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Background. Cervical cancer (CC) is one of the most frequent female malignancy. Cancer stem cells (CSCs) positively affect
survival outcomes in cancer patients, but in cervical cancer, the mechanism of tumor stem cells is still uncertain. Methods.
RNA-seq data and related clinical follow-up of patients suffering from CC were from TCGA. Consensus clustering screened
prognostic mRNAsi-related genes and identified molecular subtypes for CC. Based on the overlapping differentially expressed
genes (DEGs) in subtypes, we employed LASSO and multivariate Cox regression to screen prognostic-related genes and
established the RiskScore system. The patients were grouped by RiskScore, the prognosis was analyzed by the Kaplan-Meier
(K-M) curve among the various groups, and the precision of the RiskScore was assessed by the ROC curve. Finally, the
potential worth of RiskScore in immunotherapy/chemotherapy response was assessed by evaluating TIDE scores and
chemotherapy drug IC50 values. Results. We noticed that patients with low mRNAsi had a shorter survival and then identified
three molecular subtypes (C1-3), with the C1 having the worst prognosis and the lowest mRNAsi. Finally, we identified 7
prognostic-related genes (SPRY4, PPP1R14A, MT1A, DES, SEZ6L2, SLC22A3, and CXCL8) via LASSO and Cox regression
analysis. We established a 7-gene model defined RiskScore to predict the prognosis of CC patients. K-M curve indicated that
low RiskScore patients had improved prognosis, and ROC curves indicated that RiskScore could precisely direct the prognostic
evaluation for those suffering from the cancer. This was also confirmed in the GSE44001 and GSE52903 external cohorts.
Patients were more sensitive to immunotherapy if with low RiskScore, and RiskScore exhibited precise assessment ability in
predicting response to immunological therapy in CC patients. Conclusion. CC stemness is associated with patient prognosis,
and the RiskScore constructed based on stemness characteristics is an independent prognostic index, which is expected to be a
guide for immunotherapy, providing a new idea for CC clinical practice.

1. Introduction

Although cervical cancer (CC) was preventable and treat-
able, it remains a global burden on female’s health. In Africa,
South America, Southeast Asia, and other countries, the
incidence and mortality rates are the highest, reaching
15.3-40.1% and 7.7-28.6%, respectively [1]. It was believed
that effective implementation of early screening, HPV vacci-
nation, and other means can reduce the incidence of CC and
that patients who receive treatment early had higher overall

survival (OS) rate [2, 3]. However, in some developing coun-
tries, most patients were diagnosed with stage III/IV [4–6].
Some research data showed that the clinical outcomes in
late-stage CC patients were still not optimistic [7]. Conse-
quently, discovering serviceable therapeutic targets and
prognostic biomarkers for CC is highly necessary.

Growing evidence suggested that tumor-infiltrating
immune cells (TLIs) from the tumor microenvironment
(TME) were associated with the progressiveness, aggressive-
ness, and treatment responsiveness of tumor [8, 9]. Recent
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studies confirmed that immune cell infiltration could predict
CC recurrence, prognosis, and treatment response. For
example, Kawachi et al. [10] demonstrated that tumor-
associated CD204+ M2 macrophages are predictive metrics
for cervical adenocarcinoma. Zhang et al. [11] assessed
tumor-infiltrating biomarkers (PD-1, PD-L1, CD3, CD4,
CD8, CD20, CD56, and CD68) in CC using immunohisto-
chemistry and found that increased CD4, CD8, CD20, and
CD56 signal predicts favorable neoadjuvant chemotherapy
response. Someya et al. [12] also confirmed that CD8 or
FoxP3 combined with EQD2 may help predict the treatment
effect of CC radiotherapy, which was found to help optimize
the selection of individualized treatment for CC. In addition,
immunotherapies, which blocked immune checkpoints like
CTLA-4 and PD-1/PD-L1, gradually have become second-
line therapies in malignancies [13, 14]. Some immune compo-
nents of TME can suppress antitumor immune responses, not
all patients will benefit from immunotherapy [15]. Therefore,
exploring useful therapeutic targets and prognostic biomark-
ers for CC is highly critical.

Cancer stem cells (CSCs) were associated with adverse
clinical outcomes of cancer. CSCs were a subpopulation of
tumors, mainly responsible for tumor maintenance and
spread. CSCs would produce many differentiated cells with
high value-added and self-renewal capacity and were the
main components of tumor populations [16]. Activation of
CSCs was known to lead to tumor recurrence and chemo-
therapy resistance [17]. In recent years, stemness indices
were conducted to profile stemness characteristics. For
example, Malta et al. [18] used a machine learning algorithm
to calculate the stemness index of a pluripotent stem cell
sample, which in turn assessed the degree of oncogenic
dedifferentiation. Currently, some mRNA expression-based
stemness indices (mRNAsi) were associated with low-grade
glioma and gastric cancer prognosis, providing new ideas
for prognosis, recurrence, and metastasis prediction of
gastric cancer and low-grade glioma [19, 20]. However, in
CC, the association between stemness and prognosis has
not been elucidated. Therefore, this study utilized the mRNA
expression profile of CC in TCGA database to focus on the
potential prognostic value of mRNAsi and stemness index-
related genes affecting its prognosis using bioinformatics
algorithms. We attempt to establish a clinical prediction
model for CC prediction of prognosis and biomarkers of
immunotherapy response to provide a basis for clinical
guidance.

