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Necroptosis, a kind of programmed necrotic cell apoptosis, is the gatekeeper for the host to defend against the invasion of
pathogens. It helps to regulate different biological processes regarding human cancer. Nevertheless, studies that determine the
impact of death on triple-negative breast cancer (TNBC) are scarce. Therefore, this paper has comprehensively examined the
expression as well as clinical significance of necroptosis in TNBC. ConsensusClusterPlus was used to establish a stable
molecular classification that used the expression regarding the necroptosis-linked genes. The clinical and immune
characteristics of different subclasses were evaluated. Then, the weighted gene coexpression network analysis (WGCNA)
assisted in determining key modules, and we selected the genes exhibiting obvious association with necroptosis prognosis
through the relationship with prognosis. The univariate Cox regression analysis together with least absolute shrinkage and
selection operator (LASSO) techniques served for the construction of the necroptosis-related prognostic risk score (NPRS)
model, and the pathway characteristics of NPRS model grouping were further studied. Finally, the NPRS, taking into account
the clinicopathological features, used the decision tree model for enhancing the prognostic model as well as the survival
prediction. First, two stable molecular subtypes with different prognosis and immune characteristics were identified using
necroptosis marker genes. Then, the key modules were identified, and 10 genes significantly related to the prognosis of
necroptosis were selected. Then, the clinical prognostic model of NPRS was developed considering the prognosis-linked
necroptosis genes. Finally, the NPRS model, taking into account the clinicopathological features, adopted the decision tree
model for enhancing the prognostic model as well as the survival prediction. Herein, two new molecular subgroups
considering necroptosis-linked genes are proposed, and an NPRS model composed of 10 genes is developed, which maybe
assist in the personalized treatment and clinical treatment guidance of TNBC patients.

1. Introduction

Breast cancer acts as a representative cancer type for females.
Despite recent advancements in treatment, such as targeted
therapy, hormone therapy, chemotherapy, and radiotherapy,
breast cancer is still the primary cause of death related to
cancer around the world [1]. High histological grade, prolif-
eration rate, and ductal histology are characteristics of triple-

negative breast cancer (TNBC). It is also linked to the defi-
cient expression of the human epidermal growth factor
receptor-2 (HER2), progesterone receptor, and estrogen
receptor (ER) [2]. Approximately 10–20% of breast cancer
patients have TNBC. Affected patients display high mortal-
ity and higher recurrence rates than those with any other
breast cancer subtype [3]. The major systemic therapy for
TNBC is routine chemotherapy. However, efforts to identify
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efficient targets to enhance clinical outcomes have been
motivated by the dearth of molecular-focused based therapy
and the dismal prognosis of TNBC patients.

Programmed necrosis, or necroptosis, is characterized by
the permeability of the plasma membrane and modifications
in the mitochondria, which cause the release of the cytoplas-
mic components into the extracellular environment and give
rise to an inflammatory response [4]. Necroptosis refers to a
death mechanism of necrotic cell independent of caspase. Its
primary mediators through gene regulation are mixed-
lineage kinase domain-like protein (MLKL), receptor-
interacting protein kinase 1 (RIPK1), and RIPK3 [5]. There
is mounting evidence that necroptosis is essential for con-
trolling carcinogenesis and cancer progression. Najafov
et al. noted that necroptosis can accelerate the metastasis
of the tumors and T cell death [6]. By releasing the chemo-
kine (C-X-C motif) ligand (CXCL), necroptosis in pancre-
atic cancer can encourage tumor cell motility and invasion
[7]. The drug response of prostate cancer patients is influ-
enced by necroptosis [4]. Necroptosis has been connected
to antitumor immunity in cancer immunotherapy. Accord-
ing to Wang et al., the lncRNA SNHG1/miR-21-5p/TLR4
regulatory axis and the prognostic characteristics associated
with necrosis were identified in gastric adenocarcinoma.
According to Shen et al., the necroptosis signal is triggered
in breast tissue cancer and is highly correlated with tumor
growth and malignant tumor markers [8]. However, more
information is required on the probable molecular mecha-
nism of the TNBC and the exact function of necroptosis in
the disease prognosis.

In this study, the mutational and immunological proper-
ties of stable molecular subgroups were identified by consen-
sus clustering using genes relevant to necroptosis. Then, the
WGCNA technique assisted in confirming the major mod-
ules, and such association was considered to select genes
with close relation to necroptosis prognosis. The genes
involved in necroptosis were discovered using univariate
Cox regression analysis and the LASSO techniques. Then,
a clinical prognostic model and risk model were developed,
which could be useful in determining the prognosis of the
TNBC patients and their particular treatment course.

