
kers of exosomes are heat shock proteins, ALG-2-interacting
protein X (Alix), and integral membrane tetraspanin pro-
teins (CD81, CD63, and CD9), which are widespread in all
exosomes [48–51]. In addition, the cargo of exosomes
includes many biologically active substances, such as pro-
teins, lipids, and genetic material (mRNAs, miRNAs, long
noncoding RNAs, and DNA) [52]. The Exo-Carta exosome
database (http://www.exocarta.org) is a collection of 9,769
proteins, 3,408 mRNAs, 2,838 miRNAs, and 1,116 lipids
identified in exosomes from diverse cell types and different
species. Exosomes play a critical role in cell-to-cell commu-
nication by delivering biologically active molecules [41,
53–56]. Recently, exosomes have been shown to participate
in many processes, including cell survival, angiogenesis, and
immune reactions, by altering the communication among
cells/organs [55]. Studies have shown that MSC-Exos have
significant advantages over their parental cells [57], such as
long-term stability, more accessible storage, lower immune
rejection, less tumorigenicity, and lower production costs.
Moreover, the smaller size of exosomes relative to their
parental cells enables them to pass through capillaries with-
out clogging them [29, 58]. Lai et al. [59] confirmed the role
of human ESC-derived MSC-Exos in decreasing myocardial
fibrosis and enhancing cardiac function for the first time in
2010. Since then, research on MSC-Exos has reached a new
zenith. The role of MSC-Exos in cardioprotection has been
heavily investigated, laying the groundwork for future treat-
ments of ischemic heart disease.
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4. The Therapeutic Potential of MSC-Exos in MI

After MI, the ventricle exhibits a range of responses, such as
cardiac hypertrophy, interstitial fibrosis, and inflammation
(Figure 1). Programmed cell death (PCD) pathways are acti-
vated after ischemia or hypoxia, and they are the major
causes of heart failure [45]. Many studies have shown that
MSC-Exos can inhibit PCD and fibrosis, promote angiogen-
esis, and improve the microenvironment of the ischemic
myocardium [60, 61]. As some of the most common com-
ponents of exosomes, microRNAs (miRNAs) play crucial
roles in the physiology of the cardiovascular system and
CVD progression [62]. Next, we will elaborate on the role
of exosomes in MI from several perspectives.

4.1. Inhibiting PCD. PCD has a variety of forms, such as
apoptosis, autophagy, pyroptosis, and ferroptosis (Figure 2).
MSC-Exos can protect the myocardium from ischemic and
hypoxic injury by inhibiting apoptosis, autophagy, pyropto-
sis, and ferroptosis. Exosomes from human umbilical cord-
derived MSCs (hUCMSCs) protect cardiomyocytes from
acute MI damage and reduce apoptosis by transferring
miR-19a to target SOX6, which activates AKT and inhibits

JNK3/caspase-3 activation [63]. The PI3K/AKT pathway is an
important signaling pathway that regulates apoptosis and sur-
vival. Both miR-144 and miR-486-5p in BMMSC-Exos sig-
nificantly inhibit apoptosis in hypoxic cardiomyocytes by
targeting the PTEN/PI3K/AKT signaling pathway [64, 65].
miR-21 in endometrial MSC-Exos can also exert significant
antiapoptotic effects by interacting with the PTEN/PI3K/
AKT signaling pathway [66]. Similarly, miR-21a-5p and
miR-25-3p in BMMSC-Exos can reduce apoptosis in hypoxic
cardiomyocytes by downregulating the expression of proa-
poptotic genes, including FasL, PDPD4, Peli1, and PTEN
[67, 68]. In addition, miR-129-5p and miR-338 are enriched
in BMMSC-Exos and inhibit myocardial apoptosis and
improve cardiac function in MI rats by regulating the
TRAF3/NF-κB and MAP3K2/JNK signaling pathways,
respectively [69, 70]. Furthermore, Lee et al. [71] found that
MSC-derived EVs upregulate the expression of survivin by
the miR-199a-3p-AKT-Sp1/p53 signaling pathway, which
protects cardiomyocytes from injury in doxorubicin-induced
cardiomyopathy.

Autophagy is the process by which lysosomes engulf
organelles and other factors to remove unnecessary or
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FIGURE 1: Reparative effect of MSC-Exos on ischemic hearts after MI. After myocardial infarction (MI), the intramuscular injection of
exosomes derived from mesenchymal stem cells (MSC-Exos) had an anti-programmed cell death (PCD) effect by releasing miR-19a, miR-
144, miR-486-5p, miR-21, miR-21a-5p, miR-25-3p, and other miRNAs. Galectin-3, miR-212-5p, miR-125b-5p, PDGFR-β, and miR-671 in
MSC-Exos promote ischemic myocardial repair by antimyocardial fibrosis. The hepatocyte growth factor (HGF), angiogenic fibroblast
growth factor-β (FGF-β), vascular endothelial growth factor (VEGF), miR-31, miR-543, and miR-1246 in MSC-Exos can promote the
generation of myocardial vascular endothelial cells and maintain myocardial blood flow. Substances such as miR-181a, miR-125b, miR-182,
miR-21-5p, miR-302d-5p, and miR-200b-3p released by MSC-Exos can regulate the cardiac microenvironment after myocardial infarction,
reduce the inflammatory response and promote myocardial repair.
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dysfunctional cellular components [72]. Recent research has
shown that a certain level of autophagy plays a positive role
in maintaining the structure and function of cardiomyocytes
and that increased autophagy helps protect the heart during
myocardial ischemia and hypoxia [73]. Zou et al. [74] found
that BMMSC-Exos regulate the postinfarction cardiac micro-
environment by promoting autophagy in infarcted hearts. The
mechanism of action may be related to increases in the expres-
sion of autophagy-related protein 13 in H9c2 cells after MI
modeling. It has been found that hUCMSC-Exos attenuate
coxsackievirus B3-induced myocarditis by activating the
AMPK/mTOR-mediated autophagic flux pathway, thereby
attenuating cardiomyocyte apoptosis [75]. Liu et al. [76] found
that BMMSC-Exos reduce apoptosis by activating the AMPK/
mTOR and AKT/mTOR signaling pathways to induce autop-
hagy in cardiomyocytes. Basal levels of autophagy are critical
for cardiac protection, while excessive autophagy promotes cell
death and ventricular remodeling [51]. miR-29c and miR-125b

