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Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. “Angiogenic switch” indicates
a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular
hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade,
molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely
investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular
pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known
biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors,
miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or
currently under clinical and preclinical investigations.

1. Introduction

Angiogenesis is a biological phenomenon, where new blood
capillaries in adults are developed from preexisting primary
blood vessels by sprouting and branching, responding directly
to tissue demands [1].Vascularization is a prerequisite for
fulfilling the increased demand for oxygen, nutrient supply
to the growing cancer/tumor cells, and waste removal from
the cells [2]. Chronic and sustained angiogenesis, a hallmark
of cancer, is vital for continued tumor mass development,
and is functionally essential for multistage tumorigenesis [3].
Interactions between the stimulatory, mediator, and regulator
molecules regulate the proliferative and invasive activity of
endothelial cells (ECs), resulting in a new vascular framework.
Tumor cells secrete molecules that initiate the angiogenic pro-
cess, however, the cells cannot express angiogenesis inhibitors
to halt the process. The resulting new vessels allow tumor
growth beyond the diffusion-limited maximum size. Tumor

cells lie close to blood vessels; therefore, the chances of tumor
cell dissemination from the tumor into the blood circulation
are high, making them metastatic [4]. Thus, the tumor vascu-
lature can be exploited as a therapeutic target in the cancer
treatment.

One of the major strategies to kill the cancerous cells is
hindering the blood supply to these cells. Hence, the identi-
fication of effective angiogenesis biomarkers is an essential
step for treating diseases associated with pathological angio-
genesis. The deregulation of biomarkers could be related to
the initiation and progression of diseases and could be applied
for prognosis, diagnosis, and therapeutic purposes. These bio-
markers are involved in several molecular pathways associated
with angiogenesis in cancer. Various agents, such as specific anti-
bodies, aptamers, small interfering ribonucleic acids (siRNAs),
and therapeutic agents, have been developed to target these
biomarkers [5–7].
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This review analyses the role of angiogenesis in cancer
development and discusses the currently known angiogenic
therapeutic biomarkers exploited in antiangiogenic therapy.
Further, the available therapeutic strategies targeting the
angiogenic biomarkers has also been described. The review
also focuses on the recent novel research associated with
angiogenesis biomarkers, available therapeutic choices, and
future perspectives.

2. Developmental and
Pathological Angiogenesis

Angiogenesis is a highly coordinated process involving
series of complex events including proliferation and
migration of ECs, vascular tube formation and anastomo-
sis of new tubes, protease production and inclusion of
smooth muscle cells [8]. Under normal physiological cir-
cumstances, novel ECs is generated and subsequently
morph into tubes leading to angiogenesis. The de novo
blood vessels formation during embryogenesis takes place
via the event of vasculogenesis (Figure 1), in which
angioblasts–primitive mesodermal cells subset form into pri-
mary blood vessel [8, 10].

Besides vasculogenesis, balance is disrupted between pro-
and antiangiogenic factors, where proangiogenic factors are
prominent, this event is termed as “angiogenic switch,”
which trigger angiogenesis and initiates tumor progression
(Figure 2) [7]. Normally, angiogenesis is uncommon as ECs

are nonproliferative and vasculatures are quiescent, except of
ovaries and uterus where angiogenesis is required for the
reproduction and embryogenesis [11]. Classification of
angiogenesis includes physiological angiogenesis, observed
in embryonic development, wound repair, endometrial
hyperplasia during menstrual cycle, and pathological angio-
genesis seen in tumors, diabetes, and chronic hepatitis [12].
Some of the examples of pathological conditions whose
underlying cause is abnormal angiogenesis have been men-
tioned in Table 1.

Angiogenesis, a multistep process, is triggered by several
biological signals, which direct the migration and differenti-
ation of ECs [23]. The novel blood vessels formation is initi-
ated via production of VEGF and other angiogenic factors in
ECs, which then create wall of an existing small blood capil-
lary, release the factors, and further bind to the surface recep-
tors of ECs. Binding of these factors over ECs activate the
series of signalling pathway, which triggers the secretion of
enzymes i.e., matrix metalloproteinases (MMPs), followed by
the degradation of the extracellular matrix (ECM) of the
surrounding tissues and liberating sequestered growth fac-
tors from ECM. Further, invasion of the matrix, division and
proliferation of ECs takes place. Finally, new ECs strings
assemble into hollow tubes creating new network of blood
vessels [24]. Recent studies have shown that the inhibition of
angiogenesis is reported to be an important strategy to pre-
vent multiple solid tumor, whereas enabling angiogenesis
was proven to be critical for the success of tissue repair therapies
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FIGURE 1: Diagrammatic presentation of vasculogenesis and angiogenesis, where hemangioblastic aggregates are formed from undifferentiated
mesoderm, which further proceeds to endothelial precursor cells (packed in blood island) and primitive erythrocytes packed in layers of ECs.
Also, tip cells sprout out of the proliferating and migrating ECs to form capillary tube [9].
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[1, 24]. Hence, over the last two decades, several approaches
have been deployed to target the angiogenic biomarkers.

The vessels growth in adults takes places via two funda-
mental processes: sprouting and intussusceptive angiogene-
sis, which occur in all tissues under specific physiological
circumstances. Sprouting angiogenesis involves the origina-
tion of new capillaries from parental vessels by midvessel
lateral budding. It involves (1) basement membrane degra-
dation on the side of the dilated peritumoral post capillary
lied close to the angiogenic stimulus; (2) ECs migration
in connective tissue due to weakening of interendothelial

contacts; (3) solid cord formation of ECs; (4) lumen forma-
tion takes place at the migrating front and functional capil-
lary loops are established through anastomose of tubular
sprouts, facilitated by synthesis of new basement membrane
and pericytes recruitment [25]. Intussusceptive angiogenesis
(nonsprouting angiogenesis) occurs when transluminal tis-
sue develops within existing vessels without endothelial pro-
liferation, and subsequently fuse to remodel the vascular
plexus. It is a complementary method to sprouting angiogen-
esis and occurs in the zone of contact between two opposing
capillary walls. The formation and fusion of transcapillary
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FIGURE 2: “Angiogenic switch” balance hypothesis. The angiogenic balance between angiogenic activators and inhibitors tightly regulates
angiogenic switch mechanism. Upregulation of angiogenic inhibitors and angiogenic activators downregulation, spark angiogenesis leading
to increased blood vessels formation. Reduction of inhibitor concentration i.e., angiostatin, restin, thrombospondin, and increasing the
activator level i.e., vascular endothelial growth factor (VEGF); basic fibroblast growth factor (bFGF); placenta growth factor (PGF); interleu-
kin-8 (IL-8) could induce the growth of novel blood vessels.