2. Materials and Methods

2.1. Data Collection. All data regarding RNAseq, overall sur-
vival (OS) of the patients, and their TCGA-BRCA character-
istics came from The Cancer Genome Atlas (TCGA) GDC
API. The GSE103091 chip data set of the TNBC came from
NCBI’s Gene Expression Omnibus (GEO) database, which
yielded 238 samples. Furthermore, the data set containing
the TNBC sequencing data (METABRIC, Nature 2012 &
Nat Commun 2016) was collected from the cBioPortal website
(http://http://www.METABRIC.org/), hereinafter referred to
as the cBioPortal data set. 74 necroptosis-linked genes used
in an earlier study were also used in this report [9].

2.2. Data Preprocessing. Processing of TCGA-BRCA data set
is as follows: (1) normal samples were discarded; (2) samples
of TNBC were retained according to the clinical information

table; (3) the samples without the birth time and OS status
were eliminated, and the samples with a survival time < 10
years were retained. Processing of GSE103091 data set is as
follows: (1) normal samples were discarded; (2) samples
without their birth time and OS status were eliminated,
and samples with an OS value of <10 years were retained;
(3) the probe of chip data was converted into gene symbols;
(4) the expression data of multiple genes corresponding to
one probe were removed; (5) if a gene had multiple expres-
sion values, its average value was taken as the expression
value. The following is the cBioPortal data set processing:
(1) normal samples were removed; (2) samples of TNBC
according to the clinical information table were retained;
(3) the samples without the birth time and OS values were
eliminated, and the samples with an OS value of <10 years
were retained.

The TCGA and cBioPortal data sets (hereinafter referred
to as RNAseq data sets) were combined, and the batch effect
between different data sets was removed through the Com-
Bat function of sva package [10].

2.3. Molecular Typing of the Necroptosis-Linked Genes. The
ConsensusClusterPlus package served for consensus cluster-
ing for the building of a consistent matrix, thereby clustering
and typing the samples [11]. We obtained samples’ molecu-
lar subtypes from the expression data regarding genes
related to necroptosis. The Pam algorithm and “maximum”
served for measuring the distance, carrying out 500 boot-
straps. 80% of patients were included in the training set in
each bootstrap process. We defined the cluster number in
the range of 2-10, meanwhile calculating the consistent
matrix and the cumulative distribution function (CDF) for
obtaining the molecular subtype, thereby assessing the opti-
mal classification.

2.4. Construction of WGCNA. The WGCNA process was
used for constructing a gene coexpression network [12].
First, for developing the gene expression similarity matrix,
the following equation was used to estimate the absolute
value regarding the Pearson correlation coefficient between
the i and j genes: Sij = jð1 + corðxi + yiÞÞ/2j. It has been noted
that the coexpression network was in agreement with the
scale-free network, that is to say, log ðkÞ of a node with
the connectivity, k, exhibited a negative link to log ðP ðkÞÞ
of the node probability, while the R2 value was >0.85. There-
after, we converted the expression matrix to the adjacency
matrix, which was then converted to the topological matrix.
An average-linkage hierarchical clustering technique served
for the clustering of genes related to the TOM. Based on
the hybrid dynamic pruning tree, we defined a minimal no.
of genes in every gene network module as 200. The eigen-
genes of each gene module were calculated after the dynamic
cutting method had defined the gene modules. The modules
were then clustered and analyzed, and the modules that were
adjacent to one another were combined to form new mod-
ules. The Pearson correlation coefficient b of each pair of
genes is represented by a soft threshold parameter, β [13].
This process further makes the strong relationship stronger,
while making the weak relationship weaker at the index
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level: aij = jð1 + corðxi + yiÞÞ/2jβ. The feature vector genes, or
ME, serve as every module’s representative genes and define
the overall gene expression levels of the modules as follows:
ME = princompðxqijÞ (i denotes the gene in the modulus q
whereas j indicates the microarray samples in the modulus
q). The expression pattern of the gene in all the data samples
and the ME expression profile of a particular vector gene was
utilized to identify the gene in a module using the Pearson
correlation. This was described as the module membership
(MM), where MMq

i = corðxi, MEqÞ, while ME denoted the
expression profile of the gene i.