in BMMSC-Exos inhibit excessive autophagy by regulating
the PTEN/AKT/mTOR and p53/Bnip3 signaling pathways,
respectively, thereby reducing the inflammatory response after
myocardial I/R injury [77, 78].

The nod-like receptor protein 3 (NLRP3) inflammasome is a
multiprotein signaling complex that mediates the maturation of
proinflammatory cytokines such as IL-1β and IL-18 through
interactions with caspase 1 [79]. Pyroptosis is a type of PCD
characterized by inflammatory cytokine (caspase-1, NLRP3)
release [80, 81]. Tang et al. [81] found that hBMMSC-Exos
exhibit significantly reduced expression of the pyroptosis-related
proteins caspase-1 and NLRP3, thereby protecting the myocar-
dium from ischemia/reperfusion (I/R) damage. Liang et al. [82]
further found that miR-100-5p is enriched in hUCMSC-Exos
and inhibits activation of the NLRP3 inflammasome by inhibit-
ing the expression of FOXO3, thus preventing the release of
cytokines and blocking pyroptosis. Furthermore, miR-182-5p
in BMMSC-Exos can attenuate ischemic myocardial injury
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FIGURE 2: Exosomes from different MSCs mediate PCD in myocardial cells after myocardial infarction. MiR-144 and miR-486-5p in
exosomes derived from bone marrow mesenchymal stem cells (BMMSC-Exos) and miR-21 in endometrial exosomes derived from mesen-
chymal stem cells (MSC-Exos) can inhibit apoptosis of hypoxic cardiomyocytes by targeting the PTEN/PI3K/AKT signaling pathway. MiR-
21a-5p and miR-25-3p in BMMSC-Exos can reduce the apoptosis of hypoxic cardiomyocytes by downregulating the expression of proa-
poptotic genes such as FasL, PDPD4, Peli1, and PTEN. MiR-129-5p in BMMSC-Exos inhibits cardiomyocyte apoptosis by regulating the
TRAF3/NF-κB signaling pathway. BMMSC-Exos induce autophagy in cardiomyocytes by activating the AMPK/mTOR and AKT/mTOR
signaling pathways. Human BMMSC-Exos inhibit pyroptosis by inhibiting the expression of Caspase-1 and NLRP3. Moreover, miR-182-5p
in BMMSC-Exos inhibit pyroptosis by inhibiting the expression of GSDMD. MiR-100-5p in exosomes derived from human umbilical cord
mesenchymal stem cells (hUCMSC-Exos) inhibit pyroptosis by inhibiting the expression of FOXO3. HUCMSC-Exos reduce ischemic
hypoxia-induced iron death in cardiomyocytes by targeting DMT1. LncRNA-UCA1 in human MSC-Exos and Lnc A2M-AS1 in human
BMMSC-Exos inhibit myocardial cell apoptosis by adjusting the miR-873-5p/XIAP axis and miR-556-5p/XIAP axis, respectively.
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and pyroptosis by targetingGSDMDand reducing its expression
[83]. DMT1 overexpression promotes ferroptosis induced by
hypoxia/reoxygenation (H/R). Song et al. [84] found that
hUCMSC-Exos decrease H/R-induced ROS levels, iron deposi-
tion, and Fe2+ and MDA levels in cardiomyocytes by targeting
DMT1. In addition to the above-mentionedmodels of cell death,
cuproptosis is a novel cell deathmechanism that is closely related
to mitochondrial respiration [85]. Whether the mechanism by
which exosomes inhibit cell death is related to cuproptosis has
not been confirmed, which may be a new idea for future exo-
some research.

It has also been found that some lncRNAs are involved in
the cardioprotective effects of exosomes. The lncRNA KLF3-
AS1 in hMSC-Exos can inhibit the viability, the inflammatory
response, and pyroptosis in cardiomyocytes by regulating the
miR-138-5p/SIRT1 axis, thus inhibiting the progression ofMI
[86]. LncRNA-UCA1 in hypoxia-pretreated hMSC-Exos
plays a protective role in cardiac injury repair by targeting
the miR-873-5p/XIAP axis and increasing the antiapoptotic
protein Bcl2 levels [87]. In addition, human BMMSC-Exo-
mediated Lnc A2M-AS1 inhibits H/R-induced myocardial
injury by the miR-556-5p/XIAP axis [88]. As mentioned
above, the cardioprotective effects of stem cell-derived exoso-
mal miRNAs and lncRNAs have been confirmed by in vivo
studies in animal models. New therapeutic approaches based
on exosomal miRNAs will lay the foundation for the clinical
treatment of patients with CVD.

