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Trauma-induced osteonecrosis of the femoral head (TI-ONFH) is a pathological process in which the destruction of blood vessels
supplying blood to the femoral head causes the death of bone tissue cells. Vascular cell adhesion molecule 1 (VCAM-1) has been
shown to have potent proangiogenic activity, but the role in angiogenesis of TI-ONFH is unclear. In this work, we discovered that
VCAM-1 was significantly downregulated in the bone marrow mesenchymal stem cells (BMSCs) derived from patients with
TI-ONFH. Subsequently, we constructed BMSCs overexpressing VCAM-1 using a lentiviral vector. VCAM-1 enhances the migra-
tion and angiogenesis of BMSCs. We further performed mRNA transcriptome sequencing to explore the mechanisms by which
VCAM-1 promotes angiogenesis. Gene ontology biological process enrichment analysis demonstrated that upregulated differentially
expressed genes (DEGs) were related to blood vessel development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment
analysis revealed that upregulated DEGs were engaged in the Apelin signaling pathway. Apelin-13 is the endogenous ligand of the
APJ receptor and activates this G protein-coupled receptor. Treatment with Apelin-13 activated the Apelin signaling pathway and
suppressed the expression of cellular communication network factor 2 in BMSCs. Furthermore, Apelin-13 also inhibits themigration
and angiogenesis of VCAM-1-BMSCs. In summary, VCAM-1 plays an important role in vascular microcirculation disorders of
TI-ONFH, which provides a new direction for the molecular mechanism and treatment of TI-ONFH.

1. Introduction

Osteonecrosis of the femoral head (ONFH) is a pathological
process of bone tissue necrosis usually caused by hip trauma,
alcoholism, and long-term administration of steroids [1]. This
can progress to bone collapse and secondary hip osteoarthri-
tis, causing severe hip pain and loss of joint function. For
patients with advanced ONFH, total hip arthroplasty is cur-
rently the best option [2]. However, hip preservation therapy
remains a challenge in young adults or active populations.
The currently accepted etiological theory of trauma-induced
ONFH (TI-ONFH) is that hip trauma leads to local vascular

disruption, causing vascular microcirculation disorders and
leading to osteonecrosis [3]. However, the molecular mechan-
isms associated with impaired vascular microcirculation in
TI-ONFH are still unclear.

Numerous studies have shown that mesenchymal stem
cells (MSCs) from different tissue sources exhibit excellent
angiogenic effects [4–6]. A number of angiogenic factors and
enzymes secreted by MSCs have been widely reported to
initiate angiogenesis. Bone marrow MSCs (BMSCs) are capa-
ble of interacting with endothelial progenitor cells to enhance
angiogenesis by promoting the secretion of vascular endothe-
lial growth factor (VEGF) and platelet-derived growth factor
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[7]. BMSCs also strengthened the in vitro angiogenic sprouting
capacity of human umbilical vein endothelial cells (HUVECs)
in a hepatocyte growth factor-dependent manner [8].

Vascular cell adhesionmolecule 1 (VCAM-1), also known
as CD106, is a 110 kDa glycoprotein that is inducible and
predominantly expressed in endothelial cells [9]. In the
inflammatory response, VCAM-1 acts as a cell adhesion mol-
ecule by directly interacting with α4β1 integrin expressed on
leukocytes via the Ig-like domains 1 and 4 within the extracel-
lular domain [10]. In addition, soluble VCAM-1 (sVCAM-1)
has been shown to mediate angiogenesis in the rat cornea
[11], and the sVCAM-1/α4 integrin pathway plays an impor-
tant role in inflammatory stimuli-induced angiogenesis [12, 13].
Recent studies demonstrated that VCAM-1 in placenta cho-
rionic villi-derivedMSCs shows potent proangiogenic activity
[14]. However, the role of VCAM-1 in TI-ONFH-derived
BMSCs has not been explored.

Therefore, the aim of this study was to verify the expres-
sion and the ability to promote the angiogenesis of VCAM-1
in BMSCs derived from TI-ONFH patients. In addition, we
performed RNA sequencing and further validation to reveal
the possible mechanisms by which VCAM-1 promotes angio-
genesis. The protocol of our experiment is shown in Figure 1.