2.5. Prediction of Immunotherapy Reactivity. The tumor
immune dysfunction and exclusion (TIDE) algorithm
assisted in verifying the predictive influence exerted by the
immune checkpoint inhibitor score (IMS) on clinical reac-
tivity exhibited by immune checkpoint inhibitors (ICIs).
TIDE algorithm is a calculation technique predicting the
responsiveness of the immune checkpoint blockade (ICB),
based on the gene expression profile [14]. It focused on
assessing 3 cell types which restrict T cell infiltration (M2
subtype of cancer-associated fibroblast (CAF), tumor-
associated macrophages (TAM), and myeloid-derived sup-
pressor cells (MDSCs)) and 2 different mechanisms describ-
ing the tumor immune escape (the score on the dysfunction
of the tumor infiltrating cytotoxic T lymphocytes (CTLs)
and the score on the rejection of the immunosuppressive
factors on CTLs).

2.6. Gene Set Enrichment Analysis (GSEA). GSEA assisted in
the pathway analysis for examining the pathways involving
different biological activities in molecular subtypes. GSEA
employed all the candidate gene sets in the Hallmark data-
base [15].

2.7. Invasion Abundance Calculation of TME Cells.Microen-
vironment Cell Populations-Counter (MCP-Counter) served
for analyzing the scores of the 10 immune cells [16], while
the single sample gene set enrichment analysis (ssGSEA)
analyzed the scores of the 28 immune cells [17]. Meanwhile,
the Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression (ESTIMATE) process
served for evaluating the general immune microenviron-
ment infiltration score [18].

2.8. Constructing the NPRS Scoring System to Evaluate TNBC
Samples. Identification of molecular subtype-related mod-
ules. Here, the entire expression profile of RNAseq was used
for WGCNA analysis, and the most relevant modules of
molecular subtypes were identified as the “key modules.”
Then, the genes present in the key modules were extracted,
wherein the genes showing a significant prognosis were cho-
sen as those associated with the necroptosis phenotype. The
total gene number was decreased using the LASSO regres-
sion [19] and stepAIC [20], while the prognosis-linked genes
were acquired. For the construction of the NPRS scoring sys-
tem, the following formula was employed for calculating the
NPRS score of every patient: NPRS = Σβi × Expi, where
“Expi” represents necroptosis prognosis-associated genes’

expressions and “β” represents the Cox regression coefficient
regarding corresponding gene. A threshold value of “0” was
taken into account for dividing patients into group with low
NPRS risk and group with high NPRS risk. The Kaplan-
Meier (KM) technique assisted in constructing the OS curve
for the prognosis analysis, and a log-rank test helped to
determine the significant differences between the groups.

2.9. Cancer Stem Cell. The expression data regarding plu-
ripotent stem cell (PSC) samples (embryonic stem cell
(ESC) as well as induced PSC (iPSC)) from Progenitor
Cell Biology Consortium (PCBC) database were used for
predicting as well as calculating the stem cell index by
one-class logistic regression (OCLR) method. Firstly, only
the sample data of ESC and iPSC are kept, which are col-
lectively referred to as SC samples. The Ensembl IDs of SC
samples are converted into gene symbol, and only the
genes encoding proteins are kept. We obtain 78 SC sam-
ples at last, and the expression profiles regarding 8087
mRNA genes in each sample are kept. For the obtained
expression profile, the average value assisted in centraliz-
ing each sample. Finally, the OCLR method in R package
GelNet (V1.2.1) was used for calculating the weight vector
of each gene on the processed data.

3. Results

3.1. Molecular Typing Based on the Necroptosis-Linked
Genes. First, the expression exhibited by genes associated
with necroptosis was retrieved from the RNAseq expression
profile matrix. Eight genes were found to have significant OS
values in the low and high gene expression groups (p < 0:01).
The RNAseq data were then clustered using consensus clus-
tering based on the eight necroptosis-linked genes related to
prognosis, and the appropriate number of clusters was estab-
lished using CDF. When cluster was chosen as 2, based on
the CDF delta area curve, the clustering outcome presented
a strong stability (Figures 1(a) and 1(b)). In the end, we
selected k = 2 for generating two molecular subtypes. After
examining the prognostic traits, the results showed that
these two molecular subtypes had notable prognosis differ-
ences. Furthermore, the C1 group exhibited a poor progno-
sis, and C2 showed a better prognosis while the individuals
with the C1 subtype had a significantly greater death rate rel-
ative to the C2 subtype (Figure 1(c)). Additionally, using the
same technique to molecularly type the data from the
GSE103091, it was clear that these two forms of molecular
typing had significantly different prognoses, which was in
line with the training set (Figure 1(d)). When the survival
status of the various subtypes in the two data sets was further
analyzed, it was discovered that C1 had a greater death rate
than C2, which was aligned with the C1’s poor prognosis
(Figures 1(e) and 1(f)).