2. Materials and Methods

2.1. Data Source and Processing. The high-throughput RNA-
seq data (TCGA-CESC) and clinical information of CC were
from TCGA database. In this study, we followed the
methods of Li et al. [21] to process RNA data. Samples with-
out survival time, status, or clinical follow-up information
were removed. After screening, 288 primary tumor samples
were retained for subsequent studies in TCGA-CESC cohort.
In addition, the GSE44001 and GSE52903 datasets were
from the GEO database as validation cohorts. Similarly, the

same treatment was done in the GSE44001 and GSE52903
cohorts, and 300 and 55 samples were retained, respectively.

2.2. Acquisition of Stemness Index Based on RNA-Seq. Stem-
ness index model trained from the Progenitor Cell Biology
Consortium database with OCLR algorithm was applied for
tumor stemness calculation [18, 22]. With stemness index
being a value between 0 (the lowest) and 1 (the highest),
how similar tumor cells are to stem cells can be measured by
the index. A stronger stem cell property was related to a stem-
ness index close to 1. From a previously reported study, we
acquired stem cell indices based on the transcriptome of each
CESC sample [23]. In the following sections, the index
referred to the mRNA expression-based stemness index
(mRNAsi).

2.3. Identification of mRNAsi-Related Genes. The Spearman
correlation between each mRNAsi and the corresponding
gene was calculated in TCGA-CESC cohort, and genes
whose correlation index jcorj > 0:4 and p < 0:01 were seen
as mRNAsi-related genes (mRNAsiRGs). Then, univariate
Cox regression analysis combined with the clinical informa-
tion of CESC patients was conducted on the screened
mRNAsiRGs to identify which could affect the overall sur-
vival (OS) of CESC.

2.4. Consensus Clustering. These genes, which had been
found to be highly correlated with the mRNAsi, were used
to perform the consensus clustering [24]. Patients were clus-
tered into different stemness subtypes. The cumulative distri-
bution function (CDF) and consensus matrices determined
the optimal subgroup number.

2.5. Stemness Subtype Comparison. Chi-squared test was
conducted to compare different clinical variables combined
TNM stage, stage, grade, age, and stemness in the subtypes
for difference exploration among the different stemness sub-
types of TCGA datasets. Next, molecular characterization
information of TCGA-CESC was obtained from Thorsson
et al.’s pan-cancer landscape study [23]. Differences in the
genomic landscape among the three subtypes were analyzed.
Finally, we counted the gene mutations in different subtypes.

2.6. DEG Analysis and Functional Enrichment Analysis. R
package limma [25] was used to calculate DEGs between
the C1 vs. C2&C3 (C1) group, the C2 vs. C1&C3 (C2) group,
and the C3 vs. C1&C2 (C3) group (FDR < 0:05 and jlog 2
FCj > 1). Subsequently, GO and KEGG functional enrich-
ment analyses were performed on DEGs in groups C1, C2,
and C3 using the R package clusterProfiler [26], and the
pathway with p < 0:05 was selected as the most significantly
enriched pathway.

2.7. Construction and Verification of the Stemness-Related
Prognosis Model. Firstly, the DEGs in groups C1, C2, and
C3 were taken as a concurrent set, and then, univariate
Cox regression analysis was performed with R package sur-
vival to select the DEGs that had an impact on the OS of
CC patients. Next, in order to reduce the model complexity,
the R package glmnet [27] was used for LASSO Cox
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regression analysis, and tenfold cross-validation selected
appropriate penalty parameter lambda to remove the genes
with strong correlation in the model to reduce the dimen-
sion. Finally, multivariate Cox regression analysis was per-
formed using R package survival to screen DEGs affecting
OS in CC patients and construct a risk assessment model
named RiskScore calculated by the following formula:

RiskScore =〠coef i ∗ Exp genei, ð1Þ

where coef i was the Cox regression coefficient normalized
by the Z-score of the gene and genei was the expression
data of the gene. We used the best cutoff value found by
the surv_cutpoint function of the R package survminer for
sample division into different groups. The surv_cutpoint
function could calculate the statistical p value of all potential
subgroups in the sample, and in this study, we chose the min-
imum p value as the best subgroup cutoff value [28]. K-M
curves were employed to compare the OS difference. The
timeROC package [29] was used to perform ROC analysis
and calculate the AUC value to evaluate the prognostic ability
of RiskScore. Finally, to verify the robustness of RiskScore, it
was tested in the GSE44001 and GSE52903 cohorts.