2. Materials and Methods

2.1. Clinical Sample Data. Patients who developed ONFH
after previous treatment for hip trauma were included in this
study. All patients underwent bilateral hip joint X-ray and
magnetic resonance imaging (MRI) examination. Patients were
not receiving any medication within the past 6 months and
had no other joint disease, autoimmune disease, systemic

inflammation, malignant, or chronic disease. In addition,
patients with simple femoral neck fractures were included
in the control group.

This study was approved by the Ethical Committee of the
Zhengzhou Central Hospital Affiliated to Zhengzhou Uni-
versity (Ethics number: 202170). All volunteers have signed
informed consent.

2.2. Cell Isolation and Culture. Bone marrow was collected
from patients, and BMSCs were extracted. The regular cul-
ture medium for BMSCs was MSC serum-free media (Yocon,
China) and MSC serum-free media additive (Yocon, China).
Cells were cultured at 37°C with 5% CO2 in a humidified
environment. HUVECswere cultured in a high-glucose DMEM
medium (Procell, China). BMSCs and HUVECs were cocultured
using transwell chambers (Corning, USA).

To investigate the role of the Apelin signaling pathway in
the effects of VCAM-1, BMSCs were treated with 1nM Apelin-
13 (Cayman Chemical, USA) for 2 hr after reaching 80%–90%
confluence [15].

2.3. Flow Cytometry Analysis. The phenotype of BMSCs was
analyzed using the following antibodies: phycoerythrin-
conjugated CD90 and CD106; allophycocyanin-conjugated
CD73 and CD105, and fluorescein isothiocyanate-conjugated
CD14, CD19, CD34, CD45, and human leukocyte antigens-DR
(HLA-DR). Cells were examined by CytoFLEX flow cytometer
(Beckman Coulter, USA). All of the antibodies were purchased
from Biolegend (USA), and the flow cytometry data were ana-
lyzed by CytExpert software (Beckman Coulter, USA).

2.4. Osteogenic, Lipogenic, and Chondrogenic Differentiation.
BMSCs were trypsinized and seeded in a 24-well plate at a
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concentration of 2×104 cells perwell. BMSCswere inducedusing
osteogenic and lipogenic media when reaching 80%–90% conflu-
ence. The induction medium was changed every 3 days. After
14 days of induction, mineral deposition was detected using
Alizarin Red S staining (Beyotime, China), and lipid droplets
were detected using Oil Red O staining (Solarbio, China).

BMSCs (5× 105 cells) were centrifuged at 1,500 rpm for
5min to obtain cell pellets. The cell pellets were cultured in
chondrogenic medium for up to 21 days. Cells were fixed
in 4% formaldehyde, dehydrated in an ethanol series, and
embedded in paraffin blocks. Blocks were cut, and sections
were stained with Alcian Blue (Procell, China) to evaluate
chondrogenic differentiation.

2.5. Lentiviral Vector Transduction. Lentiviral vectors carry-
ing genes for VCAM-1 and control vectors were prepared by
Jikai Gene (China). Cell suspension at a density of 2.5× 105/ml
was prepared in MSC serum-free medium and seeded at
5× 105 cells per well onto 6-well plates. Premixed virus vector
(15 μl) with 40μl HiTransG A transfection agent (Jikai Gene).
The culture medium was changed after 16 hr transfection
with OPTI-MEM. After 48 hr, cells were observed under a
fluorescent microscope for transfection. The successful-
transduced cells were screened with puromycin.

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR). Total RNA was extracted from BMSCs by using the
FastPure® Cell/Tissue Total RNA Isolation Kit V2 (Vazyme,
China). Next, cDNA was synthesized from 1 μg of total RNA
by using the RevertAid First Strand cDNA Synthesis Kit
(Thermo Scientific, USA). Then, qRT-PCR analysis was per-
formed with ChamQ Universal SYBR qPCR Master Mix
(Vazyme, China) in the 7500 Fast Dx Real-Time PCR System
(Applied Biosystems, USA). The relative standard curvemethod
(2−ΔΔCT) was used to determine the relative RNA expression,
using β-actin as the reference. The PCR primers used in this
study are shown in Table 1.