3.2. Immune Characteristics between Subtypes.We compared
the immunological features exhibited by the two subtypes
for better revealing the immune microenvironment differ-
ences between both these subtypes. Significant differences
were noted among 22 different types of immune cells by
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Figure 1: Consensus clustering analysis considering the prognosis of TNBC cell necroptosis-linked genes. (a) The CDF of different
clustering methods for k-values ranging between 2 and 10. The relative change of the CDF AUC curve was determined for 2 to 10. (b)
TNBC samples with clustering heatmap index k = 2 of RNAseq. (c) KM curve for the prognosis of necroptosis clusters in the RNAseq
data set. (d) KM curve of OS between two clusters of necroptosis in GSE103091 cohort. (e) Subtypes’ different survival status in the
RNAseq data set. (f) Subtypes’ different survival status in GSE103091 is different.
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using the ssGSEA function of GSEA to analyze the scores of
28 types of immune cells. Compared to C1, C2 showed a
higher immunological score (Figure 2(a)). The scores of
the 10 immune cells were then analyzed using the MCP-
Counter, and 8 of them showed different scores, while the
C2 subtype also presented high scores (Figure 2(b)). The
results of ESTIMATE analysis, which was used to assess
the overall immune microenvironment infiltration score,
were in agreement with those of MCP-Counter and ssGSEA
(Figures 2(c)–2(e)).

3.3. Immunotherapy/Chemotherapy Differences between
Subtypes. Furthermore, we analyzed the difference in
immunotherapy between the two subtypes. Firstly, the sec-
tion focused on comparing the subtypes in terms of differ-
ent immune checkpoint expressions. Obviously, both the
subtypes exhibited a differential expression of the 14
immune checkpoint genes (ICGs) (Figure 3(a)). As pre-
sented in Figure 3(b), the differences in subtypes of immu-
notherapy were analyzed. The TIDE scores of the RNAseq
queues did not show obvious difference for both the
molecular subtypes. C2 showed a higher dysfunction score
than C1, while C1 showed a higher exclusion score than
C2. In addition, the response degree of subtypes in the
RNAseq cohort to traditional chemotherapy drugs (suniti-
nib, paclitaxel, crizotinib, S-trityl-L-cystine, and CMK) was
also analyzed. The results indicated that C2 was more sen-
sitive to these five drugs (Figure 3(c)).

3.4. WGCNA Analysis Identifying Molecular Subtype-Related
Gene Modules. RNAseq data set served for identifying
molecular subtype-associated gene modules using the
“WGCNA” R software package. First, we clustered the sam-
ples and selected the coexpression module (Figure 4(a)). For
ensuring the network to be scale-free, we selected a β = 3 value
(Figures 4(b) and 4(c)). In addition, the following settings were
used to merge similar clusters into the new modules, i.e.,
deepSplit = 2, height = 0:25, and minModuleSize = 200. This
yielded 10 modules in total (Figure 4(d)). It is worth noting
that the grey module represented the gene set incapable of
being aggregated with the other modules. Figure 4(e) high-
lights the gene statistics regarding every module. Further, the
relationship between every module and the molecular subtype
was analyzed, and obviously, the yellow module showed an
obviously positive relationship with the C1 subtype and a sig-
nificantly negative relationship with the C2 subtype
(Figure 4(f)). The module membership (MM) and the gene
significance (GS) of the genes included in the yellow module
were significantly and positively related (r = 0:43, p < 1e − 5)
(Figure 4(g)). Through the function enrichment of genes in
the yellow module based on the “ClusterProfiler” R software
package, the top 10 pathways with the most significant enrich-
ment were shown. The yellow module presented obvious
enrichment in pathways like the neurotrophin signaling path-
way, Huntington’s disease, and sphingolipid signaling path-
way (Supplementary Figure S1). Finally, the yellow module
which was highly related to molecular typing was identified
as the key gene module related to molecular typing.