2.8. Correlation between the RiskScore and Clinical
Characteristics. We evaluated the distribution of RiskScore
in different clinical features including TNM stage, grade,
stage, and age. To assess the robustness and accuracy of
the prognostic model, survival differences were compared
for the two groups stratified by clinical characteristics.

2.9. GSEA Enrichment Analysis. To explore the biological
processes associated with RiskScore, we performed the GSEA
enrichment analysis using the fgsea package, and clusterPro-
filer package was utilized for functional annotation.

2.10. Determination of Tumor-Infiltrating Immune Cells.
The CIBERSORT algorithm [30] was utilized to compute
the relative abundance of 22 common tumor-infiltrating
immune cells in TCGA-CESC cohort. Next, immune cell
infiltration was assessed using the ESTIMATE algorithm
[31] to compute the StromalScore, ImmuneScore, and ESTI-
MATEScore in different subtype samples. To further elucidate
their TME differences, we downloaded 29 TME signatures
from previous studies [32] that could predict immune therapy
response using R package GSVA [33] to obtain the ssGSEA
score.

2.11. Prediction of Treatment Response.We from cancer drugs
sensitivity genomics (GDSC, http://www.cancerrxgene.org)
downloaded about 1000 cancer drug sensitivity data, using
the cancer cells from the CESC-related department. The
half-maximal inhibitory concentration (IC50) is an important
index to evaluate the effect of drugs or the treatment response
of samples. The lower the IC50, the stronger the antitumor
ability [34]. Using the pRRophetic package, IC50 of the chemo-
therapy drugs was calculated by ridge regression [35]. Next,
tumor immune dysfunction and exclusion (TIDE) scores of
CC patients were downloaded. TIDE score is an index to

assess the response to immunotherapy response. The higher
the TIDE score, the lower the benefit of immunotherapy
[36]. Finally, to verify the predictive value of RiskScore in
immunotherapy response, we performed validation in the
IMvigor210 cohort.

3. Results

3.1. mRNAsi Is Associated with CC Prognosis. Initially, we
evaluated the correlation of clinicopathological features
between mRNAsi in CESC patients in TCGA-CESC cohort.
There was no significant correlation between mRNAsi and
age, T stage, grade, stage, and N stage (Figure 1(a)). Next,
CC patients in TCGA-CESC cohort were clustered in the
high-mRNAsi group and the low-mRNAsi group. To evalu-
ate the effect of mRNAsi on OS in CESC patients, K-M anal-
yses showed a vitally worse OS of the low-mRNAsi group
than the high-mRNAsi group (Figure 1(b)). Besides, we also
compared whether there were differences in mRNAsi
between different groups of clinicopathological characteris-
tics. Violin plot of mRNAsi differences among different
grade, age, TNM stage, and stage subgroups was exhibited
(Figure 1(c)). Combined with the results, no significant dif-
ference in mRNAsi was found between different subgroups
of TNM stage and age, and the mRNAsi of CESC patients
in the G2 and G3 subgroups was significantly higher than
that of G1. Further, we found that higher mRNAsi meant
poorer OS in both early- and advanced-stage patients
(Figure 1(d)). The results suggested that mRNAsi based on
CSCs was closely related to their prognosis in CESC.

3.2. Molecular Subtypes of CESC Based on mRNAsiRGs. In
total, the expression profiling of 667 mRNAsiRGs in 288
samples from RNA-seq data in TCGA-CESC cohort was
obtained by the Spearman correlation analysis. Potential
prognostic significance of each mRNAsiRGs was assessed
using univariate Cox regression analysis, which screened a
sum of 31 significant OS-related mRNAsiRGs from TCGA-
CESC cohort (Figure 2(a)). The functional enrichment anal-
ysis is shown in Figure S1. The 288 samples were subjected to
consensus clustering. Patients were categorized into three
significantly distinct subtypes (C1, C2, and C3 group;
Figure S2A-B, Figure 2(b)). Those in the C1 demonstrated
a significantly worse OS and PFS (Figures 2(c) and 2(d)).
The results of PCA analysis for the three subgroups of
patients are presented in Figure 2(e). In addition,
significant differences were detected in mRNAsi among the
three subtypes of patients, with the highest mRNAsi being
observed in the C3 subtype (Figure 2(f)). Finally, the heat
map demonstrated the difference in the expression levels of
31 mRNAsiRGs in C1-3 subtypes which was shown in
Figure 2(g). Finally, in TCGA-CESC cohort, distribution of
various clinical features was analyzed in C1-3 subtypes
defined in this study to see if there were any differences.
We found that TNM stage and age did not differ
significantly in the subtypes, but higher stemness features
could be clearly observed in patients with C1 and C2
subtypes (Figures 3(a)–3(c)).
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3.3. Associations between Molecular Subtypes and Genomic
Landscapes. Further, to explore the differences in genomic
landscape between stemness subtypes. We found that the
C3 subtype showed higher levels of TMB and purity, while
the C1 subtype showed higher levels of ploidy
(Figure 4(a)). Meanwhile, we found that the majority of
patients with the C3 subtype belonged to the C2 subtype
with IFN-γ dominant characteristics (Figure 4(b)). In addi-
tion, we also analyzed the genomic mutation landscape
among the molecular subtypes. We found a significant
correlation between molecular subtypes and mutations.
The waterfall plot showed the integration status of somatic
mutations in TCGA-CESC, where Missense_Mutation and
Nonsense_Mutation were the most common mutation
types, while TTN, MUC4, and EP300 were the genes with
high mutation frequency in CESC (Figure 4(c)).

