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Multipotent mesenchymal stromal cells (MSCs) expand in vitro and undergo replicative senescence, thereby restricting their
clinical utilization. Thus, an effective strategy is required to impede MSC senescence. Since spermidine (SPD) supplementation
can prolong the lifespan of yeast by inhibiting oxidative stress, spermidine is a potential option for delaying MSC senescence.
In this study, to test our hypothesis, we first isolated primary human umbilical cord mesenchymal stem cells (hUCMSCs).
Subsequently, the appropriate SPD dose was administered during continuous cell cultivation. Next, we evaluated the
antisenescence effects by SA-β-gal staining, Ki67 expression, reactive oxygen species (ROS) levels, adipogenic or osteogenic
ability, senescence-associated markers, and DNA damage markers. The results revealed that early SPD intervention
significantly delays the replicative senescence of hUCMSCs and constrains premature H2O2-induced senescence. Additionally,
by silencing SIRT3, the SPD-mediated antisenescence effects disappear, further demonstrating that SIRT3 is necessary for SPD
to exert its antisenescence effects on hUCMSCs. Besides, the findings of this study also suggest that SPD in vivo protects MSCs
against oxidative stress and delays cell senescence. Thus, MSCs maintain the ability to proliferate and differentiate efficiently
in vitro and in vivo, which reflects the potential clinical utilization of MSCs in the future.

1. Introduction

Multipotent mesenchymal stromal cells (MSCs), particularly
those derived from the human umbilical cord tissue [1–4],
possess osteogenic, chondrogenic, and adipogenic abilities.
However, the dysfunction or numerical reduction of MSCs
may lead to certain pathological changes and clinical symp-
toms. For premature aging disorders such as Hutchinson-
Gilford progeria syndrome or Werner syndrome, accelerated
attrition of the MSC pool has been detected [5]. Conversely,
the extension of lifespan has been observed in mice by the
transplantation of young MSCs [6]. Therefore, MSCs can
potentially be applied in the field of inflammatory diseases

and regenerative medicine [7–10]. Firstly, before clinical
application, MSCs must be expanded in vitro to obtain
sufficient cells. [11–14]. However, as MSCs expand, they
undergo replicative senescence, including decreased prolifer-
ation and differentiation, which greatly restricts their clinical
utilization potential [15–17]. These negative effects are gen-
erally due to intracellular factors such as high reactive oxy-
gen species (ROS), oxidative stress, telomere shortening,
DNA damage, and extracellular factors involving the stem
cell niche [18]. As a result, an effective strategy is essential
for delaying MSC senescence.

Certain substances such as antioxidants, vitamins, hor-
mones, and plant extracts exhibit antiaging effects [19].
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However, they exert a weak effect on stem cell senescence.
Spermidine (SPD), a natural small molecule compound that
belongs to polyamines, mainly exists in the semen. It also
exists in our daily diet and is essential for the proper func-
tion of numerous metabolic processes [20–23]. The external
supply of natural spermidine extends lifespan by inhibiting
oxidative stress in model organisms including nematodes,
yeast, flies, and mouse flies [24–27]. Moreover, some evi-
dence suggests that spermidine also delays neurodegenera-
tion in nonmammalian model organisms or mouse models
[28]. However, there are no conclusive reports on whether
spermidine delays the cellular senescence of stem cells.
Based on this, we speculate that SPD may delay the senes-
cence of MSCs in vitro or in vivo. Sirtuins are a widely
known type of the NAD+-dependent protein deacetylase,
and the seven sirtuins (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5,
SIRT6, and SIRT7) that have been identified in humans play
a vital role in antiaging effects [29]. Among them, SIRT3 is
localized in the mitochondrial matrix, which is a key regula-
tor of mitochondrial function that decreases mitochondrial
ROS and reduces oxidative stress [30, 31]. Studies have
shown that SIRT3 ameliorates lung senescence by enhancing
the antioxidant defense mechanism [32]. Moreover, SIRT3
deficiency shortens the lifespan of myocardial mitochondria
and impairs their function [33]. However, the relationship
between the role of SIRT3 during the aging of stem cells
and the effect of spermidine on SIRT3 remains unclear. In
this study, we aim to demonstrate that spermidine restricts
the cellular senescence of stem cells and reveal the role of
SIRT3 in antiaging effects mediated by spermidine.

To verify our hypothesis, we isolated the primary human
umbilical cord mesenchymal stem cells (hUCMSCs) and
expanded them continuously in vitro both with and without
SPD. Additionally, a long-term SPD diet as a treatment fac-
tor was applied to explore whether SPD could also slow
down the MSC aging process in vivo. The results of this
study demonstrate that early SPD intervention significantly
delays the replicative senescence of hUCMSCs and inhibits
H2O2-induced premature senescence. Furthermore, SIRT3
is required to achieve SPD-mediated antisenescence effects.
Besides, this study also reveals that SPD administration
in vivo protects MSCs against oxidative stress and delayed
cell senescence.