3.5. Determination of Genes Related to Necroptosis
Phenotype. The RNAseq data were then divided by 7 : 3 with
0.7 being the proportion of the training data set for the yel-
low module genes that showed a strong correlation to the
molecular subtypes determined by WGCNA in the previous
step. The training data set that included these genes under-
went univariate Cox regression analysis, finding 35 genes
with a greater influence on prognosis (p < 0:01). It had 13
“protective” genes and 22 “risk” genes (Figure 5(a)). Addi-
tionally, the 35 genes in the RNAseq data set were com-
pressed using LASSO regression for lowering the gene no.
in the risk model. First, we focused on examining the change
trajectory presented by each independent variable. The no.
of independent variable coefficients being close to 0 elevated
as the value of lambda gradually increased (Figure 5(b)). We
adopted10-fold cross-validation for constructing the model,
meanwhile examining the confidence interval (CI) for each
lambda (Figure 5(c)). The model was optimized at lambda
= 0:0789. Hence, we selected 20 genes as the target genes
for the subsequent analyses when lambda = 0:0789. Stepwise
multivariate regression analysis and the Akaike information
criteria (AIC) served for optimizing the model combining
the results of the LASSO analysis of the 20 genes. Finally,
10 genes were identified as necroptosis-linked genes from
LASSO analysis that affect prognosis (N6AMT1, ZNF79,
PRICKLE3, DOCK6, EEFSEC, RPAP1, GDPD3, ABHD8,
RAB11B, and FBXO33) (Figure 5(d)).

3.6. Clinical Prognosis Model Establishment and Validation.
The risk coefficients of 10 genes were obtained
(Figure 6(a)). Then, according to the formula defined by
the score of necroptosis of our samples, the necroptosis-
linked prognostic risk score (NPRS) of every sample was
determined. In the RNAseq training, the RNAseq validation,
and the entire RNAseq data sets, the RS of each sample was
calculated, respectively, and the best cutoff was categorized
into group with high risk and group with low risk, followed
by building their KM and ROC curves, respectively. The
results of the RNAseq training, RNAseq validation, and the
entire RNAseq data sets revealed the poor prognosis of high
NPRS and good prognosis of low NPRS, and the ROC curve
had a high AUC (Figures 6(b)–6(d)). This result had also
been verified in TCGA data sets, GSE103091, and cBioPortal
(Supplementary Figure S2 A-C).

3.7. Pathway Characteristics between NPRS Groups. The sec-
tion focused on analyzing the correlation between the bio-
logical functions and NPRS of different samples in the
RNAseq data set. Accordingly, these pathways were nega-
tively correlated with NPRS of samples, and these pathways
were mainly tumor-related (KEGG_WNT_SIGNALING_
PATHWAY, KEGG_TGF_BETA_ SIGNALING_PATH-
WAY) (Figure 7(a)). Next, we selected some important bio-
logical pathways to check for activation in different NPRS
groups. It was noted that in the RNAseq queue, compared
with NPRS-low, 5 pathways were activated and 22 pathways
were inhibited in NPRS-high, and 6 pathways were activated
and 14 pathways were inhibited in the GSE queue
(Figure 7(b)). On the whole, KRAS signaling up and TNF-
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Figure 2: Immune-based properties of the 2 molecular subtypes in the RNAseq data set. (a) ssGSEA compared the 28 immune cell scores in
the 2 subtypes. (b) MCP-Counter compared the 10 immune cell scores in the 2 subtypes. (c) ESTIMATE compared the StromalScore values
in the 2 subtypes. (d) ESTIMATE compared the ImmuneScore values in the 2 subtypes. (e) ESTIMATE compared the ESTIMATEScore
values in the 2 subtypes.
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α signaling via NFκB, etc., were the main inhibited pathway
in the NPRS-high group. Besides, we calculated the mRNAsi
in high group and low data set and found that high group
had higher mRNAsi (Figure S3).

3.8. NPRS in Combination with Clinicopathological Features
for Enhancing the Prognostic Model and the Survival
Prediction. The age, N stage, T stage, M stage, and the NPRS
of patients with TNBC in the RNAseq cohort were consid-
ered for constructing the decision tree. As found, only
NPRS, stage, and age could be still observed in the decision
tree, and four different risk subgroups (i.e., C1, C2, C3,
and C4) were determined (Figure 8(a)). Significant differ-
ences were noted in the OS values of the four risk subgroups,
and the prognosis of the C4 subgroup was the worst
(Figure 8(b)). We analyzed the distribution of the four risk
subgroups, finding the risk subgroups C2, C3, and C4 included
the NPRS-high patients, while the patients in the C1 group