3.4. Immunological Microenvironment in Stemness Subtypes
of CESC. To further elucidate the differences between the
immune microenvironment with molecular subtypes of
patients, we calculated the immune cell infiltration level in
the TME of CESC patients using the CIBERSORT and ESTI-
MATE algorithms. First, according to the CIBERSORT

results we observed that the level of partial immune cell infil-
tration differed between subtypes, where Tregs, T_cells_fol-
licular_helper, T_cells_CD8, and Dendritic_cells_resting
were highly infiltrated in the C3 subtype, while Macro-
phages_M0 and T_cells_CD4_memory_resting were highly
infiltrated in the C1 subtype (Figure 5(a)). Meanwhile, ESTI-
MATE results showed that the StromalScore, ImmuneScore,
and ESTIMATEScore of the C1 subtype were significantly
higher than those of other subtypes, with higher immune cell
infiltration (Figure 5(b)). In addition, to further evaluate
TME differences, 29 gene signatures representing tumor
main functional components, immune cells, stromal cells,
and other cell populations in the TME were downloaded
from previous studies, and their TME gene signature
ssGSEA scores were calculated. We observed higher ssGSEA
scores for features such as angiogenesis fibroblasts (angio-
genesis, endothelium, cancer-associated fibroblasts, matrix,
matrix remodeling, and granulocyte traffic), protumor
immune infiltrate (myeloid cells traffic and immune sup-
pression by myeloid cells), and EMT signature proliferation
rate (EMT signature) in the C1 subtype (Figures 5(c) and
5(d)). Finally, we calculated 14 cancer-related pathway activ-
ities using the R package PROGENy, and the EGFR,
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Figure 1: The relationship between mRNAsi and prognosis in cervical cancer. (a) Correlation analysis results between mRNAsi and
clinicopathological characteristics of patients in TCGA-CESC cohort. (b) Survival curves of the high- and low-mRNAsi groups. (c)
Differences between groups of different clinical characteristics, mRNAsi difference boxplot. (d) Survival curve of patients with different
stages and grades of high and low mRNAsi.
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Figure 2: Identification of mRNAsi-related molecular subtypes. (a) Forest plot for univariate Cox regression analysis of mRNAsi-related
genes in TCGA-CESC cohort. (b) Consistent clustering analysis, and clustering diagram of samples when K = 3. (c) 3 species differences
in OS prognosis among samples of molecular subtypes. (d) Differences in PFS of samples of 3 molecular subtypes. (e) PCA analysis of
samples of 3 molecular subtypes. (f) Differences in mRNAsi of samples of 3 molecular subtypes. (g) Differences in mRNAsi of samples
of 3 molecular subtypes. Heat map of mRNAsi-related gene expression in subtype samples.
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hypoxia, MAPK, TGFb, TNFa, and NFκB pathways were
activated in the C1 subtype (Figures 5(e) and 5(f)). Overall,
immune cell activity and pathway activity related to tumor-
igenesis and progression were higher in the TME of C1 sub-
type patients, which may also be the reason for the shorter
OS in C1 subtype patients.

3.5. Differences in Immunotherapy between Molecular
Subtypes. Immunotherapy is a promising emerging option
in the treatment of CC, supported by several findings [14,
37]. T-cell-inflamed gene expression profile (T-cell-inflamed
GEP) was a novel immunotherapeutic biomarker that pre-
dicts clinical response to PD-1-targeted immune checkpoint
blockade. GEP included genes associated with antigen
presentation, and GEP includes IFNγ-responsive genes asso-
ciated with antigen presentation, chemokine expression,
cytotoxic activity, and adaptive immune resistance [38].
Cytolytic activity (CYT) score was also a novel immunother-
apy biomarker that could characterize the antitumor
immune activity of CD8+ cytotoxic T cells and macrophages

[39]. Therefore, we first evaluated the potential efficacy of
immunotherapy in patients with different CC subtypes using
biomarkers such as T-cell-Inflamed GEP score, Th1/IFNγ
gene signature ssGSEA score, and CYT score. In this study,
we found that the T-cell-inflamed GEP score, Th1/IFNγ
gene signature ssGSEA score, and CYT score of the C3 sub-
type were higher than those of the C1 and C2 subtypes
(Figures 6(a)–6(c)). Considering that cancer immunother-
apy for immune checkpoint blockade (ICB) was based on
the inhibition of key immune checkpoints, we evaluated a
representative number of molecules whose expression levels
are shown in Figure 6(d). Finally, we found higher MDSC,
CAF, exclusion, and TIDE scores in the C1 subtype
(Figure 6(e)). These researches indicated that patients with
the C3 subtype might respond more favourably to
immunotherapy.