2.7. Western Blotting. Protein extracts were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred to polyvinylidene fluoride membranes. Blots were
blocked with 5% milk in Tris-buffered saline containing 0.5%
Tween-20 for 1hr at room temperature. The membranes were
incubated with primary antibodies at 4°C overnight, followed by
incubation with the horseradish peroxidase-conjugated second-
ary antibodies at 37°C for 2hr. The immunoreactive bands were
visualized using Omni-ECL™ Femto Light Chemiluminescence
Kit (Epizyme, China) and imaged by the ChemiDoc XRS Plus
luminescent image analyzer (Bio-Rad, USA). The antibodies
used in this study were as follows: anti-glyceraldehyde-3-
phosphate dehydrogenase (1 : 5,000, Bioworld Technology,
USA), anti-VCAM-1 (1 : 1,000, Cell Signaling Technology,
USA), anti-VEGF (1 : 1,000, Abcam, UK), anti-PLGF (1 : 1,000,
Abcam, UK), anti-FGF2 (1 : 1,000, Abcam, UK), anti-APLN
(1 : 1,000, Abcam, UK), anti-cellular communication network
factor 2 (CCN2) (1 : 1,000, Abcam, UK), horseradish peroxidase
conjugated anti-rabbit IgG (1 : 5,000, Abcam, UK).

2.8. Evaluation of Apoptosis. BMSCs were digested, washed,
suspended with Annexin V binding buffer, and counted to

ensure at least 1× 105 cells in a test. The cell suspension was
incubated with Annexin V-AbFluor 647 and propidium
iodide (PI). Then kept away from light for 15min, and apo-
ptosis was detected by flow cytometry. The apoptosis detec-
tion kit was purchased from Abbkine (China).

2.9. Proliferation Assay. The proliferation of BMSCs was
detected by cell counting kit-8 (CCK-8; Epizyme, China).
Briefly, 2× 103 cells/well (three replicates per group) were
seeded into 96-well plates and cultured at 37°C with 5%
CO2 for 1, 3, 5, 7, and 9 days. CCK-8 solution (10 μl) was
added to each well and incubated at 37°C for 2 hr. The
absorbance was observed at 450 nm by using a microplate
reader (Molecular Devices, USA).

2.10. Cell Cycle. BMSCs were fixed in 70% ethanol (4°C)
overnight. Then, the fixed cells were washed with PBS and
incubated in RNase A (7 sea, China) and PI for 30min. The
distribution of the cell cycle (G0/G1, S, and G2/M) was
detected using a flow cytometer.

2.11. Transwell. Migration of BMSCs was assessed in a
24-well plate using transwell chambers with 8 μm pore size
(Corning, USA). MSCs were suspended in a serum-free
medium, and 100 μl (1× 106/ml) of the cell suspension was
added to the upper chamber of the migration wells. Then,
600 μl of DMEM medium containing 10% FBS was added to
each lower chamber. After 24 hr, BMSCs passing through the
upper chamber membrane were fixed with 4% paraformal-
dehyde (Solarbio, China) and stained with 1% crystal violet
dye solution (Solarbio, China). Micrographs were taken for
each chamber, and the cell numbers (three replicate readings
per group) were counted manually.

2.12. Tube Formation Assay. Matrigel (150 µl) (Corning,
USA) was added to each well of a 48-well plate and allowed

TABLE 1: Primer sequences.

Gene Sequence

VCAM-1 Forward GGACCACATCTACGCTGACA
Reverse TTGACTGTGATCGGCTTCCC

RUNX2 Forward AGGCAGTTCCCAAGCATTTCATCC
Reverse TGGCAGGTAGGTGTGGTAGTGAG

PPARγ Forward AGATCATTTACACAATGCTGGC
Reverse TAAAGTCACCAAAAGGCTTTCG

VEGF Forward AAGATCCGCAGACGTGTAAATGTT
Reverse CCCCAAAAGCAGGTCACTCAC

PLGF Forward TGTCACCATGCAGCTCCTAA
Reverse CCGGCATTCGCAGCGAACGTGC

FGF2 Forward CTGGCTATGAAGGAAGATGGA
Reverse TGCCCAGTTCGTTTCAGTG

APLN Forward TGCTCTGGCTCTCCTTGAC
Reverse CTGGAGGTCTGCGAGGAACA

CCN2 Forward TGGCATGAAGCCAGAGAGTG
Reverse GTGGGAATCTTTTCCCCCAGT

β-actin Forward TCACCATGGATGATGATATCGC
Reverse ATAGGAATCCTTCTGACCCATGC
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to polymerize. HUVECs and BMSCs weremixed (1× 105 cells,
1 : 1) and plated on Matrigel. After culture for 6hr, images were
taken using a microscope. The tube formation was quantified
by analyzing the total tube length in each well with ImageJ
(National Institutes of Health, USA).