were NPRS-low patients (Figure 8(c)). In addition, some dif-
ferences were also noted in the OS status of the patients in var-
ious risk subgroups, and the distribution of death cases in the
C4 subgroup was the highest (Figure 8(d)). As revealed by the
univariate and multivariate Cox regression analyses of the
NPRS and clinicopathological traits, the NPRS was a prognos-
tic factor with the largest significance (Figures 8(e) and 8(f)).
As revealed by the univariate Cox regression analysis results,
NPRS could result in poor survival rate of the patients
(p = 0:0014,HR = 11, 95% CI: 2.5-48) and remarkably predict
the poor OS (Figure 8(e)). The multivariate Cox regression
analysis adopted the statistically significant characteristic fac-
tors in the univariate Cox regression, finding NPRS as an inde-
pendent risk factor (p = 0:0022, HR = 10, 95% CI: 2.2-44)
(Figure 8(f)). For quantifying the risk evaluation and the sur-
vival probability regarding TNBC patients, we integrated
NPRS with other clinicopathological characteristics to estab-
lish a nomogram, as shown in Figure 8(g). From the model
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Figure 3: Immunotherapy/chemotherapy difference between the two subtypes in the RNAseq data set. (a) Immune checkpoints present
differential expression between the various groups in the RNAseq data set. (b) The TIDE analysis difference between different groups in
the RNAseq queue. (c) The box plots constructed using the calculated IC50 for sunitinib, paclitaxel, crizotinib, and bexarotene in RNAseq.
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Figure 4: Continued.
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results, NPRS had the highest effect on the OS prediction. Fur-
ther, the calibration curve served for assessing the prediction
accuracy of model. Obviously, the 3 calibration points in 2,
3, and 5 years presented similar prediction calibration curve
to standard graph (Figure 8(g)), which suggested that the
nomogram displayed an effective prediction performance.
Nomogram and NPRS had higher AUC (Figure 8(h)). Addi-
tionally, the decision curve analysis (DCA) served for asses-
sing the model reliability. The nomograms also showed a
significantly higher advantage than the other curves
(Figure 8(i)). Compared with other single clinicopathological
features, nomograms showed the strongest ability to predict
survival (Figure 8(j)).

4. Discussion

Recently, the necroptosis signaling pathway has been con-
sidered as a significant event in the regulation of tumorigen-
esis and progression, which remarkably impacts tumor
development, tumor necrosis, tumor metastasis, and tumor
immune response, suggesting the potential of targeting
necroptosis as a new tumor treatment [21]. It is reported
that the current correlation between necroptosis and antitu-
mor immunity is summarized: there are two strategies to
trigger antitumor immunity through necroptosis: (1) inocu-
lation of necrotic tumor cell vaccine: damage-associated
molecular patterns (DAMPs) were released by necrotizing
apoptotic tumor cells to promote the maturation of bone
marrow-derived dendritic cells (BMDCs), cross excitation
of the effector T cells, and the resulting cytotoxic effects. A
higher concentration of interferon-γ was noted in this pro-
cess, which may represent a different anticancer method
used by the CD8+ T cells. (2) Inoculation of necrotic fibro-
blast vaccine: necrotic cells secrete the NF-κB-derived sig-
nals, which leads to DC cell activation, increases the

antigen load of normal tumor cells, and increases the
CD8+ T cell-mediated tumor control [22].