3.6. Identification of DEGs Based on Different Subtypes. To
identify DEGs in different subtypes, 439 DEGs were identi-
fied in group C1 compared to C2&C3, of which 373 were
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Figure 3: Differences in clinical characteristics between subtypes (a). Statistics of clinicopathological characteristics of 3 subtypes in TCGA-
CESC cohort. (b) Statistics of stage. (c) Statistics of grade.
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upregulated and 66 were downregulated (Figure 7(a)). 301
DEGs were identified in group C3 compared to C1&C2, of
which 280 were downregulated and 21 were upregulated
(Figure 7(b)). DEGs could not be identified in the C2 group
compared to C1&C3. Further, we analyzed the biological
functions of these DEGs. Interestingly, we found that DEGs
in the C1 group were mainly enriched in CAF and EMT-
related pathways, a result consistent with the TME trend in
this study (Figures 7(c) and 7(d)).

3.7. Development and Validation of the Prognostic RiskScore.
The prognostic RiskScore was constructed based on DEGs in
the subtypes, and 478 DEGs were obtained by taking a con-
catenation of genes in the C1 and C3 groups. In TCGA-
CESC cohort, univariate Cox regression analysis combined
with the survival information of patients identified 127 genes
affecting patients’ OS (p < 0:05), including 117 risk factors
and 10 protective factors. Then, the model was further com-
pressed by LASSO Cox regression analysis to remove the
genes with a high goodness of fit. The model reached opti-
mality at lambda = 0:037, for which we selected 12 genes
(ITGA5, SPRY4, P4HA3, PPP1R14A, CXCL8, SLC22A3,
TFPI, SEZ6L2, MT1A, ARMCX1, DES, and PLOD2) for
subsequent analysis (Figures 8(a) and 8(b)). Finally, based
on multivariate COX regression analysis and Akaike infor-
mation criterion [40], the model showing a minimum AIC
was seen as the optimal model. We finally identified seven
genes, including SPRY4, PPP1R14A, MT1A, DES, SEZ6L2,

SLC22A3, and CXCL8, as mRNAsi-related genes affecting
OS in CC (Figure 8(c)). The final prognostic prediction
model for CC was constructed: RiskScore = +0:308∗ SPRY4
+ 0:271∗ PPP1R14A + 0:153∗ MT1A − 0:287∗ DES + 0:178∗
SEZ6L2 + 0:223∗ SLC22A3 + 0:189∗ CXCL8.

The RiskScore of patients in TCGA-CESC cohort was
calculated based on the model, and the best cutoff was
selected using the R package survminer to divide the sample
into a low-risk group (N = 217) and a high-risk group
(N = 71). We observed that as the RiskScore increased, more
patients died. In addition, risk factors such as SPRY4,
PPP1R14A, MT1A, SEZ6L2, SLC22A3, and CXCL8 were
significantly highly expressed in the high-risk group, and
protective factor DES was obviously highly expressed in
the low-risk group (Figure 8(d)). K-M analysis showed that
patients with low risk had a better OS than those with high
risk (Figure 8(e)), and the ROC curve revealed that AUC
of 1-, 3-, and 5-year OS was 0.82, 0.81, and 0.82, respec-
tively (Figure 8(f)). To assess the predictive robustness of
the RiskScore, we obtained RiskScores for patients in the
independent validation sets GSE44001 and GSE52903
cohorts. Similarly, survival analysis showed that patients
with low risk had a better OS than those with high risk.
The prediction of 1-, 3-, and 5-year survival probabilities
indicates that RiskScore still has excellent AUC values,
demonstrating that RiskScore has excellent performance
in assessing the prognosis of patients suffering from CC
(Figures 8(g)–8(j)).
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3.8. Clinical Correlation Analysis of the Prognostic RiskScore.
In order to determine the relationship between RiskScore
and clinicopathological characteristics, interaction between
RiskScore and different clinical parameters (N stage, age,
and T stage) was discussed. We found increased RiskScore
in patients in higher T stage, M stage, and mRNAsi-low
groups (Figure 9(a)). Further, we observed a significantly
higher RiskScore in patients with C1 subtype than C2 and
C3 subtypes (Figure 9(b)). Also, we evaluated the association