2. Materials and Methods

2.1. Cell Isolation and Culture. Primary hUCMSCs were iso-
lated and cultured according to the procedures of a previous
study [34]. In brief, after the informed consent was obtained
from women who underwent cesarean section, the collection
and subsequent use of the umbilical cord were approved by
the Institutional Ethical Review Committee of the First
Affiliated Hospital of Henan University of Science and Tech-
nology. Aseptic umbilical cord tissue was collected after
cesarean delivery by a healthy child-bearing-age mother,
according to the guidelines of the World Medical Associa-
tion Declaration of Helsinki. A length of around 3 cm of
Wharton’s jelly was cut into 1-2mm3 pieces and then plated
in 10 cm dishes (Corning, Acton, MA, USA) containing

DMEM/low-glucose medium (Gibco, USA) with 10% fetal
bovine serum (FBS, HyClone) and 1% penicillin-streptomycin.
It was then cultivated at 37°C in a 5% CO2 atmosphere in a
humidified incubator. Cells were subcultured at a density of
5,000 cells/cm2 until they had grown to 70% confluence, and
the medium was changed every 3 days. Population doubling
levels (PDL) were counted: 1PDL = Log10 ðN/N0Þ × 3:33
(N is the number of cells at the end of a passage, and N0 is
the number of cells that were seeded at the beginning of a pas-
sage). The cell type was identified by flow cytometry (BD Bio-
sciences) using a Human MSC Analysis Kit (BD Pharmingen,
San Diego, CA, USA), per our previous study [35].

2.2. Cell Viability Assay. Cell viability was tested with the
Cell Counting Kit-8 assay (CCK-8, Solarbio, China) accord-
ing to the guidelines of the manufacturer. hUCMSCs were
precultured in a 96-well plastic microtiter containing 10%
FBS solution for 24h and subsequently treated with different
concentrations of SPD (Sigma, USA) for an additional 24 h.
Cells were further treated with 10μl CCK-8 solution for 4 h,
and the absorbance was read using a microplate reader at a
450 nm wavelength.

2.3. SPD Treatment and Cell Senescence In Vitro. Early SPD
intervention was performed by supplementing the cell
medium with different concentrations of SPD, as the figures
indicate. The replicative senescence of hUMSCs was deter-
mined through a continuous subculture, as previously
described [36]. The premature senescence of hUCMSCs
was established by adding 100μMH2O2 to the medium after
SPD treatment, and the medium was refreshed every 48h
with medium containing 10μM SPD.

2.4. SA-β-Galactosidase Staining. The senescent status of
hUMSCs and rat adipose tissue-derived-mesenchymal stem
cells (rADMSCs) was measured by in situ staining using
the senescence-associated β-galactosidase (SA-β-gal) staining
kit (Cell Signaling Technology, MA, USA), following theman-
ufacturer’s instructions. Briefly, cells grown on 6-well dishes
were washed once with 1X PBS, fixed for 15min with 1x
fixative solution, and rinsed twice with 1x PBS. Subsequently,
1ml β-galactosidase staining solution was added to each well
and the plate was incubated at 37°C overnight in a CO2-free
dry incubator. SA-β-gal-positive cells appeared blue, and the
number of positively stained cells was calculated for every
200 cells in randomly selected fields of vision under light
microscopy (Leica DMi8, Germany).

2.5. ROS Detection. To measure the levels of intracellular
ROS, an H2DCFDA-Cellular ROS Assay Kit (ab113851,
Abcam, Cambridge, UK) was used. In brief, hUCMSCs were
first plated in 6-well dishes and pretreated with or without
10μM SPD for 24 h; then, they were treated with 100μM
for an additional 24 h. Subsequently, the cells were washed
using serum-free medium and incubated with 10μM
2′,7′-dihydrodichlorofluorescein diacetate (H2DCFDA) at
37°C for 30min in the dark. After removing the medium, the
cells were washed and then observed under a fluorescence
microscope (Leica DMi8, Germany). To quantify the ROS
level, the H2DCFDA fluorescence intensity of the cells was
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detected using flow cytometry. Specifically, 1 × 105 cells were
collected in each group and incubated in 10mM H2DCFDA
with serum-free medium. Next, the cells were washed with
serum-free medium for 20min with 5% CO2 at 37

°C. Finally,
ROS levels were detected using fluorescence-activated cell
sorting (FACS; BD Biosciences).

2.6. Cell Differentiation Assays. The multilineage differentia-
tion ability of hUCMSCs was performed according to previ-
ously described methods [37]. Briefly, cells were seeded in a
24-well plate and grown to 70% confluency. Osteogenic and
adipogenic differentiation media (STEMCELL Technologies,
Canada) were added and refreshed every 3 days. After 2
weeks of cultivation, osteogenic differentiation was evaluated
with Alizarin Red S staining (Sigma-Aldrich, USA). Follow-
ing 3 weeks of culturing, adipogenic differentiations were
assessed using Oil Red O staining (Sigma-Aldrich, USA).
Alizarin Red S staining and Oil Red O staining were quanti-
fied by reading the absorbance at 520nm and 500nm,
respectively.