2.13. RNA-Sequence and Bioinformatics Analysis. Three sam-
ples from each group were analyzed by RNA sequencing.
Differentially expressed genes (DEGs) were identified based
on the criteria of |log2 (fold change)| ≥1 and FDR≤ 0.05 and
then visualized as volcano and heat maps. All DEGs were
submitted to the Metascape (https://metascape.org/) data-
base for gene ontology (GO) function enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis and are shown as bubble plots.

2.14. Statistical Analysis. Data were expressed as meanÆ
standard deviation. A two-tailed unpaired Student’s t-test

was performed for comparison between two groups. All anal-
yses were conducted with GraphPad Prism 8. P<0:05 was
considered a significant difference.

3. Results

3.1. Identification and Characterization of BMSCs. The results
of flow cytometry showed that the BMSCs derived from
patients were positive for CD73, CD90, and CD105 but nega-
tive for CD14, CD19, CD34, CD45, andHLA-DR (Figure 2(a)).
BMSCs without the addition of induction an medium were
adherent and arranged radially (Figure 2(b)). Blue-stained
acid proteoglycan was observed by Alcian Blue staining
(Figure 2(c)); matrix mineralization was observed with Aliza-
rin Red S staining (Figure 2(d)); lipid droplet formation was
observed with Oil Red O staining (Figure 2(e)). The above
results are consistent with the characteristics of MSCs.
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3.2. VCAM-1 Was Significantly Downregulated in the BMSCs
Derived from Patients with TI-ONFH. Fourteen patients
who developed ONFH after treatment for hip trauma were
included in the experimental group (Figures 3(a) and 3(b)).
In the same period, six patients with simple femoral neck
fractures were included in the control group. Considering the
effect of aging on MSCs, there was no statistical difference
between the age of patients in the experimental group (59–71,
64.86Æ 3.66) and the control group (65–70, 67.33Æ 2.07).
Additionally, there was no significant difference between
the gender of the patients in the experimental group (eight
males and six females) and the control group (two males and
four females). The information of all patients is shown in
Table 2. To explore the potential role of VCAM-1 in
TI-ONFH, we detected the expression of CD106 in BMSCs
by flow cytometry (Figure 3(c)). The results revealed that
CD106 was significantly downregulated in BMSCs from
patients with TI-ONFH (Figures 3(d) and 3(e)).

3.3. Overexpression of VCAM-1 Did Not Alter the Properties
of BMSCs. After lentiviral transfection of BMSCs, Western blot
and qRT-PCR verified the expression of VCAM-1 (Figures 4(a)
and 4(b)). Flow cytometry results showed that overexpression
of VCAM-1 did not affect the apoptosis of BMSCs (Figure 4(c)).
CCK-8 assay confirmed that there was no significant differ-
ence in cell proliferation between the two groups of BMSCs
(Figure 4(d)). In addition, VCAM-1 had no effect on the cell
cycle of BMSCs (Figure 4(e)). Finally, we wanted to know
whether VCAM-1 could directly influence the multidirec-
tional differentiation potential of BMSCs. However, the oste-
ogenic and lipogenic differentiation of BMSCs did not differ
significantly (Figures 4(f) and 4(g)).

3.4. Overexpression of VCAM-1 Enhanced Migration and
Angiogenesis of BMSCs. The migration capacity of BMSCs
was assessed by the transwell chamber. After 24 hr of incuba-
tion, more BMSCs crossed the upper chamber membrane in
the VCAM1 group (Figure 5(a)). The angiogenic capability of
BMSCs was assessed using an in vitro capillary-like structure
(tube) formation assay on the basement membrane matrix.
Tube formation peaked after 6 hr of coculture between 1 : 1
mixture of BMSCs and HUVEC (Figure 5(b)). We analyzed
the parameters in the angiogenic network and found that the
VCAM-1 group formed more junctions and total branch
length (Figures 5(c) and 5(d)). After the coculture of BMSCs
and HUVECs, the expression of angiogenesis-related factors
(VEGF, PLGF, and FGF2) was significantly upregulated in
HUVECs (Figures 5(e) and 5(f)).