4.2. Inhibiting Myocardial Fibrosis. The cardiac repair
response afterMI can be divided into three stages: inflammation,
proliferation, and maturation [89]. Fibroblasts are involved in
different stages of heart repair and play different roles in these
stages. Fibroblasts exhibit a proinflammatory phenotype during
the inflammatory phase and degrade extracellularmatrix (ECM)
components [90]. At this point, the differentiation of cardiac
fibroblasts (CFs) into myofibroblasts is inhibited. When the
dead cells are removed, cardiac repair enters the proliferative
stage. During this stage, the inflammatory response is sup-
pressed, and most fibroblasts differentiate into myofibroblasts,
exhibiting an anti-inflammatory phenotype and producing an
ECM that enhances the contractile capacity of the myocardium
to maintain the structural and functional integrity of the heart
[91]. Therefore, it may be beneficial for the increase of myocar-
dial fibroblasts during the inflammatory period after MI to car-
diac repair after MI [89]. Shi et al. [92] found that exosomes
derived from hUCMSCs in the inflammatory phase after MI
promote the differentiation of fibroblasts into myofibroblasts
by increasing the density of myofibroblasts in the infarcted
area, thus reducing the inflammatory response of cardiomyo-
cytes. Activation of theWnt/β-catenin signaling pathway is asso-
ciated with fibrosis in various tissues and organs [93]. It has been
found that activation of the Wnt/β-catenin signaling pathway
can affect myofibroblast generation and promote myocardial
repair [94]. Moreover, galectin-3 is a key protein associated
with modulation of the Wnt/β-catenin signaling pathway. Guo
et al. [91] observed in a rat MI model that galectin-3 in
hUCMSC-Exos promoted the differentiation of CFs into myofi-
broblasts in an inflammatory environment by upregulating

β-catenin levels in fibroblasts. Notably, an appropriate increase
in theWnt signaling pathway can promote the repair of necrotic
myocardial tissue after MI, reduce the size of MI, and improve
ventricular function [95, 96]. However, persistent overactivation
of the Wnt signaling pathway can lead to severe myocardial
fibrosis and impair myocardial function [95].

Transforming growth factor β (TGF-β) molecules are
multipotent cytokines that cause tissue fibrosis [97]. TGF-
β1 is essential in most stages of wound healing and scar for-
mation [98]. Smad2 and Smad3 are generally considered the
key downstream mediators of TGF-β1, and they play a very
important role in the expression of matrix collagen and tissue
fibrosis [99, 100]. Wu et al. [101] found that BMMSC-Exo-
derived miR-212-5p alleviates MI-induced fibrosis by modu-
lating the NLRC5/VEGF/TGF-β1/Smad axis. The reduction
in TGF-β1 directly alleviates ECM deposition and fibrosis. In
addition, miR-671 in exosomes derived from adipose-derived
mesenchymal stem cell (ADMSC-Exos) can directly target the
TGFBR2/Smad2 axis to attenuate myocardial tissue fibrosis in
mice with MI, thus alleviating ischemic myocardial injury
[102]. Smad7 is an important negative modulator of TGF-β/
Smad signaling and protects against myocardial damage. It
inhibits downstream gene transcription by inhibiting the
phosphorylation of Smad2/3 by TGF-β1 and interfering
with the interactions between receptors and other Smad pro-
teins [103]. Studies have shown that exosomes derived from
hUCMSCs can enhance myocardial repair by promoting the
expression of Smad7 through inhibition of miR-125b-5p
[104] (Figure 3).

Furthermore, Kore et al. [105] found that BMMSC-Exos
treatment of MI significantly reduced interstitial and peri-
vascular fibrosis in the ischemic heart and the expression of
fibronectin in the infarct and peri-infarct regions; the under-
lying mechanisms involved suppression of the activation of
p-38MAPK and NF-κB, which inhibited fibronectin, collagen
1, and collagen 3 expression. Wang et al. [106] found in a rat
myocardial I/R model and an in vitro myocardial microvas-
cular endothelial cell H/R model that BMMSC-Exos pro-
moted microvascular regeneration under stress conditions
by regulating platelet-derived growth factor receptor β
(PDGFR-β), thereby alleviating myocardial fibrosis after
I/R and ultimately improving cardiac function. They also
found that early activation of PDGF-BB/PDGFR-β promoted
the renewal of functional tissues. By contrast, excessive acti-
vation of PDGF-BB/PDGFR-β led to fibrosis of functional
tissues.

4.3. Proangiogenic Effects. Angiogenesis is the physiological
process by which new blood vessels form and develop from
the existing vascular system. Myocardial angiogenesis after
MI is limited. Severe angiogenic dysfunction may lead to
systolic dysfunction after heart failure [107]. In a rat model
of acute MI, we found that, compared to PBS injection, intra-
myocardial injection of MSC-EVs significantly enhanced
blood flow restoration and reduced infarct size without alter-
ing cardiac systolic and diastolic function [61]. In a Sprague‒
Dawley rat-induced AMI model, Teng et al. [108] found that
compared to PBS, BMMSC-Exos significantly enhanced new
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functional capillary density and inhibited cell proliferation to
impair T-cell function and reduce apoptosis, thus promoting
blood flow recovery. Likewise, Xu et al. [17] found that exosomes
derived from UCMSCs, ADMSCs, and BMMSCs reduced
apoptosis in cardiomyocytes and promoted angiogenesis by
increasing the levels of hepatocyte growth factor, angiogenic
fibroblast growth factor-β, and VEGF in a rat model of MI.
The study also showed that the proangiogenic genes Ang1 and
Flk1 expression were upregulated in ADMSC-Exo-treated
HUVECs, while the antiangiogenic genes Vash1 and TSP1
expression were downregulated [109]. Furthermore, Hu et al.
[110] found that human amniotic fluid MSC-Exos promoted
angiogenesis by increasing hypoxia-inducible factor 1-α (HIF-
1α) and VEGF expression in rats with isoproterenol-induced
cardiac fibrosis. One study in a swine model of MI showed
that intramyocardial injection of BMMSC-Exos increased
capillary density and blood flow to ischemic myocardial tissue
by upregulating the MAPK and AKT/eNOS pathways, resulting
in increased cardiac output [111]. In addition, a study on
a Yorkshire pig model of metabolic syndrome and chronic

myocardial ischemia showed that intramyocardial
administration of human BMMSC-Exos increased vascular
density and blood flow and improved cardiac function in
ischemic myocardial tissue [112]. In a porcine model of MI,
we found that placement of decellularized pericardial scaffolds
filled with peptide hydrogels and cardiac adipose tissue MSC-
EVs on the myocardium resulted in an improvement in cardiac
function, a significant increase in right ventricular ejection
fraction, marked reductions in myocardial fibrosis and scar
tissue, a twofold increase in vascular density, and a reduction
in macrophage infiltration observed after 30 days, whereas the
expression of anti-inflammatory CD73 was increased by 5.8-
fold [113].