TABLE 1: Diseases associated with impaired angiogenesis.

Diseases in human Organ/tissue References

Cancer, systemic sclerosis Multiorgan [13, 14]
Diabetes, atherosclerotic plaque Cardiovascular system [15, 16]
Multiple sclerosis Nervous system [17]
Inflammatory bowel diseases GIT [18]
Psoriasis Skin [19]
Endometriosis Reproductive system [20]
Obesity Adipose [21]
Asthma Respiratory system [22]
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tissue pillars are the hallmark of intussusceptive angiogenesis
where, longitudinal division of single capillary takes place
forming two transluminal septa. ECs junction at opposing
capillary walls form leaky bilayer, which allows the penetra-
tion of growth factors into the lumen [26]. The leaky contact
zone filled with myofibroblasts and pericytes in order to build
collagen fibers for vessels lumen development [27].

3. Role of Angiogenesis in the
Cancer Pathogenesis

Angiogenesis is generally initiated from capillaries and its
regulation exhibits a significant role in tumor progression
and metastasis [28]. Malignant cells need consistent access
of the circulatory system, hence tumor growth is accompa-
nied by blood vessels ingrowth, either via new blood vessels
formation or through co-optation of the preexistent vascula-
ture [29]. As mentioned earlier, pro- and antiangiogenic
factors regulate vascular homeostasis [30]. Vasculatures are
quiescent and ECs are nonproliferative when these factors
are balanced, while dominance of proangiogenic signalling
initiates “angiogenic switch,” which activates the tumor growth
from dormant state, sparking new blood vessels formation
and a rapid growth of malignant cells [31].

Cancer cells, like normal body tissues requires adequate
oxygen and metabolites supply and nourishment via vascular
capillaries network [32]. Under normal conditions, ECs lining
the interior surface do not multiply, restricting the capillaries
proliferation. However, hypoxic (low levels of O2) and ische-
mic signals trigger various transcriptional responses and
mediate the ECs precursor convergence, which give rise to
capillary plexus and ultimately the development of the novel
blood vessels [33]. Hypoxia is one of the physiological feature
around tumor microenvironment, which occurs due to high
oxygen concentration demands of uncontrolled proliferated
cells for their aerobic metabolic activity [34]. Since oxygen
demand exceeds the ability to supply through the preexisting
blood vessels, tumor cells adapt this hypoxic condition by
promoting angiogenic activity i.e., development of novel
blood vessels from exiting one [35]. During the onset of
tumor, angiogenesis is not stimulated, and its growth remain
limited with low oxygen and nutrient supply. In early phase,
cell proliferation counterbalances the cell death occurred due
to hypoxic condition, and therefore tumor may dwell in dor-
mant state. Angiogenesis is a critical prerequisite for the
tumor progression beyond 1–2mm3. Beyond which, hypoxic
microenvironment around the growing tumors activates
angiogenic network via upregulation of hypoxia-inducible
transcription factor, which triggers various specific transcrip-
tional responses such as cell division, metabolism, and angio-
genesis [36]. Furthermore, angiogenic switch is activated by
the tumor in the response of augmented angiogenic factors,
resulting in the irreversible evolution of an active angiogenic
state. Recruitment of new capillaries supplies oxygen and
nutrients actively to angiogenic as well as nonangiogenic cells,
leading to rapid tumor growth [37].

Upregulation of hypoxia-inducible transcription factor acti-
vates “angiogenesis” by activating oncogene. Oncogene activa-
tion expresses cytokines proangiogenic factors and suppresses
antiangiogenic factors, which lead to the upregulation and
uncontrolled angiogenic networking during tumor angiogenesis
[38]. Angiogenesis is a coordinated regulation of these proan-
giogenic and antiangiogenic factors. VEGF, most potent
proangiogenic factor and originally determined as vascular
permeability factor, induces formation of blood vessels in
tumors. Hypoxia instigates VEGF upregulation which is
secreted by tumor cells during tumor angiogenesis. VEGF
activates VEGF receptor-2 (VEGFR-2) expressed over ECs,
which orchestrates the growth of blood vessels and induces
EC proliferation [39]. Signalling pathway initiated via VEGFR-2
activation induces various endothelial responses including cell
proliferation, vascular permeability, invasion, migration which
is coupled with tumor progression and metastasis along with
increased vessel density [40].

VEGF induces vascular permeability, which is considered
as prerequisite for angiogenesis, via several mechanisms such
as fenestrae induction, junctional remodeling, and vesiculo–
vascular organelles. In addition to VEGF, MMPs induce
angiogenesis via ECM degradation and ECs migration. Other
important proangiogenic factors and their respective cognate
receptors which promotes different stages of angiogenesis in
tumor are bFGF, platelet-derived growth factor (PDGF),
chemokines, ephrins, angiopoietins (ANGPTs), and apelin
(APLN) [41, 42]. FGF-2 (or bFGF), a proangiogenic media-
tor, which acts together with VEGF and promote angiogen-
esis via inducing MMPs secretion and activates collagenase
and plasminogen enzymes [43]. PDGF-B induces VEGF
upregulation on tumor-associated ECs and pericytes recruit-
ment in newly formed vessels [44]. ANGPTs are the growth
factors, mediated through VEGF-independent pathways which
promote angiogenesis via regulating blood vessels’ remodeling
and development [45]. Studies revealed that interplay of the
growth factors—VEGF, MMP, and bFGF/FGF-2 promote
active angiogenesis and tumor development. Figure 3 repre-
sents the schematic diagram showing the role of angiogenic
factors in tumor vascularization.