2.7. Western Blotting. hUCMSCs were collected and lysed in
1x RIPA buffer (Solarbio, China) containing protease inhib-
itors (Sangon Biotech, China) on ice for 30 minutes. Protein
lysate was separated through 10% SDS-PAGE and then trans-
ferred to nitrocellulose filter (NC) membranes (Millipore,
USA). The membranes were blocked with a blocking solution
(5% skimmilk in TBST) for 1h at room temperature and then
incubated with primary antibodies, including rabbit anti-
human P21, p-P53-ser15, P53, SIRT3, OCT4, SOX2, and
GAPDH (1 : 2000, Abcam, Cambridge, UK) and rabbit anti-
human ALP, RUNX2, PPARγ, and FABP4 (1 : 1000, Biorbyt,
San Francisco, CA, USA) overnight at 4°C. Furthermore, the
NC membranes were washed and incubated with goat anti-
rabbit antibody (1 : 10000, Abcam) for 1h at room tempera-
ture in the dark. The special bands were visualized using a
two-color infrared laser imaging system (LI-COR, Odyssey,
USA). Protein expression levels detected by western blotting
were quantified using ImageJ software (version 1.52U, NIH,
USA).

2.8. Immunofluorescence Staining. To detect DNA damage
and the proliferative activity of cell γ-H2AX, Ki67 immuno-
fluorescence staining was performed. Specifically, cells were
fixed with 4% paraformaldehyde and exposed to 0.25% Tri-
ton X-100 (Sigma, USA) in PBS solution for 10min at room
temperature. The cells were then blocked with 5% BSA solu-
tion for 30min and incubated with the primary antibody
anti-γH2AX or anti-Ki67 (1 : 100, Abcam) overnight at
4°C. After washing the cells with PBS, the cells were further
incubated with a fluorescently tagged secondary antibody
(1 : 500, Abcam) for 1 h at room temperature in the dark.
Subsequently, Hoechst 33342 (20μg/ml, Yeasen, China)
was used to stain the nuclei. Finally, immunofluorescence
staining was observed under a fluorescence microscope
(Leica DMi8, Germany).

2.9. siRNA Silencing. In this study, the small interfering RNA
(siRNA) targeted the sequence of the sirtuin-3 gene (SIRT3):
sense, 5′-CTCCTCTGTTGCCTTGGTA-3′ for SIRT3-1,

5′-GCGCCTATCAGTACACAAT-3′ for SIRT3-2, 5′-CA
GCAAGGUUCUUACUACATT-3′ for SIRT3-3, or scrambled
5′-CAACAAGATGAAGAGCACC-3′ (Genomeditech Co.
Ltd., China). The hUCMSCs were transfected with 100nmol
human siSIRT3 or siScrambled using a FuGENE® 6 transfec-
tion reagent (Promega, Wisconsin, USA) and optimedium
supplemented with 10% FBS overnight, according to the man-
ufacturer’s directions. Furthermore, 72h after siRNA transfec-
tion, the cells were harvested and the efficiency of SIRT3
silencing was evaluated according to the expression levels of
SIRT3 detected by western blotting.

2.10. Animals and Treatment. Middle-aged (18 months)
male Sprague-Dawley rats were obtained from the Experi-
mental Animal Center of Henan Province (Zhengzhou,
China) and kept under a 12 h light/dark cycle, controlled
temperature (23°C), and constant relative humidity of
50%-60%. Food and drinking water were freely accessible.
The rats were randomly divided into two groups: the control
group (N = 40) and the spermidine group (N = 40). Rats in
the spermidine group were treated with 30mg/kg/day sper-
midine (Sigma-Aldrich, St. Louis, MO, S0266) dissolved in
drinking water for at least a year. Conversely, the control
group rats received water only. All surgical processes and
postoperative care were approved by the Ethics Committee
at the First Affiliated Hospital of Henan University of
Science and Technology (no. 2021-03-B044) and carried
out according to Institutional Animal Care and Use Com-
mittee guidelines.

2.11. Bioavailability of Spermidine. Serum from the control
and treated rats was collected by cardiac puncture, while
spermidine concentration was detected using an immunoas-
say (BioCatGmbH, Heidelberg, Germany).

2.12. rADMSC Isolation. rADMSCs were isolated in a
straightforward process described in a previous study [38].
Briefly, the stromal vascular fraction (SVF) was isolated
from the minced subcutaneous adipose tissue of rats and
digested with 0.1% type I collagenase solution (Slorbia,
Beijing, China) for 1 hour at 37°C. After filtration through
45μm strainers (Corning, Acton, MA, USA) and centrifuga-
tion (1,500 rpm for 15min at 4°C), the floating fat cells were
removed. The pellet was resuspended in αMEM (HyClone,
USA) containing 10% fetal bovine serum (FBS, HyClone)
and 1% penicillin-streptomycin. Cell subcultures were regu-
larly kept at 70% cell confluence, and the medium was
renewed every 2-3 days.