3.5. Bioinformatics Analyses. After differential expression anal-
ysis of the raw sequencing data, 305 upregulated genes and 315
downregulated genes were obtained (Figures 6(a) and 6(b);
Supplementary 1). GO biological process enrichment analysis
revealed that upregulated DEGs were involved in blood vessel
development and cellular response to growth factor stimulus
(Figure 6(c)). KEGG pathway enrichment analysis showed that
upregulated DEGs were involved in the Apelin signaling path-
way, estrogen signaling pathway, and relaxin signaling pathway
(Figure 6(d)). RNA-seq results showed that overexpression of
VCAM-1 resulted in the downregulation of APLN (gene for
apelin) and upregulation of CCN2 (Figure 6(e)). We verified
the above results using qRT-PCR (Figure 6(f)).

3.6. Apelin-13 Inhibits the Migration and Angiogenesis of
VCAM-1-BMSCs. Apelin-13 is the predominant subtype of
Apelin found in the heart and brain. Apelin-13 is the

TABLE 2: Patient information.

Group Age Gender Disease Side

Experimental 65 F TI-ONFH R
Experimental 71 M TI-ONFH L
Experimental 63 M TI-ONFH L
Experimental 64 F TI-ONFH R
Experimental 63 F TI-ONFH R
Experimental 66 F TI-ONFH R
Experimental 59 M TI-ONFH L
Experimental 65 M TI-ONFH R
Experimental 65 M TI-ONFH L
Experimental 61 M TI-ONFH R
Experimental 66 F TI-ONFH L
Experimental 70 M TI-ONFH R
Experimental 60 F TI-ONFH R
Experimental 70 M TI-ONFH R
Control 69 M FNF R
Control 68 F FNF L
Control 67 F FNF L
Control 65 F FNF L
Control 65 M FNF R
Control 70 F FNF L

TI-ONFH, trauma induced-osteonecrosis of the femoral head; FNF, femoral neck fracture.
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endogenous ligand of the APJ receptor and activates this G
protein-coupled receptor. To validate the results of bioinfor-
matic analysis, we usedApelin-13 to activate APLN and inhibit
the expression of CCN2 in BMSCs (Figure 7(a)). In addition,
the number of BMSCs crossing the upper chamber membrane
became less (Figure 7(b)). More importantly, Apelin-13 inhib-
ited the angiogenic capacity of BMSCs (Figure 7(c)). Both the
junctions and total branch length in the angiogenic network
were significantly reduced (Figures 7(d) and 7(e)).

4. Discussion

Previous studies have reported that VCAM-1 in placenta cho-
rionic villi-derived MSCs exhibits excellent angiogenic para-
crine activity and displayed therapeutic efficacy on mouse
hindlimb ischemia [14]. This study evidenced the angiogenic
potential of VCAM-1 in BMSCs from patients with TI-ONFH.
In addition, we further demonstrated that VCAM-1 promotes
angiogenesis and migration of BMSCs by regulating the Ape-
lin/CCN2 pathway (Figure 8).

VCAM-1, as an adhesion molecule within the vasculature,
has been shown to be involved in the angiogenic process in a
variety of diseases. VCAM-1 was released into the blood as
sVCAM-1 after cleavage from the cell surface, and serum
sVCAM-1 levels were significantly higher in gastric cancer
patients than in normal subjects [16]. Sano et al. [17] detected
high expression of VCAM-1 in thrombi formed in pancreatic
ductal adenocarcinoma and significantly inhibited tumor
angiogenesis after intervention with anti-VCAM-1 antibodies.

In view of the importance of angiogenesis in ONFH, we
investigated the expression of VCAM-1 in BMSCs from
patients with ONFH due to different etiologies. In the pres-
ent study, we found that VCAM-1 was significantly down-
regulated in BMSCs from patients with TI-ONFH. In the
tube formation assay, overexpression of VCAM-1 in BMSCs
enhanced the tube formation of HUVECs. It implicates that
VCAM-1 plays an important role in vascular microcircula-
tion disorders in TI-ONFH.