Tumor angiogenic vessels display unique features and are
well-differentiated from normal blood vessels, thus provide
an appealing targeting site for angiogenic therapeutics. The
key differences are as follows: (a) genetic stability of ECs of
tumor vasculature, thus the chances of developing resistance
are low; (b) compared to normal vessels, tumor blood vessels
are morphologically leakier, fenestrated, and possess higher
vascular permeability, however tumor tissue has impaired
lymphatic drainage which leads to the enhanced permeability
and retention (EPR) causing more accumulation of nanother-
apeutics at the tumor site; (c) proteomics and genomics-based
studies indicated the expression of the specific biomarkers
(receptors or antigens) at the ECs of tumor vasculature, which
are present at insignificant levels in normal blood vessels.
These biomarkers are associated with angiogenic processes
and can be the proficient targeting sites for tumor therapeutics
[46–50]
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4. Prognostic and Therapeutic
Angiogenic Biomarkers

A biomarker is a characteristic indicator of normal biological
processes or pharmacological responses to a therapeutic inter-
vention, which is measured objectively and evaluated. Biomar-
kers in “cancerous cells” can be detected in the patients, which
may further define the prognosis and diagnosis of diseases.
The predictive biomarkers can also be used to predict the
therapeutic response in patient to the therapeutic agents and
potential toxicity associated with the drug. Hence, “biomar-
kers” may further define the optimal therapeutic strategy for
cancer patients, thus augmenting the therapeutic response and
minimizing the therapy-related toxicity. The antiangiogenic
therapy is an effective strategy for cancer treatment and iden-
tification of biomarkers for angiogenesis could be the future for
development of antiangiogenic drugs. Various strategies have
been explored for targeted delivery of these drugs [51, 52].
Generally, angiogenic biomarkers are involved with initiation,
progression, and metastasis of cancer and targeting these bio-
markers could modulate the angiogenesis in cancerous cells.
Since then, various angiogenic biomarkers has been explored,
where VEGF has been identified as the most potent biomarker
to inhibit the tumor proliferation as it has been overexpressed
in the tumor angiogenesis. Humanized monoclonal antibody
bevacizumab, and the multi-tyrosine kinase inhibitors (TKIs)
such as sunitinib and sorafenib have been developed to target

angiogenic biomarker and proven as effective therapeutic
strategy for cancer treatment [53]. Besides VEGF, other bio-
markers such as FGF, PDGF, and nucleolin has also been
explored to design the specific antibody to target cellular path-
ways related with the cancer angiogenesis.

Angiogenesis induction is considered to be one of the
substantial hallmarks of cancer. The morphological distinc-
tions between normal and angiogenic vessels have provided an
insight regarding the normalization of cancer vasculature.
However, antiangiogenic agents represent very complex
mechanisms [54, 55]. Malignant cell genotypes manifest sev-
eral physiological changes that explains the complications of
cancer therapy. The tumor blood vasculatures show anoma-
lous phenotypes i.e., immature morphological hierarchy, het-
erogeneous microenvironment, and highly permeable lumens,
which arises due to the malfunction of ECs and their altered
interaction with ECM. Also, the blood vessel compression due
to the enhanced interstitial fluid in the cancer microenviron-
ment modulates the mechanosensitivity of ECs with respect to
the pressure gradient, which further generates the hypoxic and
microenvironment with low pH leading to the cancer progres-
sion and production of ascites formation. The hypoxic envi-
ronment further enhances the expression of angiogenic factors
and proangiogenic activity of ECs. Also, these cells are highly
susceptible to VEGF with significant upregulation of VEGFRs.
Along with this VEGFRs, other angiogenic factors are also
overexpressed, which makes the ECs more proliferative.
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degradation 
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VEGFR
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FIGURE 3: Mechanism of angiogenesis in cancer. Hypoxia induces the expression of hypoxia inducible factor (HIF), which consequently
releases proangiogenic factors, such as VEGF, and upregulates the expression of protease, which leads to basement membrane degradation
and pericytes detachment. Furthermore, specialized ECs migrate along the angiogenic factor gradient and differentiate into highly prolifer-
ative stalk cells, which initiate the formation of new vessels. PGDF stimulation promotes the attachment of pericytes with reduced proliferation
and VEGF sensitivity. VEGF stimulates DLL4 secretion, which binds to Notch-1 receptors, downregulates VEGFR, and suppresses prolifera-
tion. Blood supply stimulates further tumor growth.
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Therefore, the identification of biomarkers could be an effec-
tive strategy for cancer treatment. Some of the major biomar-
kers for angiogenesis under clinical and preclinical studies are
mentioned schematically in Figure 4 [56].

Targeting angiogenic biomarkers could reduce tumor mass
and promote tumor regression, providing a rationale for anti-
angiogenic therapy for tumors. To date, several antiangio-
genic treatments have been approved by the Food and Drug
Administration (FDA), that target proangiogenic growth fac-
tors and their receptors (Table 2). Many pharmaceutical com-
panies have expended massive efforts over angiogenesis
therapies involving angiogenesis inhibition in oncology and
ophthalmology, as well as angiogenesis stimulation in tissue
engineering and wound healing.