2.13. Statistical Analysis. Data are presented as a mean ±
standard error of themean [39]. The significance of the differ-
ence between groups was analyzed via two-tailed Student’s
t-test or ANOVA using GraphPad Prism 6 software (Graph-
Pad Software, Inc., La Jolla, CA, USA). A value of p < 0:05 (∗)
is considered statistically significant.

3. Results

3.1. Effect of SPD on Cell Viability. Spermidine, a naturally
occurring small molecule compound with a unique role in
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physiological function, is attracting increasing attention
from numerous researchers (Figure 1(a)). In this study, to
evaluate the effect of SPD on the cell viability of hUCMSCs
in vitro, hUCMSCs were first isolated from a sterile umbili-
cal cord tissue using the tissue block stick method. We
observed that spindle-like cells migrated from the tissue
fragment after 10 days (Figure 1(b)). These isolated cells
were identified by surface markers CD90, CD105, and
CD73, according to our previously reported method, with
a purity exceeding 90% [35]. Next, the toxicity of SPD on
hUCMSCs was assessed with CCK-8. The results revealed
that SPD did not affect the cell viability of hUCMSCs at
low doses (p > 0:05), while cell viability was slightly reduced
when the dose was higher than 100μM (p < 0:05;
Figure 1(c)). Therefore, the optimal dose for the following
experiments is between 0μM and 100μM.

3.2. SPD Intervention Delays hUCMSC Replicative Senescence.
Firstly, the proliferation rate of hUCMSCs was assessed
according to the population doubling level (PDL). It indicated
that the PDL was significantly higher in the medium supple-
mented with 10μM or 100μM SPD than in the medium with
0μM or 1μM SPD (p < 0:05 on day 21). Also, there was no
significant difference between 10μM and 100μM SPD
(Figure 2(a)). Additionally, the proliferative activity of cells
was evaluated through the expression levels of Ki67. As pre-
dicted, the expression levels of Ki67 in the PDL26 group with-
out SPD were negligible, while in PDL26 with SPD treatment,

there was medium expression (Figure 2(d)). Evaluation of cell
senescence was performed through SA-β-gal staining, and the
expression levels of senescence-associated factors (P53 and
P21) and the longevity-related factor (SIRT3) were detected
by western blotting at the corresponding PDL. The proportion
of positive SA-β-gal-stained cells was substantially higher in
the later-passage cells (66:3% ± 5:2% for PDL26) than in the
earlier-passage cells (10:6% ± 2:3% for PDL6; p < 0:05).
However, the proportion fell significantly during in vitro sub-
culture supplemented with 10μM SPD (46:4% ± 4:3% for
PDL+SPD; Figures 2(b) and 2(c)). Interestingly, the protein
levels of SIRT3 dropped during cell senescence and partially
recovered when hUCMSCs were cocultured with SPD
(Figures 2(e) and 2(f)). However, the expression of
senescence-associated protein P21 or P53 increased during
long-term subculture without SPD but decreased under early
SPD intervention (Figures 2(e) and 2(f)). Moreover, the levels
of phosphorated P53 (p-P53-ser15), an active form of P53,
presented a similar trend to P53 and P21 (Figures 2(e) and
2(f)). Additionally, the expression levels of stemness-
associated markers OCT4 and SOX2 decreased considerably
during cell senescence and partially recovered after early
SPD intervention (Figures 2(e) and 2(f)). However, the levels
of senescence-associated proteins p-P53-ser15, P53, and P21
increased significantly during long-term subculture when the
SIRT3 gene was silenced. Moreover, early intervention of
SPD did not inhibit the expression of senescence-associated
genes p-P53-ser15, P53, and P21 (Figures 2(g) and 2(h)).
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Figure 1: Primary cell separation and cell viability test. (a) Structural and molecular formulas of small molecule compound spermidine. (b)
Primary hUCMSCs harvested by the tissue block method and identified by our existing methods [35]. (c) Cell viability was tested with CCK-8,
different concentrations of spermidine were added to the medium, and absorbance was measured using a microplate reader after 12 h. Cells
were seeded in 96-well plates at a concentration of 104 cells per well. All quantitative data were obtained from three independent experiments
and presented as mean ± SEM; ∗p < 0:05 indicates a significant difference between the specified groups. N.S.: not significant; scale = 100μm.
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These results suggested that long-term subculture led to
hUCMSC replicative senescence and early SPD intervention
significantly delayed the process. Mechanically, SPD delayed
the replicative senescence of hUCMSCs by regulating SIRT3.