TNBC is mostly seen in young women. Its clinical course
is invasive, the probability of visceral metastasis and brain
metastasis is high, and it shows a worse prognosis compared
to other forms of BC. In addition, the efficacy of endocrine
therapy for hormone receptors and targeted therapy for
blocking HER2 is poor. Chemotherapy is only the main
treatment, but it is very susceptible to drug resistance, which
seriously affects the prognosis. Immunotherapy can prolong
the survival of patients. Potential biomarkers of TNBC
immunotherapy response include high tumor mutation bur-
den (TMB), TILs, and immune infiltration transcriptional
characteristics [23]. In this study, two molecular subtypes
(i.e., C1 and C2) of TNBC were defined by the expression
profile of necroptosis-related genes. Significant prognostic
differences were noted between the 2 molecular subtypes,
and C1 showed a poor prognosis. The interplay between
the many cell types that make up the TME is connected to
carcinogenesis, tumor progression, treatment resistance,
and immune infiltration matrix [24]. We determined the
immune cell infiltration level in the RNAseq cohort of
patients, finding higher immunological score of the C2 sub-
type relative to the C1 subtype. Cancer immunotherapy
depending on the ICIs has shown great clinical success in
recent years. The link between various antitumor immunity
and cell death mechanisms has been recently discovered.
Induced pyroptosis, necroptosis, and ferroptosis with ICI
exhibit a synergistic increased antitumor effect [22]. After
investigating the response of the subtypes to immunother-
apy, most ICGs presented differential expression in the 2
molecular subtypes. Considering immunotherapy scores,
the C2 group had a higher dysfunction score than the exclu-
sion score of the C1 group. In addition, the C2 subtype was
more sensitive to sunitinib, paclitaxel, crizotinib, S-trityl-L-
cystine, and CMK. These findings suggest that patients with
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Figure 4: The hub gene in the RNAseq data set was identified by WGCNA. (a) Clustering trees of every sample. (b) Scale-free exponential
analysis on soft threshold powers (STP, β). (c) The average connectivity between different STPs was analyzed. (d) The dendrogram was
constructed using DEGs based on different degrees of measurement clustering (1-TOM). The different colored bands indicated the
results of automatic block analysis. (e) Statistics of gene no. in each module. (f) The relationship between the module feature vector of
every module and clinical data. (g) Scatter diagram that plots the MM vs. GS values for C1 in the yellow module.
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the C1 subtype who have poor immune cell infiltration
should consider alternative treatment strategies because they
have a bad prognosis and meanwhile show a poor response
to pharmacological therapy.

Furthermore, LASSO regression and AIC algorithm were
used to obtain the prognostic risk model constructed by 10
genes (N6AMT1, ZNF79, PRICLE3, DOCK6, EEFSEC,
RPAP1, GDPD3, ABHD8, RAB11B, and FBXO33). DNA
N6-methyladenine (6mA) is seen to be a novel form of
DNA methylation that is present in different eukaryotic
cells. Studies have found that overexpression of methylase
N6AMT1 increases the viability of hepatocellular carcinoma
(HCC) cells, inhibits apoptosis, and enhances migration and
invasion [25]. A different study found the N6AMT1 showed
an obviously lower expression in the TNBC tissues relative
to the normal tissues [26]. It was found that DOCK6 pre-
sented overexpression in the gastric cancer tissues, and the
positive expression is related to gastric cancer metastasis,
indicating that the gastric cancer patients showed a poor
prognosis. Through miR-148b-3p, Rac1 and Cdc42 can be
activated, which directly affect the motility of gastric cancer
cells, and can serve as a new treatment strategy specific to
gastric cancer [27]. EEFSEC presents an obvious upregula-
tion in prostate cancer cells, and the high expression leads

to poor prognosis, affecting the proliferation, migration,
invasion, and cell cycle of 22Rv1 cells [28]. Naka et al. found
that the deficiency of GDPD3 reduced the levels of some
lysophosphatidic acid (LPA) and lipid mediators in chronic
myeloid leukemia cells. Its deficiency also activated AKT/
mTORC1 signaling pathway and cell cycle and inhibited
the interaction of Foxo3a/β-catenin in the stem cell nucleus
of chronic myeloid leukemia (PMID: 32943626). RAB11B-
AS1 is a natural lncRNA upregulated in human BC, which
enhances the BC cell in terms of the invasion and migration
and promotes tumor angiogenesis and distant metastasis of
breast cancer [29]. There are no relevant reports of ZNF79,
PRICKLE3, RPAP1, ABHD8, and FBXO33 in cancer, and
more research is still needed.

Recent research has demonstrated that during tumor
formation, tumor necroptosis might be induced by death
factors to engage in the RIPK1 and RIPK3 pathways [30].
A new study noted that RIPK1 is necessary for inflammatory
disorders instead of for the growth or metastasis of tumors
[31]. As a result, the fundamental mechanism behind tumor
necroptosis during carcinogenesis is yet unknown. Accord-
ing to research by Baik et al., Z-DNA binding protein 1
(ZBP1), rather than RIPK1, is the primary regulator of
tumor necroptosis in tumor formation in breast cancer.