Tumor progression and development are dependent on
the process of angiogenesis. Since, secreted cytokines were
reported to play a substantial role in angiogenesis by medi-
ating tumors neovascularization, thus indicating their poten-
tial role as biomarker candidate for disease detection and
treatment response [59]. Numerous angiogenesis markers
have been reported till now that have represented simulta-
neous expression and effective cooperation at different stages
of tumor angiogenesis [56]. Some important angiogenesis
biomarkers explored for cancer therapy are discussed in the
following subsection. Various proangiogenic factors that
serve as potential biomarkers in cancer therapy are VEGF,
bFGF, IL-8, PDGF, MMPs, endoglin, tissue factor, and hyp-
oxia tissue factor [60–71] and among them, the important
angiogenesis biomarkers explored for cancer therapy are dis-
cussed in the following subsection.

4.1. Vascular Endothelial Growth Factor. VEGF is a key reg-
ulator of physiological and pathological angiogenic events,
and VEGF-A is the most widely known and major factor in
tumor angiogenesis. VEGF/VEGFRs interaction is consid-
ered as a chief angiogenic regulator and dominant target
for numerous antiangiogenic drugs [72]. The expression of
VEGF is induced due to the hypoxic stimulus as a result of
loss of tumor suppressor genes i.e., VHL and p53. VEGF are
overexpressed in malignant tumors like breast, colorectal,
lung, and prostate cancer. VEGF induces ECs proliferation
via the ERK (extracellular signal-regulated kinase) and PI3K/

Akt (phosphoinositide 3-kinases/protein kinases B) path-
ways. ECs migration downstream of VEGFR2 is induced
through signalling pathway involving Rho GTPases and
PI3K activation [73]. VEGF overexpression has been reported
in solid tumors, therefore VEGF is considered as a potential
marker for cancer [74].VEGF-A, angiogenic multifunctional
mediator, binds to extracellular domain of VEGFR2 and
transduce the responses of VEGF in ECs including ECs sur-
vival and proliferation, migration, permeability, and forma-
tion of capillary lumen, thus orchestrating the vasculature of
cancer. Recent studies have suggested that VEGF stimulates
the overexpression of myeloid cell leukaemia 1 (MCL-1) in
cancers and malignancies, which is essential for cancer cell
survival and development due to the balance disruption
between anti- and proapoptotic proteins [75]. VEGF also
interacts with angioregulatory immune cells and modulates
T cells as well as myeloid cells in a VEGFR-mediated conduct.
These immune cells release pro- or antiangiogenic agents via
intercellular signalling and immune cells polarization to dem-
onstrate inhibitory or modulatory characteristics, thus coor-
dinating the cancer angiogenesis progression [76].

VEGF blockers inhibits tumor growth by preventing
VEGFRs activation via neutralization of all bioactive forms
of VEGF. However, patient may develop resistance to VEGF
signalling pathway blockage by opting compensatory and
adaptive mechanism through other mediators of angiogene-
sis such as PDGF or FGF [77, 78]. Therefore, blockage of
VEGF signalling pathway via neutralizing antibodies to
VEGF was reported to be ineffective as a monotherapy and
occurrence of resistance was witnessed. VEGF activates
PI3K/Akt/endothelial nitric oxide synthase signalling con-
duit, which stimulates ECs proliferation and vascular perme-
ability. However, T cell-specific adaptor-c-Src signalling
pathway is also involved in increasing the vascular perme-
ability via separation of the endothelial junctions, which in
turn is modulated via VEGF [79].

Various studies have proven the advantages of VEGF/
VEGFR-based angiogenesis therapy. Recently, combination
of VEGF-targeted angiogenic therapy and immune check-
point inhibitors are under clinical trial, which are being
conducted for melanoma, glioblastoma, and renal cancer
therapy. Adaptive mechanisms that are responsible for
resistance are: (a) upregulation of different proangiogenic
factors; (b) alternative angiogenic signalling pathway acti-
vation; (c) vascular mimicry, a process in which cancer cells
form blood vessels without involvement of ECs; (d) vascular
co-option, in which tumor cells avoid angiogenesis via pro-
liferating near existing blood vessels; (e) recruitment of
endothelial progenitor cells; and (f) cell mobilization with a
proangiogenic phenotype [81]. To improve the efficacy of
antiangiogenic drugs, alternative angiogenic pathways need
to be targeted along with the VEGF signalling pathway, or a
combination of antiangiogenic therapy with chemo- or radio-
therapy could be an effective solution to achieve optimal inhi-
bition of cancer angiogenesis [82]. Several angiogenic agents
such as aflibercept and ramucirumab targeting VEGF bio-
marker and VEGFR signalling pathway have been established
till now.
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Several antiangiogenic drugs based on VEGF/VEGFR sig-
nalling inhibition have been developed in the last decade.
Multiple agents have been developed, including ribozymes,
aptamers, soluble receptors, and small-molecule inhibitors,
which aim to improve the efficacy, reduce toxicity, and opti-
mize the clinical use of these therapies in combination with
other therapeutic modalities. There is an urgent requirement
for the identification of angiogenic therapeutic agents, optimal
combination of therapeutic agent, doses and order of usage,
andmethods tomonitor therapeutic results. Hence, research on
the antiangiogenic agents targeting VEGF biomarkers holds
immense potential for the advancement of cancer therapy.

4.2. Fibroblast Growth Factor (FGF). FGFs belong to the
family of heparin-binding growth factors, and exert their
proangiogenic activity via interaction with ECs surface
receptors, involving tyrosine kinase receptors, integrins,
and heparan-sulphate proteoglycans [83]. FGF signalling
regulates blood vascular development by activating ECs pro-
liferation, migration, and sprouting. It modulates ECs
metabolism responsible for ECM modulation [84]. FGF
expression in tumors via activation of FGF signalling path-
way, is utilized by tumor cells to escape VEGF-targeted ther-
apies, inducing antiangiogenic therapeutic resistance. In
preclinical studies, dual inhibitors targeting VEGF and
FGF pathways simultaneously, have been proven efficacious
against cancer.