3.3. SPD Intervention Facilitates Multilineage Differentiation
Potential in Later-Passage hUCMSCs. It is widely recognized
that stem cells can self-renew and replicate, while they also
possess the potential for multidirectional differentiation. In
this study, to evaluate the multilineage differentiation ability
of later-passage hUCMSCs, these isolated primary cells
underwent a long-term subculture (PDL26). Osteogenic
and adipogenic differentiation was observed by Oil Red O
and Alizarin Red S staining, respectively, 14 days and 21
days after treatment with the corresponding induced
medium. Our findings revealed that the later-passage
hUCMSCs (PDL26) significantly declined in osteogenic
and adipogenic abilities compared with the earlier-passage
cells (PDL6), while early SPD intervention (10μM) signifi-
cantly facilitated differentiation toward both osteoblasts
and adipocytes (Figures 3(a) and 3(b)). Furthermore, west-
ern blotting was performed to detect the levels of adipogen-
esis (FABP4 and PPARγ) or osteogenesis-associated factors
(ALP and RUNX2). Similarly, results showed that early

SPD supplementation enabled the maintenance of adipo-
genic and osteogenic differentiation (Figures 3(c) and 3(d)).

3.4. SPD Protects hUCMSCs from H2O2-Induced Premature
Senescence. In addition to replicative senescence, the other
type of cell senescence in this study is hydrogen peroxide-
induced premature senescence. The hUCMSCs at PDL6
exposed to 100μMH2O2 for 24h exhibited a notable increase
in the senescent population marked by SA-β-gal staining,
from 10:6% ± 3:7% (control) to 72:8% ± 2:6% (p < 0:05). To
a certain extent, cells precultivated with 10μM SPD for 24h
before H2O2 treatment reduced the senescent population to
51:8% ± 5:9% (p < 0:05; Figures 4(a) and 4(b)). Similarly,
intracellular reactive oxygen species (ROS) were significantly
higher than in the control group. However, early SPD inter-
vention significantly decreased intracellular ROS levels
(Figures 4(c)–4(e)). Subsequently, western blotting was per-
formed to detect the levels of senescence-associated proteins
(p-P53-ser15, P53, and P21), stemness-associated markers
(OCT4 and SOX2), and the longevity-related factor (SIRT3).
Accordingly, the results showed that early SPD supplementa-
tion partially restored expression levels of these related pro-
teins (Figures 4(g) and 4(h)). Additionally, DNA damage
was detected by visualizing γ-H2AX immunofluorescence,
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Figure 2: SPD intervention delayed hUCMSC replicative senescence. (a) The replicative potential of hUCMSCs cocultivated with 0
(control), 1, 10, or 100μM SPD, respectively, is expressed as the population doubling time (population doubling level vs. time). (b) A
representative micrograph including the SA-β-gal staining of hUCMSCs from earlier passages (PDL6), later passages (PDL26), and later
passage cells supplemented with 10μM SPD during subculture (PDL26+SPD). (c) The percentage of senescent cells stained in blue in
each group was assessed by quantitative analysis. (d) Immunofluorescence staining of Ki67 foci appeared red, while blue indicated nuclei
stained with Hoechst 33342; scale = 50 μm. (e) Representative western blotting results for the protein expression of SIRT3, p-P53-ser15,
P53, OCT4, SOX2, or P21 in different groups. (f) Protein expression levels detected by western blotting were quantified using ImageJ
software and normalized to PDL6. (g) Representative western blotting results for the protein expression of SIRT3, p-P53-ser15, P53, or
P21 in different groups when SIRT3 was silenced. (h) Protein expression levels detected by western blotting were quantified and
normalized to PDL6. Approximately 105 cells per well were seeded in 6-well plates. All quantitative data were obtained from three
independent experiments and presented as mean ± SEM; ∗p < 0:05 and ∗∗p < 0:01 signify a significant difference between the indicated
groups. N.S.: not significant; scale = 100 μm.
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which revealed that early SPD supplement decreased the
H2O2-induced DNA damage in hUCMSCs (Figure 4(f)).
The above results indicated that early SPD intervention pro-
tected hUCMSCs from H2O2-induced premature senescence.

3.5. SIRT3 Is Required for SPD to Exert Antisenescence Effects
on hUCMSCs. SIRT3, a major mitochondrial deacetylase
that decreases mitochondrial ROS, has been shown to slow
down senescence in multiple cell types. To evaluate whether
SIRT3 has a role in the antisenescence effect of SPD, the