Wang et al. [114] found that a single intravenous injec-
tion of EVs secreted by BMMSCs in mice could promote
angiogenesis and improve cardiac function in infarcted
hearts. The mechanism by which angiogenesis was promoted
may have been related to the miR-210-Efna3 pathway.
Transplanting BMMSC-Exos loaded with miR-132 mimics
into the ischemic hearts of mice significantly promotes
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neovascularization around the infarct area by regulating RASAI
gene expression [115]. miR-125a and miR-31 in ADMSC-Exos
promote endothelial cell angiogenesis by inhibiting the expres-
sion of the angiogenic inhibitor delta-like 4 and activating the
FIH1/HIF-1α pathway, respectively [109, 116]. An increase in
miR-29b-3p secreted by BMMSC-Exos can promote angiogen-
esis and ventricular remodeling in MI rats by targeting A Dis-
integrin andMetalloproteinase with ThrombospondinMotifs 16
(ADAMTS16) expression [117]. miR-543 in human MSC-Exos
promotes proliferation, migration, and angiogenesis in cardiac
microvascular endothelial cells through the downregulation of
COL4A1 expression [118]. miR-1246 in hUCMSC-Exos pro-
motes HUVEC angiogenesis by targeting the PRSS23/Snail/α-
SMA axis [119]. These results demonstrate the therapeutic
potential of MSC-Exos in ischemic heart disease (Figure 4).

Notably, some studies have shown that although intrave-
nous injection of BMMSC-Exos upregulates some proangio-
genic signaling pathway factors, it does not increase the
vascular density in the ischemic myocardium, possibly because
the effect of intravenous injection on angiogenic signaling is
different from that of direct myocardial injection [120]. In
addition, the dose of exosomes and the timing of exosome
transplantation afterMI can affect the outcomes. In conclusion,
MSC-Exos undoubtedly exhibit strong potential to improve
cardiac function and promote angiogenesis.

4.4. Regulating the Microenvironment after MI. Chronic and
excessive proinflammatory responses after MI produce adverse
left ventricular remodeling [121], which is strongly associated
with worsening clinical outcomes after MI; therefore, the
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management of inflammation after MI is critical for limiting
infarct size. Although the entire mechanism of action is not
fully understood, it is known that MSC-Exos exert potent
immunosuppressive and anti-inflammatory effects [5, 56].
After MI, ATP and NADH depletion is increased, while oxida-
tive stress and cell death are increased [122]. HMSC-Exos can
promote cardiac function after I/R injury and reduce myocar-
dial apoptosis by increasing NADH and ATP levels in the I/R
heart, reducing oxidative stress, increasing the phosphorylation
of GSK-3β and AKT, and decreasing the phosphorylation of c-
JNK [9]. miR-200b-3p in EVs secreted by MSCs inhibits the
activation of NLRP1 by inhibiting the expression of Bcl-2-like
protein 11, effectively inhibiting the inflammatory response
and oxidative stress inMImice and improving cardiac function
[123]. In addition, Liu et al. [124] found that miR-302d-3p in
BMMSC-derived EVs regulates the inflammatory microenvi-
ronment by mediating the BCL6/MD2/NF-κB axis to alleviate
ventricular remodeling after AMI. In addition, miR-25-3p in
BMMSC-Exos inhibits SOCS3 expression by downregulating
EZH2 and further inhibits the inflammatory response of the
ischemic myocardium [68] (Figure 5(a)).

Studies have shown that MSC-Exos inhibit the invasion
and proliferation of immune cells in MI and reduce inflam-
matory infiltration of myocardial tissue [108]. In addition, the
proliferation of CD3+ T cells is significantly inhibited follow-
ing treatment with BMMSC-Exos. The mechanism may be
associated with upregulation of p27kip1 and downregulation
of CDK2 to induce cell cycle arrest in T cells [125]. Similar
results have been reported for previous in vitro research on
the interaction of BMMSC-Exos with peripheral bloodmono-
nuclear cells. In that study, the researchers found that MSCs
induced apoptosis in CD3+ T cells and inhibited CpG-
stimulated B-cell proliferation and differentiation and the
production of IgG, IgA, and IgM [126]. Some studies have
shown that BMMSC-Exos treatment significantly reduces the
levels of the inflammatory regulators IL-1b, phospho-p38-
MAPK, NF-κB, and the NLRP3 inflammasome [105]. Wei
et al. [127] found in a mouse myocardial I/R injury model
that hUCMSC-Exos overexpressing miR-181a could signifi-
cantly inhibit the inflammatory response and increase the
proportion of Treg cells by targeting the inflammatory tran-
scription factor c-Fos. BMMSC-Exos, which carry miR-125b,
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restore cardiac function in I/R rats by inhibiting inflammation
and apoptosis in I/R cardiomyocytes by targeting SIRT7 [128]
(Figure 5(b)).