between RiskScore and molecular subtypes and could
observe that the high-risk group was mainly C1 subtype
and mRNAsi-low patients (Figure 9(c)). In addition, we
performed a survival analysis of high- and low-risk patients
in early- and advanced-stage patients. We noted that Risk-
Score had promising predictive value in different clinical
groups (Figure 9(d)). Overall, RiskScore constructed based
on prognosis-related mRNAsi features of DEGs in subtypes
had good robustness.
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Figure 5: TME differences between molecular subtypes. (a) Boxplot of 22 immune cell scores in three subtypes in TCGA-CESC cohort. (b)
ESTIMATE immune infiltration differences. (c) 29 TME signature distributions. (d) 29 A boxplot of TME signature scores. (e) Relative
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3.9. Characteristics of Immune Infiltration/Pathways between
the RiskScore Groups. In TCGA-CESC cohort, GSEA enrich-
ment analysis was performed for patients in different risk
groups. We found that the high-risk group was significantly
enriched in CAF and synthesis and metabolism-related path-
ways such as KEGG_N_GLYCAN_BIOSYNTHESIS and
KEGG_O_GLYCAN_BIOSYNTHESIS and EMT-related path-
ways such as KEGG_ECM_RECEPTOR_INTERACTION,
KEGG_FOCAL_ADHESION, and KEGG_CYTOKINE_
CYTOKINE_RECEPTOR_INTERACTION (Figure 10(a)).

We also found that RiskScore was significantly negatively
correlated with mRNAsi (Figure 10(b)). TME differences in
the two risk groups were also analyzed. First, immune cell
infiltration was assessed by ESTIMATE, and the results
showed a higher ImmuneScore in the low-risk group
(Figure 10(c)). Additionally, relative abundance of 22 immune
cells was compared, and we observed that the level of Macro-
phages_M1, T_cells_CD8, Mast_cells_resting immune cell
infiltration, and Dendritic_cells_resting was higher in the
low-risk group (Figure 10(d)). The correlation between
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Figure 6: Difference of immunotherapy between molecular subtypes. (a) T-cell-inflamed GEP score. (b) Th1/IFNγ gene signature. (c)
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RiskScore and 22 immune cell infiltration winds is shown in
Figure 10(e). To further reveal the TME differences, we found
that RiskScore was significantly positively correlated with gene
signatures such as angiogenesis fibroblasts and EMT signature
proliferation rate (Figure 10(f)). Finally, we also analyzed the
relationship between RiskScore and pathway activity scores
and found a significant positive correlation between RiskScore
and angiogenesis-related pathways (Figure 10(g)).

3.10. Explorations of Clinical Applications for RiskScore. In
this study, we examined the validity of the RiskScore for
predicting response to immunotherapy by calculating the
T-cell-inflamed GEP score, the Th1/IFNγ gene signature
ssGSEA score, and the CYT score in the high- and low-
risk groups. The results showed that T-cell-inflamed GEP
score and Th1/IFNγ gene signature ssGSEA score were signif-
icantly increased in the low-risk group (Figures 11(a)–11(c)).
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Figure 7: Identification and functional analysis of DEGs between molecular subtypes. DEGs volcano plot in the (a) C1 group and the (b) C2
group and (c) GO and (d) KEGG enrichment analyses bar graph.
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Figure 8: Establishment and validation of clinical prognostic model. (a) Trajectory plot of independent variables with lambda. (b)
Confidence interval of penalty parameter lambda. (c) Multivariate Cox regression analysis forest plot. (d) TCGA-CESC cohort, sample
RiskScore distribution, and survival status and expression heat map of mRNAsi-related prognostic genes. (e, f) Survival curves and ROC
curves of the high- and low-risk groups in TCGA-CESC cohort. (g, h) Survival curves and ROC curves of the high- and low-risk groups
in the GSE44001 cohort. (i, j) In the GSE52903 cohort, survival curves and ROC curves of the high- and low-risk groups.
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Figure 9: Correlation between RiskScore and clinical features and dryness. (a) RiskScore differences between different clinicopathological
subgroups. (b) RiskScore differences between different mRNAsi subgroups and molecular subtypes. (c) Association between the mRNAsi
subgroups, the molecular subtypes, and the RiskScore subgroups. (d) Survival analysis of the high- and low-risk groups in the
clinicopathological subgroups.
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Subsequently, the expression levels of immune checkpoint
molecules in patients in different risk groups were counted.
We found that CTLA4, BTLA, HAVCR2, and TIGIT were sig-
nificantly increased in the low-risk group (Figure 11(d)). Fur-
ther, we observed that patients in the high-risk group had
higher scores of MDSC, CAF, exclusion, and TIDE, indicating
that the higher-risk patients were not sensitive to immuno-
therapy (Figure 11(e)). The correlation between RiskScore
and T-cell-inflamed GEP score, Th1/IFNγ gene signature
ssGSEA score, immune checkpoint, and TIDE score is shown
in Figure 11(f). Furthermore, we examined the ability of Risk-
Score to predict patient response to ICB therapy to further
validate the association of RiskScore with immunotherapy.
In the anti-PD-L1 cohort (IMvigor210 cohort), patients in
the low-risk group showed significantly prolonged overall sur-
vival and clinical benefit (Figures 11(g)–11(i)). Notably,
patients with low RiskScore also exhibited remarkable survival
advantages in the early-stage groups (stage I+II and stage III
+IV) (Figures 11(j) and 11(k)). Finally, we examined the valid-
ity of RiskScore for chemotherapy response prediction and
calculated IC50 for each sample. Based on the R package
pRRophetic of the pRRophetic algorithm, we analyzed the
IC50s of 6 chemotherapeutics (Paclitaxel, Gemcitabine, Cis-