FGFs are angiogenic biomarkers that are involved in the
regulation of cell growth and differentiation, where FGFR-1
is expressed primarily over ECs and its overexpression is
associated with cancer. The overexpression of FGF is associ-
ated with the various mutations, including gene amplifica-
tion, altered gene splicing, etc., which could enhance the
angiogenic process through stimulation and release of other
proangiogenic factors. Studies have suggested that FGF acts
in synergistic manner with VEGF to augment the tumor
angiogenesis. Hence, the collaborative interaction between
FGF and VEGF signalling has shown to be essential for the
angiogenic processes; and targeting these pathways simulta-
neously could supress the angiogenesis more effectively as
compared to targeting either pathway alone. In preclinical
studies, dual inhibitors targeting the VEGF and FGF path-
ways have proven efficacious against cancer [85].

4.3. Platelet-Derived Growth Factor (PDGF). PDGF signal-
ling promotes the secretion of proangiogenic factor, which
induces VEGF upregulation and enhances lymphatic angio-
genesis along with the ECs proliferation and migration to
form tube [86]. In vitro studies of human umbilical veins
ECs treated with a PDGFR inhibitor and multi-tyrosine
kinase inhibitors (TKI) showed reduced tube forming
capacity of ECs [87]. Till now four PDGFs i.e., PDGF-A,
PDGF-B, PDGF-C, and PDGF-D have been identified, where
PDGF-Bwas reported to stimulate pericytes recruitment in newly
formed blood vessels. Wang et al. examined PDGF-B and its
receptor PDGFR expression in clear cell renal cell carcinoma
(ccRCC) to evaluate the function of PDGF-B during

angiogenesis. PDGF-B represented increased proliferation of
vascular smooth muscle cells and migration capability during
angiogenesis. Results suggested the proficiency of PDGF-B as
promising prognostic marker [88]. Inhibition of PDGF-B
signalling could commence vessel walls normalization and
could be targeted along with VEGF signalling pathway for
effective antiangiogenic therapy [89].

PDGFR has been regarded as a significant angiogenic
factor, responsible for the expansion of metastatic tumors.
It has been demonstrated as a major target for the TKI devel-
oped for cancer therapy. Recent studies suggested that inter-
action of PDGFR pathway with other signalling pathways
(P13K/Akt, Ras-MAPK, JAK/STAT, and notch signalling
pathway) could accelerate the cancer growth and reduce the
sensitivity of cancerous cells. Various strategies have been
explored till now to obstruct the PDGF pathway such as (i)
usage of neutralizing antibodies or aptamers that may act as
ligand traps; (ii) employing antibodies or small molecule inhi-
bitors to disrupt the interaction between the ligand and recep-
tor; or (iii) obstructing the PDGFR kinase function via low-
molecular weight inhibitors [90]. Currently, Crenolanib besy-
late, a PDGFR inhibitor developed by AROG pharmaceuticals
has shown to block the PDGFR phosphorylation and proven
to be effective RTK inhibitors [91].

4.4. Angiopoietin (ANGPT). The ANGPTs family comprises
the two major ligands where ANGPT-1 promotes the
maturation and stabilization of newly formed vessels via
Akt/P13K pathway, while ANGPT-2 induces vessel
destabilization and sprouting, detachment of pericytes and
angiogenesis [92]. ANGPTs bind exclusively to Tie2 receptor
tyrosine kinase [93]. ANGPT-2 expression is minimal in
physiological conditions but is increased in response to
VEGF and hypoxia in tumor-associated vessels [94]. ANGPT-
2 upregulation in glioblastoma have been associated with
increased resistance to therapy and reduced efficacy in
anti-VEGF treatment [95]. Studies suggest that the
inhibition of ANGPT-2 along with VEGFR-2 improved
survival of glioma bearing mice by blocking macrophage
recruitment, impairing tumor growth, and prolonging
normalization of vessels. Therefore, ANGPT-2 and VEGFR-
2 co-targeting could be effective in tumor therapy [96].
ANGPT1 is one of the ANGPTs, which regulates the integrity
of ECs junction via accumulating factors such as vascular
endothelial cadherin at the junction, where it permeates the
proteins like VEGF and involved in the stabilization of actin
cytoskeletons at the ECs junction [92].

Various ANGPT inhibitors are under clinical trials
including but not limited to AMG 786 (Trebananib) and
REGN 910 (Nesvacumab). Vanucizumab and RG7716 (Far-
icimab) served as dual inhibitor of ANGPT and VEGF have
also demonstrated the enormous potential for cancer treatment.
AMG 786, a peptide antibody, is one of the most effective
therapeutic agent and nonspecific inhibitor of ANGPT-1 and
ANGPT-2, while REGN 910, human monoclonal antibody
binds specifically to ANGPT-2 and phase I clinical studies
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showed that it is efficacious and possess desirable safety
profile [92].

4.5. Apelin (APLN). Apelin receptor (APLNR) expression is
restricted to the ECs of developing vascular system during the
process of angiogenesis [97]. APLN expression stimulates
microvascular proliferation inside tumors’ cells and
promote tumor development via enhancing angiogenesis,
metastasis, and cancer stem cells development [98]. APL
could indicate the diagnostic index for the degree of cancer
progression, therefore it could serve as a potential biomarker
for targeted therapy for cancers and pharmacological blockage
via APLNR antagonists [99]. Moreover, APLN targeting could
reduce tumor growth, improve blood vessels’ function, reduces
the invasiveness for tumor cells, and prevent resistance associated
with angiogenic therapy [100, 101]. In the recent study, APLN
was reported as an activator of the autophagy and showed to
promote cell migration in lung carcinoma [102]. In a different
study, targeting APLNR with an antagonist exhibited reduced
tumor growth in mice [103]. Therefore, targeting APLN/
APLNR signalling pathway could be a promising strategy to
treat cancer.