Macrophages are central mediators of inflammation in
the heart and are involved in its development and regression.
M1 macrophages show proinflammatory effects and generate
inflammatory factors such as IL-6, IL-1β, and TNF-α, whereas
M2 macrophages mediate repair, which is conducive to the
activation of CFs, reconstitution of the ECM, and angiogene-
sis [51, 129]. Zhao et al. [130] demonstrated that miR-182 in
BMMSC-Exos targets the TLR4/NF-κB/PI3K/AKT signaling
cascade and reduces myocardial I/R damage by polarizing
inflammatory macrophages into anti-inflammatory macro-
phages in the heart. Similarly, Deng et al. [131] found that
ADMSC-Exos ameliorate cardiac injury afterMI by activating
the signaling passway of S1P/SK1/S1PR1 and promoting M2
polarization of macrophages. Another study has shown that
intramyocardial injection of BMMSC-Exos inmice withmyo-
cardial ischemia can reduce inflammation by promoting the
differentiation of macrophages into the M2 phenotype
through miR-21-5p, thereby promoting cardiac repair [132].
Correspondingly, BMMSC-Exos overexpressing fibronectin
type III domain-containing protein 5 exert anti-inflammatory
effects by inhibiting the NF-κB signaling pathway and upregu-
lating the Nrf2/HO-1 axis to promote M2 macrophage polari-
zation [133] (Figure 5(c)). In a mouse dilated cardiomyopathy
model, Sun et al. [134] found that MSC-Exos mediated macro-
phage polarization by modulating the JAK2-STAT6 signaling
pathway, thereby improving the inflammatory microenviron-
ment in and reducing inflammatory cell infiltration. Thus,
MSC-Exos have a modulatory effect on the microenvironment
after MI, which lays an essential foundation for subsequent
modification and optimization of MSCs for improved cardio-
protective outcomes.

5. Pretreatment and Engineering Strategies to
Improve the Efficacy of MSC-Derived
Exosomes in Cell-Free Therapy

Exosomes have low immunogenicity, low toxicity, and high
engineering potential and are expected to become cell-free
therapeutics for a variety of diseases [48]. The biomolecules
encapsulated in exosomes fluctuate according to the sur-
roundingmicroenvironment and the state ofMSCs. Although
the transplantation of MSC-Exos has shown significant
advantages in restoring cardiac function after MI, how to
collect more exosomes with strong reparative effects to target
the ischemic myocardium effectively still needs to be further
explored [135–137]. Many attempts have been made to
address this issue. Here, we summarize two possible strategies
for improving the therapeutic activity of MSC-Exos: pretreat-
ment and the use of engineered exosomes (Figure 6).

5.1. Pretreatment of Exosomes

5.1.1. Hypoxia-Pretreated Exosomes. Hypoxic precondition-
ing is a common method used in vitro. In general, oxygen
tension is considered an essential factor that affects the biologi-
cal behaviors of stem cell cultures [138, 139]. Several studies

have demonstrated that hypoxic preconditioning promotes the
survival, proliferation, andmigration ofMSCs in the context of
MI, which enhances the efficacy of transplantedMSCs after MI
[140, 141]. The beneficial effect of low oxygen tension onMSCs
and the secretion of exosomes from MSCs cultured in a hyp-
oxic environment has gradually attracted extensive attention
[142]. Hypoxia preconditioning (0.5% O2 for 24 hr) promotes
paracrine proangiogenic effects of BMMSCs, increases vascular
density and decreases endogenous cell apoptosis [142]. Zhang
et al. [143] found that BMMSC-Exos that were pretreated with
hypoxia inhibited apoptosis in cardiomyocytes in AMI rats by
upregulating microRNA-24. Similarly, Zhu et al. [144] found
that hypoxia-pretreated BMMSC-Exos (1% O2 for 72 hr)
inhibited myocardial apoptosis and promoted ischemic heart
repair via miR-125b-5p. The mechanism may have involved
inhibiting the proapoptotic genes p53 and BAK1 expression.
Some studies have shown that hypoxia-pretreated BMMSC-
Exos (0.5% O2 for 24 hr) promote miR-210 production and
NSMase2 activation via the action of HIF-1α, significantly
improving the biological characteristics and therapeutic effects
of exosomes by increasing vascular density, decreasing cardio-
myocyte apoptosis, and reducing fibrosis in the infarcted heart
[145]. Gao et al. [146] further confirmed that treatment with
hypoxia (5% O2 for 6 days) increased HMGB1 expression in
BMMSC-Exos, which activated the JNK/HIF-1α/VEGF path-
way, thereby promoting angiogenesis in HUVECs. Another
study showed that hypoxia-BMMSC-Exos (1% O2 for 48 hr)
were more readily absorbed by cells than normal MSC-Exos
[147], suggesting that hypoxia treatment can indirectly
improve exosome utilization. Therefore, moderate hypoxic
pretreatment is a safe, natural, and effectivemethod to optimize
the therapeutic effects of MSC-Exos.