ZNF79 (N=200) 2.33
(1.38‒3.94) 0.002

RPAP1 (N=200) 1.53
(0.92‒ 2.52) 0.098

RAB11B (N=200) 0.61
(0.36‒ 1.04) 0.07

PRICKLE3 (N=200) 1.75
(1.15‒2.67) 0.009
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(1.66‒4.01) <0.001
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Figure 6: Clinical prognostic model development and examination. (a) Multivariate Cox regression-based forest map of model genes in
RNAseq data set. (b) ROC and the KM survival curves depicting NPRS in RNAseq training queue. (c) ROC and KM survival curves
depicting NPRS in RNAseq validation queue. (d) ROC and KM survival curves depicting NPRS in RNAseq queue.
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ZBP1 deletion prevents tumor cells from necroptosis during
tumor formation, preventing tumor metastasis in the MVT-
1 BC model. For determining the correlation between NPRS
and biological functions, different tumor-related pathways
(KEGG_WNT_SIGNALING_PATHWAY, KEGG_TGF_
BETA_SIGNALING_PATHWAY) were negatively corre-

lated with NPRS of the samples through ssGSEA analysis.
Next, it was seen that the different NPRS groups activated
different pathways. The results showed that in the RNAseq
queue, compared with NPRS-low, 5 pathways were activated
and 22 pathways were inhibited in the NPRS-high queue,
and 6 pathways were activated and 14 pathways were
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Figure 7: Pathway difference analysis of NPRS groups in RNAseq queue. (a) The results of correlation analysis between KEGG pathway and
NPRS whose correlation with NPRS is greater than 0.2. (b) Heatmap depicting the normalized enrichment scores (NESs) of the Hallmark
pathways that were estimated after comparing the NPRS-high with the NPRS-low (at the false discovery rate ðFDRÞ < 0:05). ns: no
significance. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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inhibited in the GSE queue. On the whole, KRAS signaling
up, TNF-α signaling via NF-κB, etc. are the main inhibited
pathways in the NPRS-high group. KRAS signaling is associ-
ated with cancer progression in many cancers. A few recent
studies indicated that the KRAS mutations are found in
about 30% of TNBC patients [32]. Through cell-mediated
apoptosis and immune processes, tumor necrosis factor-α
(TNF-α) was a complex connector between inflammation
and cancer. It has been stated that TNF-α is involved in cell
proliferation, tumor migration, tumor metastasis, matrix deg-
radation, invasion, and angiogenesis [33]. Many researchers
who investigated the molecular mechanism of necroptosis
highlighted the role played by the TNF signaling pathway.
Usually, TNF activates proinflammatory genes through NF-
κB signaling to induce an inflammatory response and activate

downstream NF-κB and MAPK pathways, resulting in
increased proinflammatory gene expression [34]. Therefore,
necroptosis exhibits an obvious association with tumorigene-
sis and development, and its internal complex regulatory
mechanism remains to be further studied.

Future researches shall be conducted to combine the
fundamental experiments and be deepened from the func-
tional perspective. The study failed to consider other factors
due to the lack of basic data on clinical follow-up, especially
the diagnostic details.

Two TNBC necroptosis-related subtypes were found in
this investigation, and subtype verification and molecular
identification were carried out using separate data sets.
However, this study has some limitations, though different
molecular subtypes were investigated and confirmed in two
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Figure 8: Nomogram of prognostic risk model in RNAseq data set combined with the clinical and pathological characteristics. (a) Patients
with the full-scale annotations (RS, gender, age, and TNM Stage) were employed for constructing the survival decision tree and optimizing
the risk stratification. (b) Significant differences noted in OS values noted in the 4 risk subgroups. (c, d) A comparative analysis between
groups. (e, f) Univariate and multivariate Cox regression analyses of the RS and clinicopathological traits. (g) In comparison to the
different clinicopathological features, the nomogram showed the highest capacity for OS prediction. (h) Nomograph model. (i)
Calibration curve regarding nomograph in 2, 3, and 5 years. (j) Decision curve regarding nomograph. ns: no significance. ∗p < 0:05, ∗∗p
< 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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different data sets. These findings are based on retrospective
research, so additional functional studies are required to
investigate the molecular roles played by the biomarkers in
the 2 molecular subtypes. To further elucidate the mecha-
nism of these targets, it is also required for the validation
by using tissue samples and clinical patients. Overall, this
research offers several prospective biological targets for
developing fresh immunotherapies, which might eventually
support the individualized treatment of TNBC patients.

5. Conclusions

The prognosis of TNBC was accurately predicted using a
new prognostic risk model that included 10 genes linked to
necroptosis. Further investigation shall be conducted for
fully understanding the intricate molecular functions of
these 10 genes. This study further highlighted the connec-
tion between necroptosis-linked genes and TNBC prognosis
and immunotherapy. The findings of this study might
enable clinical TNBC patients to receive precise and individ-
ualized care.
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