SIRT3 gene was effectively silenced by siRNA against SIRT3
(siSIRT3; Figure 5(a)). Subsequently, the antisenescence
effects of SPD on hUCMSCs were evaluated by SA-β-gal
staining and intracellular ROS levels. Interestingly, a much
higher percentage of the senescent population and ROS
levels were detected after the SIRT3 gene was silenced
(Figures 5(b)–5(f)). This suggested that early SPD interven-
tion did not have a positive effect on the rescue of premature
senescence induced by H2O2 when the SIRT3 gene was
silenced. Furthermore, western blotting was performed to
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Figure 3: SPD intervention contributed to adipogenic and osteogenic differentiation in later-passage hUCMSCs. (a) Osteogenic and
adipogenic differentiation was, respectively, observed 14 days and 21 days after treatment with the corresponding induced medium.
Approximately 105 cells per well were seeded in 6-well plates. Adipocytes were stained with Oil Red O, and osteoblasts were stained with
Alizarin Red S. (b) The absorbance value was detected at 500 nm (Oil Red O) or 520 nm (Alizarin Red S) and then quantitatively
analyzed between different groups. (c) Representative western blotting results indicated the protein expression levels of FABP4, PPARγ,
ALP, or RUNX2 in various groups. (d) Protein expression levels detected by western blotting were quantified using ImageJ software and
normalized to PDL6. All quantitative data were obtained from three independent experiments and presented as mean ± SEM; ∗p < 0:05
and ∗∗p < 0:01 imply a significant difference between the indicated groups, scale = 100 μm.
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evaluate the expression levels of senescence-associated genes.
The results showed that the changing trends of p-P53-ser15,
P53, and P21 were highly consistent but negatively correlated
with the tendency of SIRT3 (Figures 5(h) and 5(i)). However,
when the SIRT3 gene was silenced, the expression levels of the
senescence-associated genes increased substantially. More-
over, SPD intervention also reduced the inhibitory effect on
the expression of p-P53-ser15, P53, and P21 (Figures 5(h)
and 5(i)). Additionally, increased γ-H2AX expression indi-
cated that DNA damage was also observed after SIRT3 gene
silencing, suggesting that early SPD intervention did not alle-
viate the effect (Figure 5(g)). Therefore, the results suggested
that SIRT3 was required for SPD to exercise antisenescence
effects on hUCMSCs.

3.6. A Long-Term High-SPD Diet Delays Stem Cell Senescence
In Vivo. In this experiment, to determine whether SPD
delayed stem cell senescence in vivo, we applied a long-term
high-SPD diet as a treatment factor (Figure 6(a)). The levels
of serum SPD were determined after 12 months of feeding
with SPD in rats. As expected, the plasma SPD concentration
in the experimental group was significantly higher than in the
control group (Figure 6(b)). Thus, a long-term SPD diet signif-
icantly increased the concentration of plasma SPD. Subse-
quently, to evaluate the replicative potential of rADMSCs

after one year of SPD feeding, rADMSCs were isolated and
expanded in culture. Notably, the primary rADMSCs from
the experimental group required 15 days to reach PDL16,
while the control group reached the same PDL in 30 days
(Figure 6(c)). This suggests that long-term SPD feeding could
maintain rADMSC levels in vivo with a high proliferation
potential in aged rats.

Observations of the cell morphology revealed that the
rADMSCs from the experimental group kept a more regular
shape during the long-term expansion in vitro compared
with the control group (Figure 7(a)). Moreover, through
intracellular reactive oxygen species (ROS) detection and
SA-β-gal staining, we discovered that the intracellular ROS
levels and senescent population marked in the experimental
group were significantly lower than in the control group
(Figures 7(b)–7(f)). Furthermore, western blotting was per-
formed to evaluate the expression changes of related factors
in stemness, aging, and antioxidation. The results showed
that in contrast to the control group, the rADMSCs from
the long-term SPD feeding group, antiaging factors, SIRT3,
and GLR1 (glutathione reductase 1) were significantly
upregulated, while the senescence-associated proteins, P21,
p-P53-SER15, and P53 were downregulated (Figures 7(g)
and 7(h)). This indicates that SIRT3 played a key role in
the antiaging process of spermidine on stem cells in vivo.
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Figure 4: SPD blocked H2O2-induced hUCMSCs senescence. (a) A representative image showing SA-β-gal staining in hUCMSCs at PDL6
(control), cells treated with 100 μM H2O2, and cells precultivated with 10μM SPD for 24 h before H2O2 treatment (H2O2+SPD); scale = 100
μm. (b) The percentage of senescent cells stained in blue in each group was assessed by quantitative analysis. (c) A representative image
showing intracellular ROS levels by molecular probe H2DCFDA staining in hUCMSCs with indicated treatment; scale = 100μm. (d, e)
Quantification of intracellular ROS levels was performed using fluorescence-activated cell sorting (FACS) analysis of stained cells to
obtain the mean fluorescence intensity. (f) Immunofluorescence staining of γ-H2AX foci appearing red indicated DNA damage, while
blue showed nuclei stained with Hoechst 33342; scale = 20 μm. (g, h) Representative western blotting results showing the protein
expression levels of SIRT3, p-P53-ser15, P53, OCT4, SOX2, or P21 in different groups. Protein expression levels detected by western blotting
were quantified using ImageJ software and normalized to the control group. Approximately 105 cells per well were seeded in 6-well plates. All
quantitative data were obtained from three independent experiments and presented as mean ± SEM; ∗p < 0:05 and ∗∗p < 0:01 indicate a
significant difference between the groups.
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Figure 5: Silencing of SIRT3 offset the antisenescence effects of SPD on hUCMSCs. (a) The silencing efficiency of siRNA against SIRT3
(siSIRT3) or scrambled control (siScrambled) was assessed by western blotting and relative quantitative analysis. (b) A representative
image showing SA-β-gal staining in siScrambled or siSIRT3 transfected hUCMSCs after SPD and H2O2 treatment, scale = 100 μm. (c)
The percentage of senescent cells stained in blue in each group was determined by quantitative analysis. (d) A representative image
showing intracellular ROS levels by molecular probe H2DCFDA staining in hUCMSCs with indicated treatment; scale = 100 μm. (e, f)
Quantification of intracellular ROS levels was performed by fluorescence-activated cell sorting (FACS) analysis of stained cells to obtain
the mean fluorescence intensity. (g) Immunofluorescence staining of γ-H2AX foci appearing red indicated DNA damage, while blue
showed nuclei stained with Hoechst 33342; scale = 20 μm. (h) Representative western blotting results showing the protein expression
levels of SIRT3, p-P53-ser15, P53, or P21 in different groups. (i) Expression levels of SIRT3, p-P53-ser15, P53, and P21 were quantified
using ImageJ software and normalized to the control group. Approximately 105 cells per well were seeded in 6-well plates. All
quantitative data were obtained from three independent experiments and presented as mean ± SEM; ∗p < 0:05 and ∗∗p < 0:01 signify a
significant difference between the indicated groups; N.S.: not significant.
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4. Discussion