5.1.2. Genetically Modified Exosomes. HIF-1α is a key tran-
scriptional regulator of the hypoxia response that regulates the
expression of many genes, including those encoding angiogenic
cytokines [148]. Sun et al. [149] observed that HIF-1α-
overexpressing exosomes (Exos-HIF-1α) exert proangiogenic
and cardioprotective effects on the ischemic heart via VEGF-
and PDGF-mediated phenotypes and that Exos-HIF-1α can res-
cue angiogenesis, proliferation, and migration in hypoxia-
injured HUVECs. Studies have shown that overexpression of
SDF1 in hUCMSCs increases the levels of SDF1 in hUCMSC-
Exos and can inhibit cardiomyocyte autophagy, promoting
endothelial microangiogenesis by activating the PI3K pathway
[150]. Exosomes derived from BMMSCs overexpressing the
chemokine receptor CXCR4, another major regulator of stem/
progenitor cell activities, initiate the signaling pathway of IGF-1/
PI3K/AKT in cardiomyocytes, thereby decreasing myocardial
apoptosis, promoting angiogenesis, and preventing ventricular
remodeling post-MI [151]. Ni et al. [152] found that exosomes
derived from TIMP2-modified hUCMSCs can repair the
ischemic myocardium by activating the prosurvival AKT/Sfrp2
pathway to inhibit cardiomyocyte apoptosis, remodel the ECM,
and promote angiogenesis. Exosomes released by UCMSCs
infected with lentiviruses containing macrophage migration
inhibitory factor (MIF), a proinflammatory cytokine that is
widely expressed in MSCs, show improved cardioprotective
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effects in promoting angiogenesis and cardiac function and
inhibiting apoptosis and fibrosis. The mechanism of MIF-Exos
involves miR-133a-3p and the downstream AKT signaling
pathway [153]. Liu et al. [154] also confirmed that MIF-
overexpressing BMMSC-Exos inhibit mitochondrial fission
induced by hypoxia and serum deprivation by activating the
AMPK signaling pathway, which can reduce apoptosis and
mitochondrial fragmentation of cardiomyocytes and promote
cardiac function. Ma et al. [155] found that exosomes derived
from AKT-modified hUCMSCs secreted more platelet-derived
growth factor D to promote angiogenesis and improve cardiac
function in mice than hUCMSC-Exos. Moreover, He et al. [156]
found that exosomes secreted by GATA-4-expressing BMMSCs
could increase myocardial vascular density and improve cardiac
function in a mouse MI model. These reports suggest that
genetic modifications can effectively increase the overall
functional performance of MSC-Exos in MI injuries. These
preclinical findings thus provide an important foundation for
clinical application and transgene-optimized exosome
transduction.

5.1.3. Drug-Pretreated Exosomes. MSC-Exos that are pre-
treated with drugs or cytokines have also been shown to
have excellent cardioprotective effects. Huang et al. [157] dem-
onstrated that exosomes derived from BMMSCs that were
pretreated with atorvastatin (BMMSCATV-Exos) exhibited
an improved ability to enhance angiogenesis and protect
cardiomyocytes while improving cardiac function following
infarction. Mechanistically, lncRNA H19 in BMMSCATV-
Exos activated the expression of miR-675 and promoted
angiogenesis. Some studies have shown that hBMMSC-Exos
pretreated with hemin are superior to nonpretreated hBMMSC-
Exos in improving cardiac function after infarction, andmiR-183-
5p enriched in hemin-pretreated MSC-Exos inhibits ischemia-
induced cardiomyocyte senescence via inhibition of the
HMGB1/ERK pathway [158]. In a murine model of MI, Xu
et al. [159] observed that pretreatment of BMMSC-Exos with
low concentrations of LPS promoted M2 macrophage
polarization in vitro and attenuated postinfarct inflammation
and cardiomyocyte apoptosis through mediation of macrophage
polarization. These drug-pretreated exosomes have been shown to
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potentially mitigate transplant rejection, providing a strong basis
for improved functioning of exosomes in vivo.

In addition, exosomes derived from hUCMSCs encapsu-
lated in functional peptide hydrogels can augment myocar-
dial function by decreasing inflammation, fibrosis, apoptosis,
and angiogenesis of the adhesions [160]. Various in vitro
exosome pretreatment methods have improved the trans-
plantation rate and survival of exosomes in vivo, providing
more possibilities for future MI treatment.

5.2. Exosome Targeting. In the previous section, we described
the beneficial effects of MSC-Exos on the heart. However,
accurate targeting of exosomes to recipient cells is still faced
with serious challenges. Homing peptides or ligand frag-
ments discovered by in vivo biopanning methods and phage
display with fusion to enriched molecules outside exosomes
have been used to improve the ability of exosomes carrying
cognate receptors to target specific tissues or organs. Exosomal
surface ligands or homing peptides improve drug delivery tar-
geting and efficiency [161]. Wang et al. [162] demonstrated that
the ischemic myocardial targeting peptide CSTSMLKAC can
directly target the ischemic myocardium, thereby increasing
the targeting and utilization of exosomes. In another study,
Vandergriff et al. [163] performed targeted injection of
exosomes bound to the cardiac homing peptide into infarcted
hearts and found that exosome retention increased in the cardiac
sections of isolated rat cardiomyocytes and promoted functional
recovery in animal models by inducing cardiomyocyte
proliferation, reducing fibrosis, and promoting angiogenesis.
The cardiac-targeting peptide (CTP)-Lamp2b has been
modified to yield exosomes expressing CTP-Lamp2b on the
exosome membrane (CTP-Exos). Compared with native
exosomes, CTP-Exos deliver exosomes to heart cells and
cardiac tissues significantly more effectively [164]. Moreover,
peptide libraries and phage displays have identified many
peptides located in the cardiovascular system, such as normal
cardiomyocytes, myocardial cells injured by I/R, heart failure,
atherosclerotic plaques, and vasculature [165]. Targeted peptide-
modified MSC-Exos undoubtedly provide new possibilities with
which to improve the efficiency of targeted therapy for MI.