The overexpression of APLN biomarker is coupled with
the increased microvessel densities and cancer progression in
various cancer including nonsmall cell lung cancer and hepa-
tocellular cancer. APLN regulates the microvasculature pro-
liferation and APLN antagonists (F13A and bevacizumab)
showed the cancer progression inhibition via reducing this
vascular density. Research suggested that APLN pathway has
positive outcome on the cancer angiogenesis and disruption of
this pathway could be effective for the antiangiogenic therapy
in the therapeutic intervention of cancer [104].

4.6. Chemokines. Chemokines, members of the heparin-
binding protein family, have emerged as important angiogen-
esis regulators and promote tumor angiogenesis either via
binding through chemokine receptors expressed on ECs or
through inflammatory cell recruitment. Chemokines regulate
immune responses along with angiogenesis, conferring their
dominant role in tissue microenvironment modulation;
therefore, chemokines may serve as a potential biomarkers
for targeting tumor angiogenesis [105]. Chemokine subfamily
classifications based on the amount of cysteine residue depo-
sition at the N-terminal domain of the molecules are CXC,
CC, C, and CX3C. The CXC family is further classified based
on the presence or absence of the ELR (glu–leu–arg) motif at
their N-terminus and is thus indicated as ELR+ and ELR-
chemokines, respectively [106]. ELR+ includes CXCL1,
CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8,
which binds to the receptor CXCR2, that are overexpressed
in microvascular ECs and tumor vessels, and enhances angio-
genesis [107]. CXCL8 has been reported to induce release of
VEGF and MMP-2, which are involved in metastasis-related
tissue remodeling, along with the progression and cancer
metastasis. Elevated CXCL8 serum level is associated with
the severe tumor load and distant metastasis [108]. CL2 inter-
acts with C–C chemokine receptor type 2, expressed in tumor
endothelial progenitor cells and enhances endothelial perme-
ability and metastasis. Thus, based on encouraging preclinical

studies, cytokines could be explored as effective biomarkers for
the establishment of antiangiogenic therapy.

5. Antiangiogenesis-Based Therapy for
Cancer Treatment

Antiangiogenic agents block the supply of oxygen and nutri-
ents to cancerous cells. In 1971, Folkman hypothesized
regarding the effectiveness of antiangiogenic agents for can-
cer therapy that these antiangiogenic agents could prevent
the formation of new blood vessels and disrupt the existing
one by neutralizing the angiogenic protein, inducing EC
apoptosis, or inhibiting the endothelial receptors for angio-
genic proteins [81]. These inhibitors are capable of targeting
angiogenic growth factor receptors, Tei receptor, VEGFR,
and PDGFR, or inhibit angiogenic growth factors, PGF
and its receptor, VEGF, and bFGF [109]. Therefore, clinical
strategies to develop molecules that target angiogenesis
molecular pathways have been extensively researched for
the treatment of cancers. As mentioned earlier, VEGF could
be a potential biomarker, and various clinically available
antiangiogenic agents act by targeting the VEGF/VEGFRs
pathway, such as monoclonal antibodies (Bevacizumab),
small-molecule TKI (Sorafenib), and VEGFR2 inhibitors
(Ramucirumab), out of which monoclonal antibodies are
being used widely, which act by binding to circulating
VEGF (Figure 5). Aptamers, single-stranded DNA or
RNA (15–100 nucleotide) ligands that bind specifically to
a target molecule with higher affinity and minimal or no
immunogenicity, have also been studied for antiangiogenic
therapy [110]. Pegaptanib sodium was the first USFDA
approved RNA aptamer, developed using systematic evolution
of ligands by exponential enrichment methodology directed
against a VEGF isoform, is a potent angiogenesis inhibi-
tor [111].

Gene therapy is also being utilized in antiangiogenesis
therapy, which involves the introduction of genetic mate-
rials to target cells to reprogram their activity. Gene ther-
apy showed more effective penetration into tumors and
less immunogenicity [112]. Antiangiogenic gene therapy
aimed at prohibiting the formation of novel vessels and inacti-
vating the preexisting blood vessels [113]. Recently, scientists
developed the human soluble FMS-like tyrosine kinase recep-
tor 1 (sFlt-1) encoding recombinant adeno-associated virus-2
(rAAV) vector for sustained antiangiogenic effect, without
vector-associated immunity or toxicity [114]. The list of FDA
approved angiogenesis inhibitors is mentioned in Table 2.

5.1. Monoclonal Antibodies (mAbs). Monoclonal antibody-
based therapy is an extensively explored strategy for targeting
angiogenic biomarkers. Bevacizumab was the first FDA-
approved humanized monoclonal antibody for the treatment
of metastatic colorectal cancer in combination with chemo-
therapy that targets VEGF-A, which has been identified as a
key factor for inducing tumor angiogenesis [115]. It is
derived from murine VEGF, comprised of 93% human
and 7% murine protein sequence and results of clinical trial
demonstrated progression-free survival when combined
with cytotoxic chemotherapies [116]. Currently, it is widely
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being used for tumor therapy; however monotherapy with
bevacizumab may be insufficient for angiogenesis therapy as
frequent resistance have been reported therefore generally
prescribed in combination with the other chemotherapeutic
agents [117, 118].

Ramucirumab, a USFDA approved human mAb has
high selectivity for VEGFR-2, act via blocking the interaction
between VEGF and its receptor [119]. Cetuximab, first
USFDA approved monoclonal antibody that binds to extra-
cellular domain of EGFR with higher affinity than the natural
ligand, blocking the tyrosine kinase-dependent signal trans-
duction pathway. Cetuximab exerts antitumor effect due to
decreased production of MMPs and VEGF [120]. Afliber-
cept, another antiangiogenic-agent, is a fusion protein com-
posed of a constant Fc human IgG domain in combination
with the second Ig domain of VEGFR-1 and the third Ig
domain of VEGFR-2. Aflibercept targets the VEGF pathway
in combination with chemotherapy regimens in triple-negative
breast cancer [121]. Antibody conjugated delivery systems
have been explored by the researchers, which could serve
as an efficient tool for cancerous cells’ targeting where cer-
tain antigens are overexpressed and may attack the blood
vessels feeding tumor [122].