platin, Gefitinib, Mitomycin C, and Sunitinib) used in CC
treatment and predicted 3 significant correlations between
RiskScore and drug sensitivity (Figures 11(l) and 11(m)).
The results suggest that RiskScore may also serve as a predic-
tor of immunotherapy.

4. Discussion

CC remains the leading cause of global cancer-related deaths
in women, though advances have been made in screening,
diagnosis, and treatment. CSCs are highly heterogeneous cell
populations, and an in-depth investigation of the interac-
tions between highly heterogeneous CSCs and their TME
will help to explore CSC-targeted therapeutic strategies and
improve the sensitivity of current CC immunotherapies.
This study first explored the relationship between stemness
characteristics and tumor prognosis and TME in CC; identi-
fied three molecular subtypes including C1, C2, and C3; and
constructed a clinical prediction model for predicting prog-
nosis and immunotherapy response.

First, the relationship was analyzed between mRNAsi
scores and clinical outcomes, and we found that patients
with high mRNAsi had higher OS in both early and more
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advanced patients in this finding, which has been confirmed
in several studies. Zhang et al. [20] found that patients with
low mRNAsi had worse OS in low-grade gliomas. These
results suggested that mRNAsi was intimately connected to
the prognosis of CC patients. Next, based on the mRNAsi-
related genes influencing OS of CC, we found that CC could
be classified into C1-3 molecular subtypes. Based on stem-
ness characteristics, C3 subtype has the highest mRNAsi
and TMB. TMB is an alternative biomarker for neoantigens
[41]. Marabelle et al. [42] found that high TMB solid tumor
patients were more sensitive to pembrolizumab monother-
apy. Although this study did not exactly analyze TMB differ-
ences in CC and their impact on prognosis, combined with
the results of subtype survival analysis and mRNAsi scores,
we speculate that low TMB leads to poor prognosis in CC
patients. In addition, we found that TTN, MUC4, and
EP300 were the most frequently mutated genes in CC. These
genes have been shown to be closely associated with cancer.
MUC4 is a classic biomarker that helps tumor cells evade
immune cell recognition [43]. Recent studies by Rowson-
Hodel et al. [44] show that MUC4 further enhances the
survival and metastasis of disseminated tumor cells through
the physical interaction of platelets and macrophages. Zhu
et al. [45] showed that higher TMB was related to EP300
mutations, which promoted bladder cancer’s antitumor
immunity. TTN is a prognostic marker of colon cancer
immune microenvironment [46]. And generally speaking,

we found for the first time three stem-related subtypes of
CC, which provides new insights into the pathological study
of CC.

In this study, a clinical prediction model composed of
SPRY4, PPP1R14A, MT1A, DES, SEZ6L2, SLC22A3, and
CXCL8 genes was constructed. SPRY4 may function as an
antitumor gene in CRC, and SPRY4 suppresses CRC pro-
gression by inhibiting EZH2 [47]. The pathogenesis of
human melanoma involves PPP1R14A, which drives tumor-
igenesis and Ras activity through the activation of growth-
promoting ERM family factor and inhibition of tumor
suppressor merlin [48]. DES has been shown to inhibit telo-
merase activity in prostate cancer cells [49]. Chen et al. [50]
found that SEZ6L2 expression level was significantly related
to lymph node metastasis, TNM stage, and HER-2 status of
breast cancer, and knocking down SEZ6L2 could signifi-
cantly inhibit breast cancer cell line proliferation. Fu et al.
[51] confirmed that SLC22A3 could inhibit ESCC metasta-
sis, whereas dysregulated SLC22A3 promoted filopodia for-
mation and cell invasion through lowering its direct
relation to ACTN4, increasing ACTN4 actin-binding activ-
ity in normal esophageal cells and ultimately leading to early
development and progression of ESCC. It has been reported
that increased CXCL8 levels indicate poor clinical prognosis
and tumor progression in gastric cancer patients. CXCL8 is
largely secreted via macrophages and forms an immunosup-
pressive microenvironment in gastric cancer by inducing
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Figure 11: Explorations of clinical applications for RiskScore. (a) T-cell-inflamed GEP score. (b) Th1/IFNγ gene signature ssGSEA score. (c)
Cytolytic activity. (d) Immune checkpoint gene expression level. (e) Difference in TIDE score. (f) RiskScore versus T-cell-inflamed GEP
score, Th1/IFNγ gene signature SsGSEA score and Cytolytic activity, immune checkpoint gene expression level, and TIDE score
correlation heat map. (g) RiskScore differences between immunotherapy responses in the IMvigor210 cohort. (h) Immunotherapy
response distribution between the RiskScore groups in the IMvigor210 cohort. (i) IMvigor210 prognostic differences between the
RiskScore groups in the cohort. (j, k) Early-stage groups (stage I+II and stage III+IV), the box plots of the estimated IC50 for Paclitaxel,
Gemcitabine, and Cisplatin and the relationship between Gefitinib, Mitomycin C, and Sunitinib in TCGA-CESC. (l, m) RiskScore and
drug sensitivity.
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PD-L1+ macrophages [52]. However, the function of these
genes has not been elucidated in CC, and also, further exper-
iment is required to verify their function.