6. Human Induced Pluripotent Stem
Cell-Derived Exosomes in MI

The limited sources of MSCs have greatly hindered clinical
research and applications. In recent years, MSCs derived
from induced pluripotent stem cells (iMSCs) have attracted
widespread attention. Studies have found that induced plu-
ripotent stem cells (iPSCs) show similar capacity and mor-
phology to ESCs for self-renewal and differentiation without
ethical concerns [166, 167]. Compared with MSCs, iMSCs
have been shown to have greater advantages in immunomo-
dulation, microenvironmental regulation, and secretion of
bioactive factors [167]. In addition, iMSCs have better pro-
liferation ability and lower immunogenicity than MSCs
[168]. Notably, studies have shown that the donor age of
MSCs plays an important role in regenerative capacity,
where MSCs from young donors have better regenerative
capacity than those from older donors. By contrast, iMSCs

can bypass tissue- and age-related heterogeneity problems
[169, 170]. The therapeutic potential of iMSC-derived exo-
somes in ischemic heart disease has been heavily investi-
gated. Gao et al. [136] found in an animal infarction model
that exosomes from human iPSC-derived cardiomyocytes
were also cardioprotective and that they improved the recov-
ery of the ischemic myocardium without increasing the inci-
dence of arrhythmic complications. In addition, exosomes
from iMSCs ameliorate myocardial injury induced by severe
acute pancreatitis through activation of the AKT/Nrf2/HO-1
axis [166]. Another study has shown that iMSC-derived exo-
somes regulate autophagy by regulating the PI3K-AKT-
mTOR and MAPK signaling pathways to improve cardiac
function after MI [171]. These exosomes also play very sig-
nificant roles in the regulation of apoptosis, inflammation,
fibrosis, and angiogenesis [172–173]. Currently, the study of
exosomes in CVD is progressing toward iMSC-derived exo-
somes and enriched miRNA candidates. It is promising to
use iMSC-derived exosomes under certain conditions. How-
ever, the limited amount of evidence for clinical applications
and the absence of evidence at the clinical trial level means
that research on iMSC-derived exosomes is still at a nascent
stage. The clinical use of iMSC-derived exosomes in the
treatment of CVD still needs to be investigated in further
detail.

7. Clinical Trial of MSCs in the Treatment of MI

To date, there is abundant preclinical evidence for the effi-
cacy of exosomes in animal models of MI [112, 151]. MSC-
Exos have shown great potential in numerous studies
[60, 61]. The safety of exosomes has been tentatively dem-
onstrated in certain clinical trials, although most exosome
studies have been preclinical [174]. In addition, there are
already clinical trials with MSC-Exos for the treatment of
MI that are in the recruitment stage (NCT05669144), which
means that new data on immunogenicity should be available
soon. The safety and efficacy of exosome therapy still need to
be confirmed by further clinical studies. Although the results
of clinical studies on the use of MSC-Exos for the treatment
of MI or other heart-related problems have not yet been
published, clinical studies on the use of MSC-Exos in the
treatment of other systemic diseases, including cerebrovas-
cular disorders, diabetes mellitus type 1, and Alzheimer’s
disease, are already underway (see Table 1).

8. Conclusion

In this review, we investigated the therapeutic effects of exo-
somes on MI. As cell-free substitutes for stem cell therapy,
exosomes have the potential to improve myocardial fibrosis
and apoptosis, regulate the cardiac microenvironment after
infarction, promote myocardial regeneration, and increase
neovascularization after I/R injury. Although recent studies
have demonstrated the outstanding performance of exo-
somes in attenuating myocardial injury, the specific effects
of exosome cargoes on particular signaling pathways need to
be further explored. Meanwhile, due to the limitations of
exosome extraction technology in the past, most of the early
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TABLE 1: Mesenchymal stem cell-derived exosomes in clinical trials.

NCT number Condition or disease Status Phase Brief summary Sponsor

NCT03384433 Cerebrovascular disorders
Unknown
status

Phase 1,
Phase 2

Allogenic mesenchymal stem
cell-derived exosome in patients
with acute ischemic stroke

Isfahan University of Medical
Sciences

NCT05813379 Antiaging Recruiting
Phase 1,
Phase 2

Mesenchymal stem cells derived
exosomes in skin rejuvenation

Isfahan University of Medical
Sciences

NCT04544215 Drug-resistant
Unknown
status

Phase 1,
Phase 2

A clinical study of mesenchymal
progenitor cell exosomes
nebulizer for the treatment of
pulmonary infection

Ruijin Hospital

NCT05871463
Decompensated liver

cirrhosis
Recruiting Phase 2

Effect of mesenchymal stem
cells-derived exosomes in
decompensated liver cirrhosis

Research Institute for
Gastroenterology and Liver

Diseases (RIGLD)

NCT05523011 Psoriasis Completed Phase 1
Safety and tolerability study of
MSC exosome ointment

Paracrine Therapeutics
Dermatology Pte. Ltd

NCT04356300 Multiple organ failure
Not yet
recruiting

Not
applicable

Exosome of mesenchymal stem
cells for multiple organ
dysfunction syndrome after
surgical repair of acute type A
aortic dissection

Fujian Medical University

NCT05261360
Knee; injury, meniscus

(lateral) (medial)/meniscus
tear/meniscus lesion/6 more

Recruiting Phase 2
Clinical efficacy of exosome in
degenerative meniscal injury

Eskisehir Osmangazi
University

NCT05499156
Perianal fistula in patients

with Crohn’s disease
Unknown
status

Phase 1,
Phase 2

Safety of injection of placental
mesenchymal stem cell-derived
exosomes for treatment of
resistant perianal fistula in
Crohn’s patients

Tehran University of Medical
Sciences

NCT04276987 Coronavirus Completed Phase 1

A pilot clinical study on
inhalation of mesenchymal stem
cells exosomes treating severe
novel coronavirus pneumonia

Ruijin Hospital

NCT05808400 Long COVID-19 syndrome Recruiting
Early Phase

1

Safety and efficacy of umbilical
cord mesenchymal stem cell
exosomes in treating chronic
cough after COVID-19

Huazhong University of
Science and Technology

NCT05402748 Fistula perianal Recruiting
Phase 1,
Phase 2

Safety and efficacy of injection of
human placenta mesenchymal
stem cells derived exosomes
for treatment of complex anal
fistula

Tehran University of Medical
Sciences

NCT04313647 Healthy Completed Phase 1

A tolerance clinical study on
aerosol inhalation of
mesenchymal stem cells
exosomes in healthy volunteers

Ruijin Hospital

NCT05413148 Retinitis pigmentosa Recruiting
Phase 2,
Phase 3

The effect of stem cells and stem
cell exosomes on visual functions
in patients with retinitis
pigmentosa

TC Erciyes University

NCT05216562 SARS-CoV2 infection Recruiting
Phase 2,
Phase 3

Efficacy and safety of
EXOSOME-MSC therapy to
reduce hyperinflammation in
moderate COVID-19 patients
(EXOMSC-COV19)

Dermama Bioteknologi
Laboratorium
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TABLE 1: Continued.