5.2. MicroRNAs/Small Interfering RNAs. MicroRNAs and
siRNAs have been found to be efficient modulators of genes
that express angiogenic factors in an angiogenesis animal
model [123]. miR-126 has been reported to have dual functions
in pathological angiogenesis, where miR-126-5p overexpression
promotes angiogenesis and miR-126-3p silencing inhibits it
[124]. In addition, the expression level of oncogenic proteins
was reported to be reduced by miR143/145, which binds to the
mRNAs of VEGF, KRAS, and EGFR, representing a growth
inhibitory effect [125]. The roles of miRNAs in angiogenesis
in different tumor therapies are presented in Table 3.

KRAS mutations are responsible for the proliferation
signalling of RAS/ ERK pathway and indicate poor response
to EGFR inhibitors. Double-stranded RNA precursors are
processed by a Dicer protein into short fragments, where
one strand of the processed duplex is loaded into an argonaute
protein (Ago), enabling RNA recognition and its expression
modulation via several mechanism [210]. The pathway for
siRNA silencing for a particular of gene is diagrammatically
represented in Figure 6. Li et al. [211] developed multifunc-
tional nanoparticles to improve VEGF gene silencing effi-
cacy and improve tumor cell antiproliferation effects. The
nanoparticles were coated with PEGylated histidine-grafted

VEGF inhibitors:
bevacizumab, sorafenib,
lenalidomide, sunitinib,
vandetanib, cabozantinib,
ramucirumab, nintedanib,
lenvatinib mesylate,
vanucizumab

PDGF inhibitors:
sorafenib, pazopanib 

EGFR inhibitors:
vandetinib, erlotinib 

ANGPT2 inhibitors:
vanucizumab 

VEGFR A

VEGFR B

PDGFR

EGFR

TIE 2 receptor

VEGF A

VEGF B

PDGF

EGF

Angiopoietin

FIGURE 5: Antiangiogenic drugs and their targets such as VEGF, PDGF, EGF, and ANGPT2 along with biological substrates and respective
inhibitors available in the market.
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chitosan-lipoic acid and loaded with siVEGF and etoposide.
The nanosystem utilizing siRNA have shown significant sup-
pression of tumor growth and metastasis than monotherapy
[211, 213, 214].

5.3. Small Molecular Inhibitors. Another strategy for target-
ing VEGF signalling involves TKI that targets VEGFR, such
as Sunitinib, Pazopanib, and Axitinib (Table 2). TKIs target
kinases, are being utilized more preferably as secondary and
tertiary therapies and are reportedly more effective in
combination with chemotherapy [215]. Axitinib was the
first TKI compound with established antitumor activity
that reduced vascular permeability, tumor volume, and
tumor vascularization [212].

These angiogenesis inhibitors downregulate angiogenic
activators that promote unregulated neovascularization in
tumors. For example, affinitors (everolimus) and torisel
(temsirolimus) downregulate angiogenesis by inhibiting the
intracellular metabolic pathway of mTOR. Sorafenib is an
FDA-approved TKI for hepatocellular carcinoma, metastatic
thyroid carcinoma, and advanced RCC [216–218].Withaferin
A inhibits protein kinase C, which further inhibits apoptosis
induction by caspase-3 activation and exhibits antiangiogenic
activity [219]. Regorafenib is a multikinase inhibitor that
restricts the kinases involved in tumor angiogenesis and onco-
genesis (KIT, RET, RAF1, and BRAF), enhancing the survival
of cancer patients [220].

5.4. Angiostatin and Endostatin. Endostatin blocks the bind-
ing of VEGF to ECs and inhibits the growth and migration of
ECs followed by the suppression of capillary formation. Reti-
nostat®, a Lentiviral Equine infectious anaemia virus vector-
based therapy, was investigated for safety and tolerability in a
Phase I clinical trial. The recombinant EIAV-based vector
contains cDNAs expressing endostatin and angiostatin for
long-term antiangiogenic activity in patients with macular

degeneration [116, 117]. Angiostatin blocks matrix-enhanced
plasminogen activation and inhibits cancer metastasis and
invasion; however, angiostatin has a short t1/2, representing
the requirement of a specialized delivery system. Zhang et al.
[221], hypothesized that the combination of bevacizumab and
angiostatin via attacking two different angiogenic pathways
could lead to an additive antiangiogenic effect. The combina-
tion was tested in thymic mice bearing intracranial human
glioma (U87), where the injection of G47δ-mAngio (an onco-
lytic virus expressing angiotensin) allowed bevacizumab-
induced inhibition of invasion markers (MMP2 and MMP9)
and angiostatin-mediated inhibition of VEGF expression. The
results showed the enhanced antiangiogenic activity of a com-
bination system utilizing viral oncolytic therapy [221].

Despite the development of several antiangiogenic agents,
enormous challenges persist with respect to their efficacy,
toxicity, drug resistance, and selection of patients who will
benefit from antiangiogenic therapy. VEGF-targeted thera-
pies are relatively safe, and several clinical trials have revealed
several side effects that can be managed through proper care
[222]. Despite the development of several antiangiogenic
agents, enormous challenges persist with respect to their effi-
cacy, toxicity, drug resistance, and selection of patients who
will benefit from antiangiogenic therapy. VEGF-targeted
therapies are relatively safe, and several clinical trials have
revealed the side effects, which can be managed through
proper care [223].

5.5. Melatonin and Its Analogues. The pharmacological
potential of melatonin is found in various biological pro-
cesses, including circadian rhythm synchronization, immune
response stimulation, antioxidant activity, antiestrogen activ-
ity, and oncostatic activity. In addition, melatonin exhibits
antiangiogenic activity in various cancers through multiple
mechanisms, inhibiting cancer growth and metastasis [224].
Melatonin favors angiogenesis in some physiological events,
skin lesions, and gastric ulcers while suppressing neovascu-
larization in tissues in hypoxic environments (tumors) and
age-associated eye disorders [225]. It also inhibits HIF-1-induced
angiogenesis and thereby exerts antitumor action [226].