In recent years, due to its complex composition and
mechanism, TME is critical in tumor progression and
tumorigenesis and has become a research hotspot in the field
of cancer [53]. Increasing evidence suggested that TICs and
stromal components are closely related to breast cancer
development [54, 55]. From this report, we found that there
were differences in the infiltration levels of T_cells_follicu-
lar_helper, Macrophages_M1, and T_cells_CD8 in patients
with different RiskScore groups. CD8+ T cells and CD4+ T
cells are considered to be the major components of TLIs
and are involved in antitumor immunity [56, 57]. Liu et al.
suggested that high expression of TIGIT in CD8+ T cells
of CC patients promoted their depletion and that blocking
TIGIT in activated CD8+ T cells attenuated the inhibitory
effect of SHIP-1 on CD8+ T cells and enhanced the activa-
tion of NF-κB and ERK [58]. In pancreatic cancer, Sehgal
et al. found that CD8+ T cells blocking PD-1 and CXCR4
perform antitumor effects [59]. Tumor-associated macro-
phages [60] also have a major role in TME, and their differ-
ent forms contribute to OS in tumor patients. TAM consists
of multiple macrophage subpopulations, including M0, M1,
and M2 macrophages [61]. M2 macrophages drive immuno-
suppression and angiogenesis by producing immunosup-
pressive factors such as IL-10 [62]. In this study, lower
RiskScore CC patients possessed improved immune activity
and OS, and it was worth being aware that higher RiskScore
patients had lower TIDE scores. We speculated that patients
with lower RiskScore with TME in an activated state might
be more sensitive to immunotherapy. To confirm this con-
jecture, we validated the predictive performance of Risk-
Score for immunotherapy response in the IMvigor210
cohort receiving anti-PD-L1 therapy, and the results con-
firmed our conjecture. These results suggested that higher
immunosuppressive cell infiltration in patients with higher
RiskScore promoted their resistance to immunotherapy,
suggesting that poor prognosis in high-risk patients was
connected to the induction of an immunosuppressive
microenvironment.

In addition, we found that the high-risk group was
mainly enriched in CAF and EMT-related pathways, for
example, KEGG_ECM_RECEPTOR_INTERACTION and
KEGG_FOCAL_ADHESION. In cancer research, it is
always known that most cancer-related deaths resulted from
metastasis of cancer cells [63, 64]. ECM-receptor interactions
play an essential role in tumor shedding, adhesion, degrada-
tion, motility, and proliferation. ECM is found to be upregu-
lated in prostate cancer tissues [65] and to also participate in
gastric cancer invasion and metastasis [66]. Furthermore,
ECM in colorectal cancer stimulates epithelial-mesenchymal
transition (EMT) in cancer cells [66]. And the link between
these pathways and stemness in CC needs to be demonstrated
by more advanced studies.

In a word, our study identified stemness-associated
genes associated with prognosis in TCGA public database
and further constructed a 7-gene prognostic signature with
a promising ability in predicting survival outcomes and

immunotherapy response in CC patients. However, there
are some limitations. Firstly, our model was developed based
on a public database, lacking clinical samples for validation,
and subsequent multicenter, multidata clinical trials are
needed. Secondly, we identified some differential pathways
in two RiskScore groups, the association in these pathways
and tumor stemness was not designed for further exploring
the molecular mechanisms in a wet trial, and more system-
atic and in-depth studies in wet trials are needed to elucidate
the association.

5. Conclusion

We utilized mRNAsi-related genes from CSC features to
develop new molecular subtypes of stemness signatures in
CC, which might expect to complement the existing patho-
logical typing and provide insights into the mechanisms of
metastasis and drug resistance in CC. Our research also
developed a 7-gene prognostic signature for CC, and there
were promising clinical benefits of RiskScore in predicting
prognosis and treatment benefits in CC.
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