NCT number Condition or disease Status Phase Brief summary Sponsor

NCT03437759 Macular holes
Unknown
status

Early
Phase 1

MSC-Exos promote healing of
MHs (MSCs)

Tianjin Medical University

NCT04602104
Acute respiratory distress

syndrome
Unknown
status

Phase 1,
Phase 2

A clinical study of mesenchymal
stem cell exosomes nebulizer for
the treatment of ARDS

Ruijin Hospital

NCT04213248 Dry eye Recruiting
Phase 1,
Phase 2

Effect of UMSCs derived
exosomes on dry eye in patients
With cGVHD

Zhongshan Ophthalmic
Center, Sun Yat-sen

University

NCT05669144
Myocardial infarction/
myocardial ischemia/
myocardial stunning

Recruiting
Phase 1,
Phase 2

Cotransplantation of
mesenchymal stem cell-
derived exosomes and
autologous mitochondria for
patients candidate for CABG
surgery

Tehran University of Medical
Sciences

NCT05787288 COVID-19 pneumonia Recruiting
Early Phase

1

A clinical study on the safety and
effectiveness of mesenchymal
stem cell exosomes for the
treatment of COVID-19

First Affiliated Hospital of
Wenzhou Medical University

NCT02138331 Diabetes mellitus type 1
Unknown
status

Phase 2,
Phase 3

Effect of microvesicles and
exosomes therapy on β-cell mass
in type I diabetes mellitus
(T1DM)

General Committee of
Teaching Hospitals and

Institutes, Egypt

NCT04173650
Dystrophic epidermolysis

bullosa
Not yet
recruiting

Phase 1,
Phase 2

MSC EVs in dystrophic
epidermolysis bullosa

Aegle Therapeutics

NCT05354141
Acute respiratory distress

syndrome/ARDS
Recruiting Phase 3

Extracellular vesicle treatment for
acute respiratory distress
syndrome (ARDS)
(EXTINGUISH ARDS)

Direct Biologics, LLC

NCT04493242 COVID-19 ARDS Completed Phase 2
Extracellular vesicle infusion
treatment for COVID-19-
associated ARDS

Direct Biologics, LLC

NCT04998058
Bone loss, osteoclastic/bone
loss, alveolar/alveolar bone

loss/2 more

Not yet
recruiting

Phase 1,
Phase 2

Autogenous mesenchymal
stem cell culture-derived
signaling molecules as enhancers
of bone formation in bone
grafting

Pontificia Universidade
Católica do Rio Grande do

Sul

NCT05387278
COVID-19 acute respiratory

distress syndrome/
respiratory distress syndrome

Recruiting Phase 1

Safety and effectiveness of
placental derived exosomes and
umbilical cord mesenchymal
stem cells in moderate to severe
acute respiratory distress
syndrome (ARDS) associated
with the novel coronavirus
infection (COVID-19)

Vitti Labs, LLC

NCT04388982 Alzheimer disease
Unknown
status

Phase 1,
Phase 2

The safety and the efficacy
evaluation of allogenic adipose
MSC-Exos in patients with
Alzheimer’s disease

Ruijin Hospital

Note. Searched by ClinicalTrials.gov (https://clinicaltrials.gov/, accessed on 1 October 2023).
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studies on the mechanism of MSC-Exo-mediated myocar-
dium repair were carried out via miRNA-related sequencing
analysis or detection; relatively few studies involved the
detection of proteins, lipids, and other components. The
mechanisms of action of the other components of exosomes
in the treatment of infarction need to be further studied.
Moreover, the heterogeneity of donor cells, the cell growth
environment in vitro, and the low targeting and low reten-
tion rates of exosomes in recipient cells may affect the func-
tion of exosomes. Engineering technology for exosomes
makes them natural nanocarriers for the delivery of molecu-
lar drugs, as well as through surface modification enhances
the target specificity of exosomes, increasing their value for
clinical applications. However, exosomes obtained by pre-
treating parental cells are usually less efficient in terms of
drug loading, and the drug levels may be nonuniform. In
contrast, direct loading of drugs into exosomes enables better
control of drug loading. The development of engineered exo-
somes is still in the preliminary stage. Although, as drug
carriers, the effectiveness of exosomes has been preliminarily
established in preclinical studies, further studies are still
needed to verify their long-term safety in the future. In addi-
tion, standardized methods of exosome isolation and purifi-
cation need to be further explored. The cardiac muscle repair
ability of exosomes obtained from different MSC sources
may vary, but there are few studies that are conclusive as
to which type of MSC source is most effective and suitable
for clinical use. The nature of MSCs depends largely on their
tissue origin and the conditions of cellular culture, which
suggests that the most effective types of transplanted cells
should be selected according to disease characteristics and
the characteristics of the different MSCs in future clinical
use. Thus, in future clinical applications, the most effective
types of transplanted cells should be chosen according to the
characteristics of the disease and the different MSCs. We
believe that addressing these challenges will lead to the wide-
spread application of exosomes in clinical settings, thereby
revealing new clinical strategies for exosomes and enabling
the exploration of new clinical therapeutic approaches to
benefit patients with MI.
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