To further explore the mechanism by which VCAM-1
promotes angiogenesis, we performed RNA sequencing

Regulation of endopeptidase activity

Response to inorganic substance

Tissue morphogenesis

Blood vessel development

Response to BMP

Regulation of system process

Epithelial cell differentiation

Response to peptide

Aging

Cellular response to growth
factor stimulus

6 8 10

2

3

4

5

−log10 (P value)

Count

8
12
16
20

GO biological process

ðcÞ

Fluid shear stress and atherosclerosis

Vascular smooth muscle contraction

Apelin signaling pathway

Endocrine and other factor−regulated
calcium reabsorption

Malaria

Relaxin signaling pathway

Neuroactive ligand-receptor interaction

Estrogen signaling pathway

2 3 4 5 6

1

2

3

−log10 (P value)

Count

4
6
8
10
12

KEGG pathway

ðdÞ

Group VCAM-1 APLN CCN2

NC-1 67.2 16.7 334.4

NC-2 62.5 18.2 318.4

NC-3 69.3 17.5 313.4

VCAM-1–1 125.6 12.5 675.8

VCAM-1–2 127.0 13.2 737.4

VCAM-1–3 127.0 13.4 713.3

P value 3.19E-135 2.43E-06 0.000035

ðeÞ

1.5

1.0

0.5

Re
la

tiv
e A

PL
N

 ex
pr

es
sio

n

0.0
NC VCAM-1

∗∗

2.5

1.5

2.0

0.5

1.0

Re
la

tiv
e C

CN
2 

ex
pr

es
sio

n
0.0

NC VCAM-1

∗∗∗∗

ðfÞ
FIGURE 6: Bioinformatics analyses: (a) heat map of DEGs; (b) volcano map of DEGs; (c) GO biological process of upregulating DEGs;
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analysis. The results of GO biological process enrichment
analysis showed that upregulated DEGs are involved in blood
vessel development. Furthermore, the results of KEGG
enrichment analysis showed that upregulated DEGs are
involved in the apelin signaling pathway. Apelin is a vasoac-
tive peptide and is an endogenous ligand for APJ receptors,
which are widely expressed in blood vessels, heart, and car-
diovascular regulatory regions of the brain [18]. Apelin and

APJ are also expressed on ECs of the newly developing blood
vessels and mediate angiogenesis [19]. It has been reported
that Apelin deficiency significantly impaired retinal vascular-
ization in the early postnatal period [20]. In addition, in the
hind limb ischemia model, apelin, together with VEGF, effec-
tively induced functional vessels larger than with VEGF alone
[21]. This may be caused by the Apelin/APJ system that
induces the proliferation and migration of ECs and drives
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vascular endothelial cells toward a proangiogenic state [22, 23].
Interestingly, in this study, overexpression of VCAM-1 down-
regulated the expression of APLN. This suggests that the
angiogenic function played by VCAM-1 in BMSCs may not
be exerted directly by apelin.

CCN2, also known as connective tissue growth factor, is a
cysteine-rich matricellular protein involved in the regulation
of a variety of biological processes [24]. In this study, we found
that overexpression of VCAM-1 upregulated the expression of
CCN2. Then, administration of apelin-13 downregulated the
expression of CCN2 and inhibited the angiogenesis andmigra-
tion of BMSCs. Previously, the Apelin/CCN2 pathway was
known for its ability to modulate fibrosis [25]. We identified
the role of the apelin/CCN2 axis in angiogenesis for the first
time. CCN2 has been shown to induce angiogenesis and to
promote adhesion, migration, and survival of ECs [26]. This
further confirms our view that overexpression of VCAM-1 pro-
motes BMSCs migration and angiogenesis via Apelin/CCN2.

However, the present study has the following limitations.
First, the angiogenic ability of VCAM-1 gene-modified BMSCs
needs to be further validated with in vivo experiments. Second,
because of the powerful proangiogenic function of VCAM-1,
its additional mechanisms and role in the bonemarrowmicro-
environment remain to be explored.

5. Conclusion

Taken together, the present study revealed a significant
downregulation of VCAM-1 in BMSCs from patients with
TI-ONFH. Furthermore, VCAM-1 promoted the migration
and angiogenic capacity of BMSCs through the Apelin/
CCN2 signaling pathway. Our findings provide new insights
into the molecular mechanisms of TI-ONFH progression.
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