Long-term subculture leads to cell replicative senescence,
which is characterized by the progressive loss of
proliferation potential, increased SA-β-gal positive staining,
increased ROS levels, DNA damage, and so on [40–42].
Spermidine, a naturally occurring small molecule compound
belonging to the polyamine family, mainly exists in the
semen. It also exists in common foods and is essential for
the proper function of numerous metabolic processes [24].

In this study, for the first time, we demonstrated that
early SPD supplementation resulted in a higher proliferation
rate, decreased SA-β-gal activity, and lower protein levels of
p-P53-ser15, P53, and P21 in later-passage hUCMSCs
(PDL26). As a marker related to cell proliferation, Ki67
indicates the proliferation efficiency of cells. Thus, we
detected that SPD intervention increased the expression
levels of Ki67, indicating that SPD contributed to the prolif-
eration of cells. Additionally, SIRT3, a major mitochondrial
deacetylase localized to the mitochondrial matrix, reduces
mitochondrial ROS and has been shown to slow down
senescence in multiple cell types [33, 43, 44]. Interestingly,
we observed higher SIRT3 protein levels in the PDL26-
hUCMSCs with SPD intervention than those without SPD
intervention. However, the protein levels of p-P53-ser15,

P53, and P21 significantly increased when the SIRT3 gene
was silenced, indicating that SPD lost its senescence-
inhibiting effect. This suggests that spermidine delayed the
replicative senescence of hUCMSCs by regulating SIRT3
involving p-P53-ser15, P53, and P21 [45–50].

The stemness-associated markers mainly include OCT4
and SOX2 [51, 52]. In this study, their expression levels
decreased significantly during expanded culture but partially
recovered after early SPD intervention. Additionally, FABP4,
PPARγ, ALP, and RUNX2 factors were considered indicators
of adipogenic or osteogenic differentiation [53–55]. Moreover,
the differentiation ability in the PDL26-hUCMSCs was lower
than in the PDL6-hUCMSCs. Interestingly, early SPD inter-
vention significantly facilitated the maintenance of adipogenic
and osteogenic differentiation. These results suggested that
early SPD supplement significantly delayed hUCMSC replica-
tive senescence.

It is commonly recognized that reactive oxygen species
(ROS) are the main factors that lead to premature cell senes-
cence [40, 56–58]. In this study, early SPD supplementation
decreased senescent populations marked by SA-β-gal stain-
ing and intracellular ROS levels. We demonstrated that early
SPD intervention also inhibited H2O2-induced premature
senescence. Furthermore, similar to cell replicative senes-
cence, H2O2 treatment reduced the expression levels of
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Figure 7: Continued.

13Stem Cells International



SIRT3, OCT4, and SOX2 but increased the levels of p-P53-
ser15, P53, and P21. Notably, early SPD intervention slowed
down the process significantly. Moreover, oxidative stress
induces DNA damage and telomere dysfunction is an
important mechanism of cell senescence [59–64]. Herein,
visualized γ-H2AX immunofluorescence staining was per-
formed to detect the DNA damage. Results indicated that
early SPD intervention remarkably decreased H2O2-induced
DNA damage in hUCMSCs. A possible mechanism is that
SPD protected DNA from adverse effects through the anti-
oxidation effect or autophagy pathway. However, further
studies are required to verify this hypothesis.