Melatonin-treated gastric tumor-bearing mice showed
significantly reduced expression of both mRNA and protein
levels of HIF-1α, RZR-RORγ, and VEGF compared to untreated
mice. These changes are attributed to melatonin’s antiangio-
genic potential in human gastric cancer cells [227]. It exhibits
antiangiogenic activity by downregulating VEGFR-2 in ER-
negative breast cancers [228]. Furthermore, no significant
HIF-1α expression was observed in melatonin-treated tumors
than in the vehicle control group. In contrast, melatonin signifi-
cantly downregulated HIF1-α and VEGF expression in the liver
and mouse tumor models [229]. In prostate cancer, melatonin
promotes HIF-1α accumulation by suppressing ROS produc-
tion and the sphingosine kinase-1 pathway, exhibiting antitu-
mor action [230].Melatonin treatment also resulted in a parallel
reduction of VEGF, VEGFR-2, and HIF-1α expression with
tumor size and blood capillary density in ovarian tumor-
carrying rats [231]. It also impairs vasculogenesis in oral cancer
by inhibiting ROS-activated Akt and ERK signalling through
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FIGURE 6: siRNA silencing pathway. Once inside the cytoplasm,
siRNA is either directly incorporated into RNA-induced silencing
complex (RISC) or undergoes a process mediated by Dicer. Upon
RISC loading, the passenger strand dissociates, initiating the RNA
interference process by cleaving and degrading the target mRNA.

14 Stem Cells International



the HIF-1α pathway and represses the expression of ROCK-1,
HIF-1α, and VEGF genes in oral cancer [232, 233].

Thus, the different mechanisms through which melato-
nin exhibits antiangiogenic activity are: (a) inhibition of HIF-
1α translocation into the nucleus and downregulates the
mRNA and proteins such as VEGF, phosphor-STAT3, and
the CBP/p300 complex (referred to as angiogenesis-related
gene expression); (b) inhibition of VEGF-induced VEGFR2
phosphorylation, thus suppressing the expression and trans-
activation of VEGFR2; and (c) inhibition of the migration
and invasion of ECs in tumor tissues; (d) melatonin receptor
(especially MT1) mediated downregulation of VEGF in some
cancers [234]; however, receptor involvement in the down-
regulation of VEGF was independent in tumor tissues and
melatonin possesses antiangiogenic effects in tumor tissues,
making melatonin, and its analogues a potentially promising
drug to inhibit tumor growth and metastasis [235–237].

Hence, melatonin and its analogues have gained the atten-
tion of new researchers to evaluate their potential as an anti-
cancer drug either as an adjuvant or as a novel formulation in
combination with standard anticancer drugs. The synthetic
analogues of melatonin, agomelatine and ramelteon can be
explored for their anticancer potential against various cancers
through their mechanism of inhibiting angiogenesis and the
epithelial mesenchymal transition pathway [238].

6. Challenges and Future Direction of
Antiangiogenic Therapy

One of the major challenges associated with the antiangio-
genic therapy is the heterogeneous nature of cancer. Since
angiogenesis is a natural physiological phenomenon that
should be maintained for the proper balance for haemostasis,
therefore the identification of specific biomarkers is required
to avoid damage to healthy organ. Currently, the identifica-
tion of prognostic biomarkers is the promising strategy for
the development of antiangiogenesis therapy. However,
modulating the process of angiogenesis via recognized bio-
marker requires profound insight regarding the molecular
mechanisms through which angiogenesis is mediated. Also,
resistance mechanisms of antiangiogenic agents can be
revealed via the bioprofile information, which can further
disclose the additional mechanisms for angiogenesis that
can be targeted for cancer therapy. Currently, out of all the
available antiangiogenic agents, none has met the expecta-
tions regarding the survival of cancer patients. The identifi-
cation of angiogenic biomarkers and its application in cancer
therapy, has been the main objective and vision yet to
achieve. Various inhibitors of angiogenic markers including
monoclonal antibodies have performed well in specific, but
not all, cancers. Hence, extensive research is going on to
endorse the better understanding of compensatory pathway
within tumor cells and develop the agents with therapeutic
potential to inhibit the angiogenesis in cancer.

7. Conclusion

The crucial role of angiogenesis in pathological alterations,
especially in cancer progression, proliferation, and metastasis,

and how it keeps a regulatory eye on other remaining hall-
marks of cancer are extensively detailed in this manuscript.
The functioning of prognostic and angiogenic biomarkers like
VEGF, FGF, PDGF, ANGPTs, APLN, and chemokines inter-
play inmediating the progression of angiogenesis are detailed.
The antiangiogenic therapy, including monoclonal antibo-
dies, siRNAs, miRNAs, small molecule inhibitors, angiostatin,
endostatin, and melatonin analogues, functions in inhibiting
angiogenesis through altering angiogenic biomarkers’ expres-
sion are also described here. However, numerous challenges
are on the way for miRNAs and siRNAs to endorse them at
the clinical level due to the avoidance of acceptance by human
society for treatment and management of disease using for-
eign genetic materials. Also, the single miRNAs and siRNAs
have been incapable of defeating the intensified stages and
multiple pathways supporting angiogenesis in various cancer
stages. The multicomponent formulations could be possible
for sequential blocking of angiogenesis, and transforming the
same at the clinical level seems impossible with numerous
challenges. Moreover, designing a novel melatonin receptor
subtype 1 could be an antiangiogenic candidate for targeting
cancer. The anti-HIF-1α phytochemicals can also be explored
for inhibiting angiogenesis innervating the tumor tissues. The
more network-based studies and artificial intelligence proces-
sing are needed to explore these possible agents to target
angiogenic pathways for the cancer treatment.
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