Throughout the whole study, we observed that cell
senescence, including replicative and premature senescence,
was positively correlated to P53 and P21, while it was nega-
tively associated with SIRT3. SIRT3 is a member of the SIRT
family and a major protein deacetylase localized to the mito-
chondrial matrix. It is a key regulator of mitochondrial func-
tion, which reduces both mitochondrial ROS and oxidative
stress [65–69]. Given this, we speculated that the SIRT3 pro-
tein played a pivotal role in the SPD-mediated antisenes-
cence process. Therefore, to test our hypothesis, the SIRT3
gene was silenced in hUCMSCs using three different siRNAs
against SIRT3. As expected, SIRT3 knockdown led to a sig-
nificant increase in the percentage of the senescent popula-
tion, intracellular ROS levels, and DNA damage (γ-H2AX)
when treated with H2O2. In contrast, early SPD intervention
did not reduce these adverse effects. This suggested that
SIRT3 silencing caused the loss of SPD-mediated antisenes-
cence. Furthermore, western blotting was performed to eval-
uate the expression levels of SIRT3, p-P53-ser15, P53, and

P21 [70–72]. The final results showed that the trends of
senescence-associated proteins p-P53-ser15, P53, and P21
were negatively correlated with the trend of SIRT3 when
the SIRT3 gene was not silenced. However, the expression
levels of p-P53-ser15, P53, and P21 significantly increased
when treated with H2O2 after SIRT3 silencing, regardless
of SPD intervention or not. These results indicated that
SIRT3 was required for the antisenescence effects of SPD
on hUCMSCs. However, due to complex factors, determin-
ing the underlying mechanism requires further study.

To explore whether SPD delays the senescence of endog-
enous MSCs in vivo, a year of daily supplementation with
high-dose SPD was performed in middle-aged SD rats in
the experimental group, while an equal dose of drinking
water was provided to rats in the control group. As expected,
the long-term SPD diet significantly increased the concen-
tration of plasma SPD. Next, primary rADMSCs were iso-
lated and expanded in culture for one year. Interestingly,
the primary rADMSCs from the experimental group showed
a higher proliferation potential than the control group.
Additionally, in contrast with the control group, the experi-
mental group maintained a normal appearance for a longer
time during in vitro expansion, while senescent populations
marked by SA-β-gal staining decreased and intracellular
ROS levels fell substantially. Based on previous studies, anti-
oxidative factors, SIRT3, and GLR1 all play a vital role in
delaying senescence [32, 73–75]. Furthermore, quantitative
analysis of related factors indicated that SIRT3 and GLR1
were significantly upregulated, while senescence-associated
proteins P21 and P53 [70–72] were downregulated. These
data indicated that the antiaging effect in vivo of SPD
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Figure 7: The long-term high-spermidine diet hindered rADMSC senescence in vivo. (a) A representative micrograph showing
morphological changes of primary rADMSCs from different groups at the indicated time points in vitro after a one-year high-spermidine
diet; scale = 100 μm. (b) A representative image showing intracellular ROS levels by molecular probe H2DCFDA staining in hUCMSCs
with indicated treatment; scale = 100 μm. (c, d) Quantification of intracellular ROS levels was performed by fluorescence-activated cell
sorting (FACS) analysis of stained cells to obtain the mean fluorescence intensity. (e) A representative image showing SA-β-gal staining
in rADMSCs at PDL4, PDL8, and PDL16 with indicated groups, respectively, scale = 100μm. (f) The percentage of senescent cells
stained in blue in each group was assessed by quantitative analysis. (g) Representative western blotting results showing the protein
expression levels of GLR1, SIRT3, OCR4, SOX2, p-P53-ser15, P53, or P21 in different groups. (h) Expression levels of the corresponding
proteins were quantified using ImageJ software and normalized to the control group. Approximately 105 cells per well were seeded in 6-well
plates. All quantitative data were obtained from three independent experiments and presented as mean ± SEM; ∗p < 0:05 and ∗∗p < 0:01
represent a significant difference between the indicated groups.
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progressed mostly by resisting oxidative stress. However, fur-
ther studies are needed to clarify the underlying mechanism.

In summary, this study demonstrated that early SPD
intervention significantly delayed the replicative senescence
of hUCMSCs and inhibited H2O2-induced premature senes-
cence. Also, SIRT3 was required for SPD-mediated antise-
nescence effects. Besides, this study also showed that SPD
in vivo protected MSCs against oxidative stress and delayed
cell senescence. Therefore, the results of this study verified
that MSCs possessed the ability to proliferate and differenti-
ate efficiently in vitro or in vivo, which is conducive to the
clinical utilization of MSCs in the future.
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